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Abstract: The stochastic resonance (SR) phenomenon for an underdamped monostable system with multiplicative and

additive noise is investigated. The expression for the stationary probability density is obtained under the condition of the

detailed balance and weak noise. The signal-to-noise ratio (SNR) for the monostable system is derived based on two-state

theory. The result shows that the SR phenomenon can be observed when the SNR varies with the intensities of the

multiplicative and additive white noise, as well as varies with the amplitude of the additive dichotomous noise. One

resonance peak can be found when the SNR changes with the damping coefficient and with other system parameters.
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1. Introduction

Fluctuations always exist in actual systems. For example,

the temperature and humidity under which a system oper-

ates can lead to the occurrence of heat noise. The variety of

electromagnetic field environment and inhomogeneity of

semiconductor medium will cause the change in an

inductor or a resistor. In general, the introduction of noise

will reduce the output performance of a system. Yet, under

certain conditions, noise can play a construc-

tive role in the improvement in a system output signal.

Stochastic resonance (SR) is such a nonlinear phenomenon

appearing in a noisy dynamic system, which means the

maximum output response by virtue of the cooperation

between the system, the input signal and the dynamic

system [1, 2].

Since its discovery, SR phenomenon has been paid

much attention. For a first-order bistable system, the SR at

the subharmonic frequency [1] and the SR with Poisson

white noise [2] and with multiplicative and additive tri-

chotomous noise [3] have been investigated. The SR with

time-delayed feedback and three types of asymmetries [4]

and the SR driven by non-Gaussian colored noise [5] have

also been studied. In addition, the SR for partnership sys-

tems with an asymmetric bistable Cobb–Douglas utility

[6], the SR for two kinds of asymmetric nonlinear systems

[7], the SR for an overdamped system with a fractional

power nonlinearity [8], as well as the SR for a noisy con-

fined overdamped bistable system [9], have been studied.

At the same time, the SR for a time polo-delayed asym-

metry bistable system [10], logical SR for a two-well

potential system [11], as well as the inverse SR for a

minimal bistable spiking neural circuit [12], have also been

researched.

The SR for other first-order systems has also been

considered [13–41]. The SR for a nonsmooth system [13]

and for anterior cruciate ligament reconstructed patients

[14], as well as the SR for a financial market with stock

crashes [15] and for a forced van der Pol-type birhythmic

system [16], has been investigated. The SR for cortical

networks [22] and for Hopfield neural networks [23], the

SR for energy market Prices [24] and for a gene tran-

scriptional regulatory model [25], as well as the SR for a

stochastic insect outbreak system [26] and for a metapop-

ulation system [27], have been researched. Meanwhile, the

SR for a tristable system with colored noise [28, 29] and

the SR for a symmetry tristable system induced by levy

noise background [30, 31] have been studied. The SR for a

high-order time-delayed feedback tristable dynamic system

[32] and the SR for an asymmetric tristable system driven*Corresponding author, E-mail: guofen9932@163.com;

121053406@qq.com
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by correlated noises [33] have been investigated. At the

same time, the