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Abstract: The current paper is concerned with the nonlinear stability analysis of rotating magnetic fluid columns. The

rotation sources are a mixture of both uniform and oscillating behavior. The motivation behind tackling this topic is the

increasing interest in atmospheric and oceanic motions. The system consists of two magnetic phase fluid that fills two

infinite vertical cylinders. An azimuthal uniform magnetic field is penetrated on the system. The governing equations of

motion, in terms of the Coriolis force and reduced pressure, along with Maxwell’s equation in the quasi-static approxi-

mations are considered. Consequently, the disturbance of the interface has an azimuthal behavior. The fluids are fully

saturated in porous media. In light of the implication of the nonlinear boundary conditions, the solutions of the linearized

equations of motion resulted in a nonlinear characteristic dispersion equation. Utilizing the homotopy perturbation tech-

nique, this equation is analyzed. A modification of the latter equation is made to seem like a nonlinear Klein–Gordon

equation. The stability criteria are realized in linear as well as nonlinear approaches. A set of diagrams is graphed to

illustrate the effects of several non-dimensional numbers on the stability profile in resonance as well as non-resonance

cases.

Keywords: Azimuthal nonlinear instability; Rotating fluids; Porous media; Magnetic fluids; Homotopy perturbation

method

1. Introduction

Ferrofluid or magnetic fluid is a stable colloidal suspension

of a nanoscale magnetic particle in a carrier liquid; for an

illustration, see Rosensweig [1]. In this work, Rosensweig

provided a framework for identifying the behavior of

magnetic fluids. In other words, magnetic fluids, as iron,

behave like magnetized materials due to the action of a

magnetic field. Simultaneously, they exhibit the same

properties as the ordinary fluids. Moreover, Rosensweig [1]

showed important applications for them in seals, cooling,

and other implementations. It was shown that the presence

of a normal field at the interface exerted a destabilizing

influence, and simultaneously the tangential one had a

stabilizing effect on the stationary configuration of fer-

rofluids. This stabilizing influence has been claimed to hold

for two perfect fluids in a relative motion. Furthermore,

recent interest in magnetic fluids has concentrated on

biomedical, pharmaceutical, flow manipulation, and other

small scale applications; for instance, see L}ubbe et al. [2].

They provided an overview of the applications of fer-

rofluids along with magnetic fields. Moreover, they

advanced several medical applications, especially in the

anticancer process. Furthermore, they have a wide range of

applications in the surface of separation between two

magnetic fluids. Therefore, the stability properties of

magnetic fluids, involving the interface and implication of

magnetic fields, are of great practical interest for both

existing and future practical applications. The effect of

radial and axial magnetic fields of various strengths, on

natural convection in a vertical cylindrical annular cavity,

has been numerically studied by Sankar et al. [3]. They

found that the magnetic field has a more effective mech-

anism when it is perpendicular to the direction of the pri-

mary flow. This phenomenon has a serious implication for

the design of magnetic systems for stabilizing or weaken-

ing the convective effects. The stability in a layer channel
*Corresponding author, E-mail: marwa.zekry@science.bsu.edu.eg

Indian J Phys (March 2022) 96(3):839–854

https://doi.org/10.1007/s12648-021-02022-3

� 2021 IACS

http://orcid.org/0000-0002-2899-3513
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-021-02022-3&amp;domain=pdf
https://doi.org/10.1007/s12648-021-02022-3


flow fill of magnetic fluids was investigated by Yecko [4].

Yecko [4] obtained the neutral curves of stability, and his

analysis showed that the stability characteristics mainly

depend on the magnetic properties of the material. Fur-

thermore, the stabilization/destabilization of the tangential/

normal fields was shown by Rosensweig [1].

Girish et al. [5] studied the flow in the annular region

between three vertical coaxial cylinders. They showed that

the axial velocity profile was reduced by an increase in the

Grashof number. However, for larger Grashof number, the

axial velocity alters moderately in the passage bounded by

an isothermal wall for both thermal cases. El-Dib and

Mady [6] studied the linear and nonlinear stability profile

of Rayleigh–Taylor instability of two magnetized fluids in

the presence of tangential/normal magnetic field intensity.

Their analysis resulted in a transcendental integro-Duffing

equation. The stability criteria were theoretically formu-

lated and numerically confirmed. Venkatachalappa et al.

[7] reported the effect of axial or radial magnetic fields on a

double-diffusive natural convection in a vertical cylindrical

annular cavity. They aimed to present a numerical study to

understand the effect of magnetic field on a double-diffu-

sive convection in the annular cavity. They found that the

magnetic field suppresses the double-diffusive convection

only for small buoyancy ratios. With regard to porosity of

different sizes and locations of the heater, its influence on

the average Nusselt number is small at the low Darcy

number, while it becomes significant at higher values of

Darcy number. Furthermore, increasing porosity increases

the average Nusselt number. Sankar et al. [8] examined a

two-dimensional, axisymmetric cylindrical annular enclo-

sure along with the important geometrical parameters.

They found that porosity, at different sizes and locations of

the heater, has an influence on the average Nusselt number,

and its effect becomes of significance of higher values of

Darcy number.

Understanding the rotating fluids is fundamental to

explaining/predicting atmospheric or oceanographic phe-

nomena. In addition, this topic is important in addressing

technological problems ranging from the centrifugal to

spinning shell; for instance, see Roberts and Soward [9].

Most of the examinations of rotating fluids have been

motivated by geophysical applications because rotation

properties are of principal importance in these circum-

stances. Sympathetic atmospheric and oceanic motions are

of vital interest. Rotating fluids are identified in relation to

the dispersion of pollution by biochemical into the atmo-

sphere and the oceans, for illustration see Hopfinger [10].

Neumann et al. [11] analyzed explicit criteria that indicate

the appropriateness of rotating packed beds for the perse-

verance of industrial applications for gas–liquid, vapor–

liquid, and liquid–liquid interfaces. For this objective,

distinguishing decision trees were familiarized in order to

simplify the documentation of developments on this topic.

Recently, a review of instability and consequent natural

convection in rotating porous media was presented by

Vadasz [12]. He showed that Taylor–Proudman columns

and geophysical flows happening in rotating porous media

are equivalent what takes place in pure fluids. The effect of

Coriolis acceleration was also discussed. The interest in

studying the fluid dynamics in rotating systems comes from

the appearance of a specific category of waves, known as

inertial waves, which is widely encountered in nature.

Therefore, the instability of a rotating cylindrical fluid

column has drawn a great deal of interest in accordance

with its wide applications, ranging from the liquid

atomization, through combustion enhancement nozzle

design of the spray and the breakdown of vortex cores, to

combination and painting processes, as well as astronom-

ical telescopes. For instance, see Basta et al. [13].

Venkatachalappa et al. [14] performed a numerical calcu-

lation to investigate the effect of rotation on the axisym-

metric flow in two vertical cylinders rotating at different

angular velocities. They found that when the rotation of the

outer cylinder is on low speed, the outer boundary flow is

confined to a thin region. Meanwhile, the return flow

occupies a major portion of the annulus for moderating the

Grashof number. The classical work on the linear stability

of a fluid cylinder has been attracting a great deal of

interest in plasma physics, practical engineering, astro-

physics, and many other practical applications. To the best

of our knowledge, Rayleigh [15] was considered the first

scientist who worked on this topic. Rayleigh [15] showed

that a non-rotating inviscid column is unstable to an

axisymmetric deformation whose wavelength in the axial

direction is greater than the circumference of the column

and stable for all non-axisymmetric disturbances. After

more than fifty years, Hocking and Micheal [16] found that

the liquid column, when acted upon by a uniform angular

velocity X, becomes stable according to the planar azi-

muthal wave number m, provided that

r� qR3X2

mðm þ 1Þ ; ð1Þ

where r stands for the surface tension, q refers to the

incompressible fluid density, and R is the undisturbed fluid

column.

Hocking and Micheal [16] first derived the stability

criterion of a perfect liquid column subjected to the axial

disturbance in the following form:

U� 1

k2 � 1
; ð2Þ

where U is the ratio of the surface tension of the centrifugal

force and the inertia to the viscous force, k is the axial

wavenumber which is normalized to the fluid column R.
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Additionally, Hocking and Micheal [16] showed that the

stability criterion for the viscous column should be inde-

pendent of the following rotational Reynolds number:

Re ¼
R2X
m

; ð3Þ

where m represents the kinematic viscosity of the fluid

column.

Joseph et al. [17] are the first to formulate a general

stability criterion. This criterion was obtained by mini-

mizing an appropriate potential function. Throughout this

study, they deliberated the movement of two fluid rings

with different densities and viscosities and rotating with

same angular velocity. Furthermore, their results gave a

partial explanation of stability and shape of the rollers of

viscous oils that rotate in the water.

Undoubtedly, the instability at the fluid interface,

moving between two porous media, is of excessive sig-

nificance in numerous applications, including groundwater

hydrology, oil production, civil engineering, and other

uses. Nayfeh [18] provided an extensive investigation of

the stability at the interface of two different fluids of dif-

ferent densities and viscosities throughout permeable

media. He also investigated the instability of the interface

between two moving liquids. The results showed that

nonlinearity was destabilizing owing to the decrease in the

surface tension force. Additionally, the deviations of Dar-

cy’s law were found to be stabilizing when the flow was

from the denser to the lighter fluid and vice-versa.

Raghavan and Marsden [19] introduced a new approach at

which a liquid interface between two immiscible fluids

may become unstable. This stability was similar to that of

Kelvin–Helmholtz instability. They showed that the

aligned flow of liquids may stabilize density gradients.

Bishnoi and Agrawal [20] studied the stability of the

density of stratified flows throughout porous media. They

revealed physical situations where the flow is governed by

Darcy’s law. Their analysis included a relationship that

revealed two or three-dimensional disturbances. Sharma

and Kumar [21] investigated Rayleigh–Taylor instability of

a Newtonian viscous fluid above an Oldroydian visco-

elastic fluid throughout porous media. Their analysis

involved a horizontal magnetic field and a uniform rota-

tion. They showed that the system becomes unstable for a

viscous fluid overlying an Oldroydian visco-elastic fluid

throughout porous media. Recently, Moatimid and Zekry

[22] investigated the nonlinear instability of a non-New-

tonian fluid of the Walters’ B type. The fluids filled the

regions inside and outside a vertical circular cylinder. The

fluids are saturated in porous media. Several special cases

were reported upon convenient data choices. They showed

that the nonlinear stability approach divided the phase

plane into several parts of stability/instability. Xu and Li

[23] examined the nonlinear stability approach of an infi-

nite horizontal fluid layer saturated in porous media. They

proved that the nonlinear stability is global and

exponential.

The current article offers an extension to our previous

work as given by El-Dib et al. [24] to include the nonlinear

stability analysis of a uniform/periodic rotating liquid

column. Therefore, the rotation is a mixture which displays

uniform and oscillating behavior. The fluid column is held

by capillary forces in the existence of an azimuthal mag-

netic field for non-axisymmetric and two-dimensional

perturbations. A weakly nonlinear approach is based on the

concept of the linear solutions of the governing equations

of motion along with the implication of the convenient

nonlinear boundary conditions. To crystallize the presen-

tation of the problem, the rest of the manuscript is orga-

nized as follows: Sect. 2 reports general features of our

previous work [24]. Section 3 is devoted to examining

nonlinear stability analysis by modifying the homotopy

perturbation method (HPM). This section involves a

detailed analysis of the resonance as well as non-resonance

cases. Finally, Sect. 4 is devoted to presenting the con-

cluding remarks in light of the findings of the analysis.

2. Problem statement and relevant equations

A system consisting of two infinitely long liquid columns

that are composed of an incompressible, inviscid, and

homogenous liquid is deliberated. The liquids are saturated

in porous media; for the sake of simplicity, they are of unit

porosity. The gravitational force ðgÞ, which acts vertically

downwards, is taken into account. It is convenient to work

with the cylindrical polar coordinates ðr; h; zÞ. The

velocity components are taken as ðu; v; wÞ, and uniform

and periodic angular velocities of rotation are given as:

X ¼ ðXþ ~X cosxtÞ ez. Therefore, the column performs a

rigid-body rotation around its vertical axis of symmetry. In

equilibrium configuration, the interface represents a cir-

cular cylinder of the radius R. An azimuthal uniform

magnetic field of strength H0 acts on both fluids. It is

presumed that the inner liquid column has a uniform den-

sity q1, magnetic permeability l1, and kinematic viscosity

g1. The outer column is embedded in an unbounded

rotating liquid, having a uniform density q2 and magnetic

permeability, kinematic viscosity g2 and the symbol j refer

to the medium permeability. Keep in mind that the latter

parameter is assumed to be of the same value in both

media. Generally, the subscripts 1 and 2 refer to inner and

outer magnetic columns, respectively. A schematic dia-

gram of the configuration of the physical model is sketched

in Fig. 1.
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The non-steady perturbed equations of motion are

written in a rotating frame of reference as given by Wei-

dman et al. [25]. Therefore, the fundamental governing

equations of motion, for a bulk of magnetic fluid phases,

are written as:

dV

dt
þ 2ðX ^ VÞ ¼ � 1

q
rp� gez �

g
j

V ; ð4Þ

with the incompressibility condition that is given by

r � V ¼ 0; ð5Þ

where p ¼ p � qððXþ ~X cosxtÞez ^ rÞ2 =q is defined as

‘‘reduced pressure’’, p represents hydrostatic pressure. In

other words, it can be said that the centrifugal force is

included in the hydrostatic pressure to yield a new pressure,

which is called the reduced pressure. The Coriolis force is

represented by the term 2ðX ^ VÞ.
The following analysis is considered as in the Kelvin–

Helmholtz model, so that the total velocity vector can be

represented by V ðu; rðXþ ~X cosxtÞ þ v; wÞ, where

r ðXþ ~X cosxtÞ gives a non-perturbed velocity. For more

opportunities and without any loss of generality, only two-

dimensional disturbances are supposing. Therefore, one

may assume that w ¼ 0 :

On the other hand, for simplicity, it is assumed that no

free surface currents act in any of the two regions. Sub-

sequently, Ampere’s law requires the magnetic field H to

be curl-free. Consequently, the magneto-quasi-static

approximation is valid for the problem at hand; for illus-

tration, see Melcher [26]. In view of the validity of the

quasi-static approximation, a scalar function u representing

scalar magnetic potential may be introduced as follows:

H ¼ �ru : ð6Þ

Each of the two regions has a uniform magnetic

permeability; it follows that Gauss’ law requires that

scalar magnetic field should obey the following Laplace’s

equation:

r2u ¼ 0: ð7Þ

In the equilibrium state, the equilibrium hydrostatic

pressure may be given as

pð0Þj ¼ �qjgz þ CðtÞj; j ¼ 1; 2 ð8Þ

where the superscript ð0Þ refers to equilibrium state and

CðtÞj is a time-dependent constant of integration.

From the continuity of the normal stress at the interface,

the jump of the pressure is found to be zero whence:

CðtÞ1 � CðtÞ2 ¼
r
R
þ ðq2 � q1Þgc þ 1

2
ðl2 � l1ÞH2

0 ; ð9Þ

where r is the amount of surface tension.

Simultaneously, as stated in the problem formulation,

the motion is considered in the plane z ¼ c for instance.

Therefore, CðtÞ1 and CðtÞ2 remain constant during the

motion.

2.1. Perturbation equations

To complete the formulation of the boundary-value prob-

lem, the surface geometry and the supplement magnetic

equations, along with the corresponding appropriate non-

linear boundary conditions, must be addressed. After a

limited, but a finite departure from the initial configuration,

the surface deflection may be expressed by considering the

standard normal modes analysis; for instance, see Chan-

drasekhar [27]. In light of this concept, the surface

deflections nðh; tÞ may be represented as a sinusoidal wave

of finite amplitude, where after disturbance, the interface

becomes as follows:

r ¼ R þ nðh; tÞ; ð10Þ

where

nðh; tÞ ¼ cðtÞ eimh þ c:c: ð0� h� 2pÞ; ð11Þ

herein cðtÞ is an unknown function of time t, representing

the amplitude of the perturbations of the initial surface of

the column which determines the behavior of the amplitude

of the disturbance of interface; the integer m is an azi-

muthal wavenumber which is assumed to be real, integer,

and positive, and c:c: refers to the complex conjugate of the

preceding term.

It is appropriate to define bounding surface as the locus

of points satisfying the relation r ¼ R þ nðh; tÞ, then the

unit normal vector to the interface will be given by

n ¼ er �
i m

r
n eh

� �
1� m2

r2
n2

� ��1=2

: ð12Þ

It follows that all disturbances are assumed to be of two-

dimensional form. By the two-dimensional disturbances,

the flow field depends on the azimuthal direction of

Fig. 1 Sketch of the physical model
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propagation, which will be along with h- azimuthal and r-

horizontal directions. The limiting case of a very long

longitudinal wavelength is considered here, so that the

dependence of the variable z can be ignored.

Therefore, along with the two-dimensional flow case,

the various perturbations may be represented in the fol-

lowing form:

<ðr; h; tÞ ¼ <̂ðr; tÞ eimh; ð13Þ

where <̂ðr; tÞ stands for any linear physical quantity.

For two-dimensional flow, the linearized form of the

equations of motion may be written as:

Lu � 4 ðXþ ~X cosðxtÞÞv ¼ � 1

q
o p
o r

; ð14Þ

Lv þ 4ðXþ ~X cosðxtÞÞu ¼ � im

q r
p; ð15Þ

and

o u

o r
þ imv

r
þ u

r
¼ 0; ð16Þ

where an operator L is defined as:

L � o
ot þ

g
j þ imðXþ ~X cosxtÞ.

Typically, for two-dimensional flow, one may identify a

stream function w r; h; tð Þ such that:

Lu ¼ � im

r
w; and Lv ¼ ow

or
: ð17Þ

The stream function may be determined by eliminating

the pressure of equations of motion. For this purpose, a

combination of Eqs. (13), (14) and (17) yields

r2
o2

o r2
þ r

o

o r
� m2

� �
ŵðr; tÞ ¼ 0; ð18Þ

which has the solution:

ŵðr; tÞ ¼ A�
1ðtÞ rm þ A�

2ðtÞ r�m: ð19Þ

For the finite solutions, one may obtain

w1ðr; h; tÞ ¼ A1ðtÞ rmei m h ðr �RÞ; ð20Þ

and

w2ðr; h; tÞ ¼ A2ðtÞ r�mei m h ðr �RÞ; ð21Þ

where A1(t) and A2(t) are arbitrary time-dependent func-

tions to be determined from the advantages of the nonlinear

boundary conditions.

Once more, returning back to the magnetic part, in

accordance with two-dimensional flow considered here,

Laplace’s equation, as given in Eq. (7) that governs the

magnetic potential ûðr; tÞ, may be written as:

r2
o2

o r2
þ r

o

o r
� m2

� �
û ðr; tÞ ¼ 0; ð22Þ

which has the following solutions:

u1ðr; h; tÞ ¼ B1ðtÞ rmei m h ðr �RÞ; ð23Þ

and

u2ðr; h; tÞ ¼ B2ðtÞ r�mei m h ðr �RÞ; ð24Þ

where B1(t) and B2(t) are time-dependent functions to be

determined from the acceptable nonlinear boundary

conditions.

To study the interface stability of the flow under con-

sideration, two-dimensional small disturbances are intro-

duced into governing equations of motion as well as the

boundary conditions. For this objective, consider a small

perturbation about initial configuration of the cylindrical

interface. The qualified nonlinear boundary conditions will

be presented in the next subsection.

2.2. Nonlinear boundary conditions

In light of the system adopted here, there are two relevant

categories of boundary conditions. The first deals with the

conditions at an infinite/finite distance from the interface.

Simultaneously, the second one occurs at the surface of

separation. The former expresses the requirements as

magnetic field and velocities tend to zero at infinity. The

interface boundary conditions must be satisfied on the

surface of separation, which is located at r ¼ R þ n. The
last conditions may be represented as follows:

(i) At the boundary between the two fluids, it is required

that fluid velocity field satisfies an equation expressing

the assumed material character of dividing surface.

This is called the kinematic boundary condition,

hence, one gives

uj ¼
o n
o t

þ im Xj þ ~Xj cosðxtÞ þ vj

r

� �
n

j ¼ 1; 2 r ¼ R:
ð25Þ

(ii) For the magnetic path, in the absence of the surface

currents, the jump in the tangential components of the

magnetic field is zero across the interface; this leads

to

o/
oh

����
����þ imn

o/
or

����
���� ¼ 0 r ¼ R; ð26Þ

where || || represents the jump across the interface; it is

defined as �k k ¼ ð�Þ1 � ð�Þ2:

Additionally, the normal magnetic displacement is

continuous at the interface. Thus, one finds
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l
o/
or

����
����� im

r2
l
o/
oh

����
����� rH0 lk k

� �
n ¼ 0; r ¼ R: ð27Þ

The remaining boundary condition may be stated as: At

the boundary two fluids, the fluid and magnetic stresses

must be balanced. The derivation follows the work of

Melcher [26] as follows:

ri j

�� �� nj ¼ �rðr � nÞ ni; ð28Þ

where ni and nj are the components of the unit vector n.

The components of these stresses consist of the following

hydrodynamic pressure and magnetic stresses:

rrr ¼ �P þ 1

2
lðH2

r � H2
hÞ; ð29Þ

rhh ¼ �P � 1

2
lðH2

r � H2
hÞ; ð30Þ

and

rrh ¼ lHrHh; ð31Þ

where rrr and rhh are defined as the normal stresses and rrh

represents the shear one.

At this end, one may proceed to derive the nonlinear

characteristic equation that governs the surface evolution,

keeping in mind that the elevation function n is finite.

2.3. Derivation of the nonlinear characteristic equation

To solve the linearized equations of motion of the system

under consideration, the favorable nonlinear boundary

conditions are required. For this purpose, in light of the

two-dimensional finite disturbances, the boundary-value

problem is well defined. As customary in the hydrody-

namic stability theory as established by Chandrasekhar

[27], all perturbed physical quantities have exponential

time dependence and a periodic spatial one.

Substituting from Eqs. (20) and (21) into Eq. (25), and

from Eqs. (23) and (24) into Eqs. (26) and (27), the solu-

tions corresponding to the nonlinear boundary conditions

are related to the interface displacement n as

w1ðr;h; tÞ¼
i

m

ðntþ imðX1þ ~X1cosðxtÞÞnÞR2

ðRþmnÞ
r

R

� �m

; r�R;

ð32Þ

w2ðr;h; tÞ¼
i

m

ðntþ imðX2þ ~X2cosðxtÞÞnÞR2

ðR�mnÞ
R

r

� �m

; r�R;

ð33Þ

/1ðr; h; tÞ ¼ � iRðl1 � l2ÞH0n
ðl1 þ l2ÞðR þ mnÞ

r

R

� �
; r �R ð34Þ

and

/2ðr; h; tÞ ¼ � iRðl1 � l2ÞH0n
ðl1 þ l2ÞðR � mnÞ

R

r

� �
; r �R ð35Þ

The above distributions of velocity stream functions

w1ðr; h; tÞ, w2ðr; h; tÞ and magnetic potential functions

/1ðr; h; tÞ and /2ðr; h; tÞ contain nonlinear terms in the

elevation parameter n. This nonlinearity occurs because of

the usage of the nonlinear boundary condition.

To evaluate the distribution of the pressure, substitute

from Eqs. (32) and (33) into Eq. (15) to find

p1ðr; h; tÞ ¼ � q1
mj

R2

R þ mn

� �

jntt þ g1nt þ mjðm � 2ÞðX1 þ ~X1 cosðxtÞÞ2nþ

i 2ij m � 1ð ÞðX1 þ ~X1 cosðxtÞÞnt þ mg1ðX1 þ ~X1 cosðxtÞÞn
� �

2
4

3
5

r

R

� �m

; r �R

ð36Þ

and

p2ðr; h; tÞ ¼ q2
m

R2

R � mn

� �

jntt þ g2nt þ mjðm � 2ÞðX2 þ ~X2 cosðxtÞÞ2nþ

i 2ijðm � 1ÞðX2 þ ~X2 cosðxtÞÞnt þ mg2ðX2 þ ~X2 cosðxtÞÞn
� �

2
4

3
5

R

r

� �m

: r �R

ð37Þ

At this stage, by inserting Eqs. (32–37) into the normal

stress tensor as given in Eq. (28), the stream functions

w1ðr; h; tÞ, w2ðr; h; tÞ and magnetic potential functions

/1ðr; h; tÞ and /2ðr; h; tÞ are replaced by their equivalents

in terms of the surface elevation parameter n. This

procedure gives a very complicated nonlinear equation in

the parameter n. Keeping in mind that the surface

deflection function n is small, the implication of the

binomial expansion is convenient. The calculations are

lengthy but straightforward. Up to the third order of n, one
finds a nonlinear equation in the interface displacement n.
To save a space on the paper, it will now be omitted.

Actually, the nonlinear characteristic equation has a

complex nature. In the foregoing analysis, the two parts

of the nonlinear characteristic equations will be presented.

To simplify the calculations, it is convenient to write the

nonlinear characteristic equation in a non-dimensional

form:

To simplify the numerical calculations, it is appropriate

to impose the nonlinear characteristic equation in terms of

convenient non-dimensional quantities. For this objective,

consider the following non-dimensional parameters:
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q2 ¼ qq1; X2 ¼ X̂ X1; ~X2 ¼ X� ~X1; g2 ¼ g g1; l2
¼ ll1 andH2

0 ¼ H�2
0 l1

ffiffiffi
j

p
=r:

For straightforwardness, the ‘‘�’’ mark may be ignored

from the magnetic field intensity H�2
0 in the following

analysis. After employing this choice, the following non-

dimensional numbers will appear in the dispersion relation:

• Taylor numbers T̂a ¼ 4X2
1j

2=g21 and Ta� ¼ 4 ~X2
1 j

2=g21
characterize the importance of the centrifugal ‘‘forces’’

or the so-called inertial forces due to the rotation of

fluid relative to the viscous forces.

• Weber numbers Ŵe ¼ q1 X
2
1j

ffiffiffi
j

p
=r and We� ¼

q1 ~X2
1j

ffiffiffi
j

p
=r distinguish the ratio between the inertial

and surface tension forces. They indicate whether the

kinetic or surface tension energy is dominant or not.

• Ohnesorge number Oh ¼ k1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rq1

ffiffiffi
j

pp
relates viscous

forces to an inertial and surface tension force, where

k1 ¼ q1g1 represents the dynamic viscosity.

Along with the previous non-dimensional procedure,

owing to the real nature of the surface deflection, it is

appropriate to split the real and imaginary parts as follows:

The real part yields

a0ntt þ a1nt þ c0 þ c2 cos 2xt þ c3 cosxtð Þnþ a2nttn

þ a2n
2
t þ a3ntnþ a4 þ d1 þ c7 cos 2xt þ c8 cosxtð Þn2

þ a5nttn
2 � a5nn

2
t þ a6ntn

2

þ a7 þ d2 þ c12 cos 2xt þ c13 cosxtð Þn3 ¼ 0:

ð38Þ

Simultaneously, the imaginary part results in

b1 þ c1 cosxtð Þnt þ b2 þ c4 cosxt þ c5x sinxtð Þn
þ b3 þ c6 cosxtð Þntnþ b4 þ c9 cosxt þ c10x sinxtð Þn2

þ b5 þ c11 cosxtð Þntn
2 b6 þ c14 cosxt þ c15x sinxtð Þn3 ¼ 0;

ð39Þ

where coefficients ai; bi; ci and di are given in

‘‘Appendix’’.

The differentiation Eq. (38) will be added to Eq. (39) to

give the well-known Ince equation; for instance, see

Moussa [28]. Actually, this equation is more general than

the well-known nonlinear Mathieu equation. The following

Section will be devoted to analyzing the stability profile of

this equation. A modified approach depending mainly on

the HPM will be adapted.

3. Nonlinear stability analysis by utilizing a modified

formulation of the HPM

The perturbation methods are widely applied techniques

utilized in the practical engineering problems. The classical

perturbation techniques, ranging from the straightforward

method to the multiple time scale techniques, are all known

for their dependence on the existence of a small parameter

in the considered problem. Often, the absence of this

parameter forces the user to consider weakness in the

problem. To eliminate the limitation of ‘‘small parameter’’,

which is assumed in the perturbation method, a new

technique based on the homotopy terminology will be

adopted. The Chinese mathematician He [29] has proposed

this new perturbation method which does not require a

small parameter in the equation. The new method takes full

advantage of the traditional perturbation methods and

homotopy technique. These advantages may be summa-

rized as follows:

• To obtain an optimal solution, choosing the zero-order

equation is arbitrary.

• A few iterations are sufficient to achieve an accurate

approximate solution.

• In order to reach successful results, it is possible to add

and subtract any term.

Accordingly, away from using the classical perturbation

technique, a nonlinear problem is transformed into an

infinite number of simple linear problems. Effectively,

letting the small parameter float and converge to the unity,

the problem will be converted into a special perturbation

problem with incorporating a small parameter. Therefore,

the method receives the abbreviation HPM. This method is

effective, processing and powerful. The new scheme has

been applied to linear and nonlinear ordinary and partial

differential equations. In analyzing the Duffing equation

with a displacement time-delay, El-Dib [30] utilized two

perturbation techniques to analyze damped Duffing equa-

tion with a time delayed displacement variable as well as

the nonlinear frequency analysis. Recently, Moatimid et al.

[31] provided approximate solutions of coupled nonlinear

oscillation by utilizing the multiple scales in view of the

homotopy approach. Throughout this approach, the ana-

lytical approximate is assumed as a sum of an infinite series

that converges rapidly to an accurate solution. Further-

more, the stability analysis revealed both the resonant and

non-resonant cases. Recently, Fedorov et al. [32] demon-

strated that the HPM may be employed to obtain an ana-

lytical approximate solution to their model. They showed

that the obtained solutions were in good agreement with the

existing numerical methods. Additionally, their analysis

revealed different HPM operators.
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The dependent variable in the nonlinear characteristic

that is composed of Eqs. (38) and (39) is n h; tð Þ. This

equation contains the partial derivative with respect to the

time t. It may be modified to become like a Klein–Gordon

equation. Recently, El-Dib et al. [33] aimed to provide a

modification of the HPM by adding and subtracting a

second-order differential operator to the homotopy equa-

tion. This approach may be accomplished throughout the

construction of the given homotopy equation as follows:

=ðnÞ þ d <ðnÞ þ N2ðnÞ þ N3ðnÞð Þ ¼ 0; d 2 0; 1½ 	; ð40Þ

where the linear and nonlinear operators that correspond to

the above homotopy equation are chosen as follows:

The linear terms may be listed along with two partitions

=ðnÞ and <ðnÞ: The partition N2ðnÞ refers to all the second-
order nonlinear terms. The last partition N3ðnÞ denotes all
the cubic nonlinear terms. In order to obtain an optimal

solution, one may impose any linear term of the first order

on the second one. These terms may be listed as follows:

=ðnÞ ¼ ntt � nhh þ x2
0n; ð41Þ

where x2
0 ¼ c0= a0 þ b1ð Þ:

<ðnÞ ¼ nhh þ
1

a0 þ b1

c1 cosxtntt þ a1 þ b2 þ c4 cosxt � ðc1 � c5Þx sinxtð Þntð
þ c2 cos 2xt þ ðc3 þ c5x

2Þ cosxt � x c4 sinxt
� �

n;

ð42Þ
N2ðnÞ ¼ a2 þ b3 þ c6 cosxtð Þ nntt þ n2t

� �
þ a3 þ 2b4 þ 2c9 cosxt � ðc6 � 2c10Þx sinxtð Þntn

þ a4 þ d1 þ c7 cos 2xt þ ðc8 þ c10 x
2Þ cosxt � xc9 sinxt

� �
n2;

ð43Þ

and

N3ðnÞ ¼ a5 þ b5 þ c11 cosxtð Þn2ntt

� a5 � 2b5 � 2c11 cosxtð Þnn2t
þ a6 þ 3b6 þ 3c14 cosxt � ðc11 � 3c15Þx sinxtð Þntn

2

þ a7 þ d2 þ c12 cos 2xt þ ðc13 þ c15x
2Þ cosxt � x c14 sinxt

� �
n3
�
:

ð44Þ

It should be noted that as d ! 1; the additional term nhh
will disappear and the homotopy Eq. (40) will be reduced

to the original equation that is composed of Eqs. (38) and

(39).

At this end, one may expand the variable n h; t; dð Þ as

follows:

n h; t; dð Þ ¼ n0ðh; tÞ þ dn1ðh; tÞ þ d2n2ðh; tÞ þ � � � ð45Þ

Substituting from Eq. (45) into Eq. (40), as d ! 0, one

gets the following linear wave equation:

=ðn0Þ ¼ 0: ð46Þ

The solution of the above wave equation may be

formulated in analogy with the traveling wave solution.

Therefore, the solution of Eq. (46) may be written as:

n0ðh; tÞ ¼ A cosH; ð47Þ

where H ¼ -t þ Khþ B, - is a modified frequency and K

is a synthetic wavenumber. Additionally, A and B are two

arbitrary integration constants.

Actually, owing to the verification of Eq. (46), the

parameters - and K are restricted by the following

criterion:

-2 ¼ K2 þ x2
0: ð48Þ

Equation (48) states that the characteristic parameters -
and K are connected along only with the linear part. The

contribution of the nonlinearity will be enhanced and

determined later. Employing the expansion as given in

Eq. (45) into the homotopy equation, that is given by

Eq. (40), equates the identical powers of d to zero. The

calculations will be maintained only up to the first-order.

Therefore, one finds

d1 : n1tt � n1hh þ x2
0n1 ¼ � <ðnÞ þ N1ðn0Þ þ N2ðn0Þð Þ:

ð49Þ

Substituting from Eq. (47) into the right-hand side of

Eq. (49), one gets

n1tt � n1hh þ x2
0n1

¼ r0 þ r1 cosxt þ r2 sinxt

þ r3 cos 2xt þ r4 cosH

þ r5 sinHþ r6 cos 2Hþ r7 sin 2H

þ r8 cos 3Hþ r9 sin 3H

þ r10 cosðHþ xtÞ þ r11 sinðHþ xtÞ
þ r12 cosðH� xtÞ
þ r13 sinðH� xtÞ
þ r14 cosðHþ 2xtÞ þ r14 cosðH� 2xtÞ
þ r15 cosð2Hþ xtÞ
þ r16 sinð2Hþ xtÞ þ r17 cosð2H� xtÞ
þ r18 sinð2H� xtÞ þ r19 cosð2Hþ 2xtÞ
þ r19 cosð2H� 2xtÞ þ r20 cosð3Hþ xtÞ
þ r21 sinð3Hþ xtÞ þ r22 cosð3H� xtÞ
þ r23 sinð3H� xtÞ þ r24 cosð3Hþ 2xtÞ
þ r24 cosð3H� 2xtÞ:

ð50Þ

where ri; ði ¼ 0; 1; ::::; 24Þ are given in ‘‘Appendix’’.

The following subsections present the stability analysis;

the procedure may be classified into two categories: the

first case is concerned with the non-resonant case, and the

second deals with the resonant one.
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3.1. Stability analysis of the non-resonance case

There are many perturbation problems that may be prop-

erly called singular even though they are not of the layer-

type. A large class of such problems involves the secular

type. The existence of the secular term yields an unboun-

ded solution. Therefore, to obtain a uniform valid expan-

sion of the analytic approximate perturbed solution, the

secular terms must be avoided. The foregoing Eq. (50)

reveals a source of the secular terms. Obviously, these

terms are represented as the coefficients of the trigono-

metric functions cosH and sinH. Therefore, the elimi-

nation of these secular terms leads to the following

solvability conditions:

a0 þ b1ð Þð-2 � x2
0Þ þ

A2

4
ð4a5 þ b5Þ-2 � a2

7 � d2


 �
¼ 0;

ð51Þ

and

4ða1 þ b2Þ þ A2ða6 þ 3b6Þ ¼ 0: ð52Þ

The cancelation of the parameter A2 between the above

two equations yields the following transition curve:

ða0 þ b1Þða6 þ 3b6Þð-2 � x2
0Þ þ ða1

þ b2Þ ð4a5 þ b5Þ-2 � 3ða7 þ d2Þ

 �

¼ 0; ð53Þ

where d2 ¼ d̂2H2
0 , and d̂2 are given in the ‘‘Appendix’’.

The frequency equation as given in Eq. (53) may be

reformulated to become:

-2 ¼ aH2
0 þ b; ð54Þ

where a; b are given in the ‘‘Appendix’’.

Consequently, the stability criterion requires that the -2

as given in Eq. (54) must have a real and positive nature.

This restriction may be accomplished in light of the fol-

lowing criterion:

aH2
0 þ b[ 0: ð55Þ

In addition, the natural frequency x2
0, as given in

Eq. x2
0(41), must be positive, and x2

0 may be reformulated

to become:

a1H
2
0 þ b1 [ 0 ; ð56Þ

where a1 and b1 are known from the context.

As stated before, the implication of the inequalities (55)

and (56) must be taken into consideration. Therefore, all

the following figures are plotted in a certain domain, where

these criteria are automatically satisfied. Furthermore, the

calculations indicated that the parameters ða and a1Þ are

always of positive significance. This shows a stabilizing

influence on the tangential magnetic field, which is an early

result. It is verified by many authors; for instance, see

Melcher [26], and many references therein.

Our main focus is on the inequalities (55) and (56). For

this purpose, magnetic field intensity Log H2
0 will be plotted

versus the non-dimensional radius (R). In the following

figures, stable region, corresponding to equality of (55), is

referred to by the letter S1. Simultaneously, unstable region

is symbolized by the letter U1. On the other hand, these two

regions are referred to by letters S2, and U2, in analogy to

Fig. 2 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the two criteria (55) and (56)

Fig. 3 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of Ta�

Fig. 4 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of Ŵe
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the second condition (56). It is convenient to indicate the

influence of various physical parameters in stability con-

figuration. Therefore, the following figures are plotted for a

system having the particulars:

m ¼ 2; q ¼ 0:3; l ¼ 0:8; k ¼ 2; X̂ ¼ 0:1; X� ¼ 0:7; Oh

¼ 0:1; T̂a ¼ 1:5; Ta� ¼ 2; Ŵe ¼ 0:3 andWe� ¼ 0:8:

Figure 2 is depicted to indicate the stability picture in

light of the relations (55) and (56). Throughout this figure,

the transition curve -2 ¼ 0 is plotted in red; meanwhile,

the transition curve x2
0 ¼ 0 is graphed in blue. As seen,

blue curve has no implication in the stability picture.

Therefore, the stability is judged by the red curve.

Consequently, the following figures considered the

transition curve as only -2 ¼ 0.

Figure 3 is plotted to indicate the influences of Taylor

number Ta�. It follows that Ta� has a stabilizing effect.

This role is enhanced with the increasing of the non-di-

mensional radius R. Actually, this mechanism comes from

the definition of this parameter. As previously indicated

from the mathematical formula, it is proportional to the

rotation of the centrifugal force and inversely proportional

to the viscosity of the fluid.

Figure 4 displays the influences of Weber number Ŵe

on the stability profile. All physical parameters are held

fixed except Ŵe. This figure shows that Ŵe exerts a

destabilizing influence. Once more, this mechanism is

enhanced with the increasing of the non-dimensional radius

R. This result is in good agreement with the result that has

already been obtained by El-Sayed et al. [34].

Figure 5 is established to indicate the influences of We�

on the stability picture. All the physical parameters are held

fixed except We�. As seen, this figure shows that We�

exerts a destabilizing influence. This role is enhanced at

large values of the non-dimensional values of the radius R.

This result corresponds to the result that has already been

obtained by El-Sayed et al. [34].

Figure 6 is depicted to indicate the influences of the

azimuthal wave number m on the stability picture. All the

physical parameters are held fixed except m. As seen, this

figure shows that the parameter T̂a plays a dual role in the

stability picture. This result gives an excellent quantitative

agreement with the result that has already obtained by El-

Dib et al. [24].

Fig. 5 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of We�

Fig. 6 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of m

Fig. 7 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of X�

Fig. 8 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criterion (55) for various

values of X̂
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Figure 7 is depicted to indicate the influences of the

ratio periodic angular velocity X� on the stability picture.

All physical parameters are held fixed except X�. As seen,
this figure shows that the X� has a destabilizing influence.

This result is in agreement with the result that has already

obtained by El-Dib et al. [24].

Figure 8 is pictured to indicate the influences of the ratio

constant angular velocity X̂ on the stability picture. All the

physical parameters are held fixed except X̂. As seen, this

figure shows that the X̂ has a destabilizing influence. This

result is in agreement with the result that has already

obtained by El-Dib et al. [24].

For more appropriateness, an analytical approximate

solution of the interface deflection can be derived. Typi-

cally, this procedure can be accomplished directly with the

cancelation of the secular terms of the solution of the

governing differential equation of the surface deflection.

Therefore, to achieve a uniform valid expansion of

Eq. (50), one may find out the following expansion:

n1ðh; tÞ
¼ q0 þ q1 cosxt þ q2 sinxt þ q3 cos 2xt

þ q4 cos 2Hþ q5 sin 2Hþ q6 cos 3H

þ q7 sin 3Hþ q8 cosðHþ xtÞ þ q9 sinðHþ xtÞ
þ q10 cosðH� xtÞ þ q11 sinðH� xtÞ
þ q12 cosð2Hþ xtÞ þ q13 sinð2Hþ xtÞ
þ q14 cosð2H� xtÞ þ q15 sinð2H� xtÞ
þ q16 cosð3Hþ xtÞ þ q17 sinð3Hþ xtÞ
þ q18 cosð3H� xtÞ þ q19 sinð3H� xtÞ
þ q20 cosðHþ 2xtÞ þ q21 cosðH� 2xtÞ
þ q22 cosð2Hþ 2xtÞ þ q23 cosð2H� 2xtÞ
þ q24 cosð3Hþ 2xtÞ þ q25 cosð3H� 2xtÞ:

ð57Þ

where qi ¼ ri

ðDtt�Dhhþx2
0
Þ ; i ¼ 0; 1; 2; . . .; 24:

As a final result in the case of non-resonant, the analytic

approximate periodic solution of the previous nonlinear

characteristic equation may be written as follows:

nðh; tÞ ¼ lim
d!1

n0ðh; tÞ þ d n1ðh; tÞð Þ: ð58Þ

3.2. Stability analysis of the resonance case

The following analysis describes the resonance cases.

Many resonance cases may appear. These resonance cases

can be classified into sub-harmonic resonance and super-

harmonic ones. The analysis adopted here depends mainly

on the concept of expanded frequency; for instance, see El-

Dib and Moatimid [35], so the frequency of the periodic

rotation may be expanded as follows:

x2 ¼ -2 þ d r; ð59Þ

where r is a small parameter to be determined later.

Substituting from Eq. (59) into the relation (48), one

finds

x2
0 ¼ x2 � K2 � d r: ð60Þ

The homotopy equation, as given in Eq. (49), becomes:

=�ðnÞ þ d �r nþ <ðnÞ þ N2ðnÞ þ N3ðnÞð Þ ¼ 0;
d 2 0; 1½ 	; ð61Þ

where =�ðnÞ ¼ ntt � nhh þ ðx2 � K2Þn.
Employing the expansion, as given in Eq. (45) into the

new homotopy Eq. (61), equates the identical powers of d
to zero. The calculations will be maintained only up to the

first-order. Therefore, one gets

d0 : n0tt � n0hh þ ðx2 � K2Þn0 ¼ 0; ð62Þ

and

d1 : n1tt � n1hh þ ðx2 � K2Þn1
¼ � �rn0 þ <ðn0Þ þ N1ðn0Þ þ N2ðn0Þð Þ; ð63Þ

The traveling solution of Eq. (62) may be written as:

n0ðh; tÞ ¼ ~A cos ~H ; ð64Þ

where ~H ¼ x t þ Khþ ~B, ~A ; and ~B are arbitrary

constants.

Substituting from Eq. (64) into the right-hand side of

Eq. (63), one finds

n1tt � n1hh þ ðx2 � K2Þn1
¼ r0 þ r1 cosxt þ r2 sinxt þ r3 cos 2xt þ ~r4 cos ~H

þ r5 sin ~H

þ ~r6 cos 2 ~Hþ ~r7 sin 2 ~Hþ ~r8 cos 3 ~Hþ ~r9 sin 3 ~H

þ ~r10 cosðK h� xt þ ~BÞ
þ ~r11 cosðK hþ 2xt þ ~BÞ þ ~r12 sinðK hþ 2xt þ ~BÞ
þ ~r13 cosðK hþ 3xt þ ~BÞ þ ~r14 cosð2K hþ xt þ 2 ~BÞ
þ ~r15 sinð2K hþ xt þ 2 ~BÞ þ ~r16 cosð2K hþ 3xt þ 2 ~BÞ
þ ~r17 sinð2K hþ 3xt þ 2 ~BÞ þ ~r18 cosð2K hþ 4xt þ 2 ~BÞ
þ ~r19 cosð3K hþ xt þ 3 ~BÞ þ ~r20 cosð3K hþ 2xt þ 3 ~BÞ
þ ~r21 sinð3K hþ 2xt þ 3 ~BÞ þ ~r22 cosð3K hþ 4xt þ 3 ~BÞ
þ ~r23 sinð3K hþ 4xt þ 3 ~BÞ þ ~r24 cosð3K hþ 5xt þ 3 ~BÞ
þ ~r25 cosðK hþ ~BÞ þ ~r26 cosð2K hþ 2 ~BÞ:

ð65Þ

Consequently, to acquire a uniform valid expansion of

the analytic approximate perturbed solution, the secular

terms must be ignored. The foregoing Eq. (65) contains the

source of secular terms. Generally, these terms are

presented as a coefficient of the trigonometric functions

cos ~H and sin ~H. The cancelation of these secular terms

reaches the following solvability conditions:
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ðrþ K2Þða0 þ b1Þ þ
~A2

4
4x2a5 þ x2b5 � 3a7 � d2

� �
¼ 0;

ð66Þ

and

a1 þ b2 þ
~A2

4
a6 þ b6ð Þ ¼ 0; ð67Þ

The cancelation of the parameter ~A2 between the above

two equations yields the following value of the parameter

r:

r ¼ 1

a6 þ 3b6

x2ð4a1a5 þ 4a5b2 þ a1b5 þ b2b5Þ
� K2ða0a6 þ a6b1 þ 3a0b6 þ 3b1b6Þ�

3ða1a7 þ a7b2 þ a1d2 þ b2d2Þ

0
B@

1
CA: ð68Þ

Substituting from Eq. (68) into Eq. (60), then setting

d ! 1, one finds

Ex2 þ F ¼ 0; ð69Þ

where E and F are constants. They are known from the

context.

The stability criterion requires that the x2 in the fre-

quency equation, as given in Eq. (69), must have a real and

positive nature. This restriction may be accomplished in

light of the following criterion:

~a1 H2
0 þ ~b1 [ 0; ð70Þ

where ~a1 and ~b1 are known from the context.

In addition, as stated above, the natural frequency x2 �
K2 must be positive and this requires

~a2 H2
0 þ ~b2 [ 0; ð71Þ

where ~a2 and ~b2 are known from the context.

Our study focuses on the relations (70) and (71). For this

purpose, the magnetic field intensity Log H2
0 will be plotted

versus the non-dimensional radius (R). As previously

shown, the stable region corresponding to the equality of

Eq. (70) is referred to in the following figures by letter S1.

Simultaneously, the unstable region is symbolized by letter

U1. On the other hand, these two regions are referred to by

letters S2, and U2, in analogy to the second condition (71).

It is convenient to illustrate the influence of various

physical parameters on the stability configuration. There-

fore, the following figures are plotted for a system having

the particulars:
Fig. 9 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71)

Fig. 10 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of T̂a

Fig. 11 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of Ŵe

Fig. 12 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of We�
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m ¼ 3; q ¼ 0:3; l ¼ 1:5; k ¼ :2; X̂ ¼ 0:5; X� ¼ 5; K

¼ 2; Oh ¼ 3; T̂a ¼ 0:5; Ta� ¼ 2; Ŵe ¼ 0:3 andWe�

¼ 8:

Figure 9 is depicted to indicate the stability picture in

light of the relations (70) and (71). Throughout this figure,

the transition curve x2 ¼ 0 is plotted in yellow;

meanwhile, the transition curve x2 � K2 ¼ 0 is graphed

in black. As seen, the two curves are coincident.

Consequently, the following figures considered only the

transition curve as x2 ¼ 0.

Figure 10 is depicted to indicate the influences of Taylor

number T̂a on the stability picture. Throughout this figure,

all physical parameters are held fixed except the parameter

T̂a; it is shown that T̂a has a stabilizing effect. This

influence is enhanced at large values of the non-dimen-

sional radius R. As seen previously, this parameter does not

change its mechanism. Therefore, Taylor number has a

stabilizing influence on the resonance as well as non-res-

onance cases.

Figure 11 displays the influences of Weber number Ŵe

on stability configuration. All physical parameters are held

fixed except Ŵe. This figure shows that the Ŵe plays a

destabilizing influence. Once more, this mechanism is

enhanced with the increasing of the non-dimensional radius

R. This result is in good agreement with the result that has

already been obtained by El-Sayed et al. [34]. This same

role has happened in the previous case.

Figure 12 indicates the influences of We� on stability

picture. All the physical parameters are held fixed except

We�. As seen, this figure shows that We� exerts a desta-

bilizing influence. This result corresponds to the result that

has already been obtained by El-Sayed et al. [34]. This

same role has happened in the previous case.

Figure 13 indicates the influences of Ohnesorge number

Oh on stability picture. All the physical parameters are held

fixed except Oh. As seen, this figure shows that Oh has a

destabilizing influence. This influence is enlarged at small

values of the non-dimensional radius R.

Figure 14 is depicted to indicate the influences of the

ratio periodic angular velocity X� on the stability picture.

All physical parameters are held fixed except X�. As seen,
this figure shows that X� has a destabilizing influence. This

result is in agreement with the result that has already been

obtained by El-Dib et al. [24]. This same role has happened

in the previous case.

Figure 15 illustrates the influences of the ratio constant

angular velocity X̂ on the stability picture. All the physical

parameters are held fixed except X̂. As seen, this fig-

ure shows that X̂ exerts a destabilizing influence. This

result is in agreement with the result that has already been

obtained by El-Dib et al. [24]. This same role has happened

in the previous case.

4. Concluding remarks

The current paper is concerned with a novel approach in

examining the nonlinear stability analysis of an azimuthal

surface wave between two cylindrical liquid columns.

Fig. 13 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of Oh

Fig. 14 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of X�

Fig. 15 Variation of magnetic field intensity with non-dimensional

radius to depict the contribution of the criteria (70) and (71) for

various values of X̂
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Typically, the problem is modulated in light of the cylin-

drical coordinate system. A simplified modulation is done

for the problem by assuming two infinite incompressible

magnetic cylindrical fluids. The system is pervaded by

rotation, namely uniform and oscillatory rotation. Along

with the great importance of the porous medium, the

problem considered a little configuration of this phe-

nomenon. The inspiration in examining the topic of rotat-

ing fluids opportunities is attributed to the growing

awareness of atmospheric and oceanic motions. Moreover,

the problem acquires its importance from industrial appli-

cations for gas–liquid, vapor–liquid, and liquid–liquid

interfaces. Additionally, a uniform tangential azimuthal

magnetic field is taken into consideration. For straightfor-

wardness, the magnetic field did not permit any existence

of free surface currents at the surface deflection. Moreover,

the procedure of the problem is accomplished in two

dimensions. Indeed, the problem meets its practical

importance of a geophysical point of view. Simultaneously,

as in our previous work, the nonlinear analysis is based on

the solution of the linear equations of motion together with

the incrimination of the convenient nonlinear boundary

conditions. A nonlinear characteristic dispersion equation

of the surface deflection is realized. Some special cases are

confirmed in light of convenient data choices. The stability

analysis is analyzed in the linear as well as nonlinear

approaches. To simplify the mathematical treatment, the

stability analysis is performed in light of the HPM. The

basic results of the work may be summarized in the fol-

lowing points:

• A mix of a uniform and oscillatory rotation is

modulated in the configuration of the problem.

• A nonlinear characteristic equation of the surface

deflection is showed to be similar to the well-known

Ince equation.

• The HPM is adapted to analyze the stability profile,

which yields a Klein-Gordon, as indicated in Eq. (40).

• A traveling wave solution for the nonlinear character-

istic partial differential equation throughout the zero

and first orders is given in Eqs. (47), (57) and (64).

• To be more precise, it is better to introduce the main

key finding of the previous study. To be clearer, the

main outcome will be presented in the following table:

Physical parameter Non-resonant Resonance

Taylor number T̂a – S

Taylor number Ta� S –

Weber number Ŵe U U

Weber number We� U U

Ohnesorge number Oh – U

Non-dimensional X� U U

Non-dimensional X̂ U U

Azimutal wavenumber m D -

Keep in mind that letter S refers to stable influence, U

indicates for unstable effect and D stands for dual role.

Appendix

The coefficients that appear in the Eqs. (4) and (5) may be

listed as follows:

a0¼�R2

m
ð1þqÞ; a1¼�OhR2

m
ð1þkÞ;

a2¼Rð1�qÞ; a3¼OhRð1�kÞ;

a4¼
1

R2
�2þmð7mþ2ð2ŴeþWe�ÞR3
�

�mð2ŴeþWe�ÞR3þmð2þmÞð2ŴeX̂2þWe�X�2ÞR3qÞ
�
;

a5¼2mð1þqÞ;a6¼2mOhð1þkÞ;

a7¼
m2

2R3
�16mþ3m2þ2ð2�mÞð2ŴeþWe�ÞR3�2
�

ð2þmÞð2ŴeX̂2þWe�X�2ÞR3q
�
;

b1¼� 1

m
ðm�1þð1þmÞqX̂ÞR2Oh

ffiffiffiffiffiffi
T̂a

p
;

b2¼�1

2
ðOhÞ2

ffiffiffiffiffiffi
T̂a

p
R2ð1þkX̂Þ;

b3¼�1

2
Oh

ffiffiffiffiffiffi
T̂a

p
R2ð2�3mþð2þ3mÞqX̂Þ;

b4¼
m

2
ðOhÞ2

ffiffiffiffiffiffi
T̂a

p
R2ð1�kX̂Þ;

b5¼�1

2
Oh

ffiffiffiffiffiffi
T̂a

p
R2ð�2þmþð2þmÞqX̂Þ;

b6¼m2ðOhÞ2
ffiffiffiffiffiffi
T̂a

p
ð1þkX̂Þ;

c0¼ c0a�c0bH2
0 ;
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c0a ¼ 1

8R
8� 8m2 þ 8Ŵe þ Ta� ðOhÞ2

� �
R3ðm � 2Þ

�

þð2þ mÞ 8Ŵe X̂2 þ Ta� ðOhÞ2X�2
� ��

;

c0b ¼ mð1� lÞ2

ð1þ lÞ ;

c1 ¼ �Oh
ffiffiffiffiffiffiffi
Ta�

p
R2

m
ð�1þ m þ ð1þ mÞ qX�Þ;

c2 ¼
ðOhÞ2

ffiffiffiffiffiffiffi
Ta�

p
R2

8
ð�2þ m þ ð2þ mÞ qX�Þ;

c3 ¼
ðOhÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̂a Ta�

p
R2

2
ð�2þ m þ ð2þ mÞ q X̂ X�Þ;

c4 ¼ �ðOhÞ2
ffiffiffiffiffiffiffi
Ta�

p
R2

2
ð1þ kX�Þ;

c5 ¼
ffiffiffiffiffiffiffiffiffi
We�

p
R2ð1þ qX�Þ;

c6 ¼
�Oh

ffiffiffiffiffiffiffi
Ta�

p
R

2
ð2� 3m þ ð2þ 3mÞqX�Þ;

c7 ¼
m R We�

2
ð2� m þ ð2þ mÞqX�2Þ;

c8 ¼ 2m R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŵe We�

p
ð2� m þ ð2þ mÞ q X̂ X�Þ;

c9 ¼
mðOhÞ2

ffiffiffiffiffiffiffi
Ta�

p
R

2
ð1þ kX�Þ;

c10 ¼ �m R
ffiffiffiffiffiffiffiffiffi
We�

p
ð1� qX�Þ;

c11 ¼ m Oh
ffiffiffiffiffiffiffi
Ta�

p
ðm � 2þ ð2þ mÞqX�Þ;

c12 ¼ m2 We�ðm � 2þ ðm þ 2ÞqX�2Þ;

c13 ¼ �4m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŵe We�

p
ð2� m þ ð2þ mÞ q X̂ X�Þ;

c14 ¼ m2 ðOhÞ2
ffiffiffiffiffiffiffi
Ta�

p
ð1þ kX�Þ;

c15 ¼ �2m2 We�ð1þ qX�Þ; d1 ¼ � 4m2lð1� lÞH2
0

Rð1þ lÞ2
;

d̂2 ¼
2m3ð1� lÞ2

R2ð1þ lÞ :

The coefficients that appear in Eq. (16) may be listed as

follows:

r0 ¼
A2ða4 þ d1Þ
2 a0 þ b1ð Þ ; r1 ¼ �A2ðc10x2 þ c8Þ

2ða0 þ b1Þ
;

r2 ¼
A2c9x

2 a0 þ b1ð Þ ; r3 ¼ � A2c7
2 a0 þ b1ð Þ ;

r4 ¼
A 4a5A

2-2 � 3a7A2 þ 4a0K2 þ A2b5-2 � 3A2d2 þ 4b1K2ð Þ
4ða0 þ b1Þ

;

r5 ¼
A- a6A

2 þ 4a1 þ A2b6 þ 4b2ð Þ
4ða0 þ b1Þ

;

r6 ¼
A2 2a2-2 � a4 þ 2b3-2 � d1ð Þ

2ða0 þ b1Þ
; r7 ¼

-A2 a3 þ 2b4ð Þ
2ða0 þ b1Þ

;

r8 ¼ �A3 a7 � 3b5-2 þ d2ð Þ
4 a0 þ b1ð Þ ; r9 ¼

-A3 a6 þ 3b6ð Þ
4ða0 þ b1Þ

r10 ¼
A A2 ðxþ -Þ c11-� 3c15xð Þ � 3c13ð Þ þ 4c1-ðxþ -Þ � 4c5xðxþ -Þ � 4c3ð Þ

8 a0 þ b1ð Þ ;

r11 ¼
A 3A2c14xþ 3A2c14-þ 4c4xþ 4c4-ð Þ

8ða0 þ b1Þ
;

r12 ¼
A A2 ð-� xÞ 3c15xþ c11-ð Þ � 3c13ð Þ þ 4c1-ð-� xÞ þ 4c5xð-� xÞ � 4c3ð Þ

8 a0 þ b1ð Þ ;

r13 ¼
A �3A2c14xþ 3A2c14-� 4c4xþ 4c4-ð Þ

8ða0 þ b1Þ
;

r14 ¼
�A 3A2c12 þ 4c2ð Þ

8ða0 þ b1Þ
;

r15 ¼
A2 �c10x2 þ 2c6-2 þ c6x-� 2c10x-� c8ð Þ

4ða0 þ b1Þ
;

r16 ¼
A2c9 xþ 2-ð Þ
4ða0 þ b1Þ

;

r17 ¼
A2 �c10x2 þ 2c6-2 � c6x-þ 2c10x-� c8ð Þ

4ða0 þ b1Þ
; r18 ¼

A2c9 2-� xð Þ
4ða0 þ b1Þ

r19 ¼ � A2c7
4 a0 þ b1ð Þ ; r20 ¼

A3 ðxþ 3-Þ c11-� c15xð Þ � c13ð Þ
8 a0 þ b1ð Þ ; r21 ¼

A3c14 xþ 3-ð Þ
8ða0 þ b1Þ

;

r22 ¼
A3 ð3-� xÞ c15xþ c11-ð Þ � c13ð Þ

8 a0 þ b1ð Þ ; r23 ¼
A3c14 3-� xð Þ

a0 þ b1
; r24 ¼ � A3c12

8 a0 þ b1ð Þ

The coefficients that appear in Eq. (20) may be listed as

follows:

a ¼ 3d̂2ða1 þ b2Þ
ða1 þ b2Þð4a5 þ b5Þ � ða6 þ 3b6Þða0 þ b1Þ

; and b

¼ 3a7ða1 þ b2Þ � ða6 þ 3b6Þða0 þ b1Þx2
0

ða1 þ b2Þð4a5 þ b5Þ � ða6 þ 3b6Þða0 þ b1Þ
:

The coefficients that appear in Eq. (31) may be listed as

follows:

~r4 ¼
A 4a5A

2x2 � 3a7A2 þ 4a0K2 þ A2b5x2 � 3A2d2 þ 4b1K2 þ 4rða0 þ b1Þð Þ
4ða0 þ b1Þ

;

~r10 ¼ �Að4c4 þ 3A2c12Þ
2 a0 þ b1ð Þ ; ~r11 ¼

A 4x2ðc1 � c5Þ � 4c3 þ A2ð2x2c11 � 3c13 � 6A2x2c15Þð Þ
8ða0 þ b1Þ

;

~r12 ¼
Axð4c4 þ 3A2c12Þ

4 a0 þ b1ð Þ ; ~r13 ¼ �Að4c2 þ 3A2c12Þ
8 a0 þ b1ð Þ ; ~r14 ¼

Aðx2c6 � c8 þ x2c10Þ
4 a0 þ b1ð Þ ;

~r15 ¼
A2x c9

4 a0 þ b1ð Þ ; ~r16 ¼
A2ð3x2c6 � c8 þ 3x2c10Þ

4 a0 þ b1ð Þ ; ~r17 ¼
3A2x c9

4 a0 þ b1ð Þ ;

~r18 ¼ � A2 c7
4 a0 þ b1ð Þ ;

~r19 ¼ � A3 c12
8 a0 þ b1ð Þ ; ~r20 ¼

A3ð2x2c11 � c13 þ 2x2c15Þ
8 a0 þ b1ð Þ ; ~r21 ¼

A3x c14
4 a0 þ b1ð Þ ;

~r22 ¼
A3ð4x2c11 � c13 þ 4x2c15Þ

8 a0 þ b1ð Þ ; ~r23 ¼
A3x c14

2 a0 þ b1ð Þ ; ~r24 ¼ � A3c12
8 a0 þ b1ð Þ ;

~r25 ¼ �Að4c3 þ 3A2c13Þ
8 a0 þ b1ð Þ ; ~r26 ¼ � A2c7

4 a0 þ b1ð Þ :
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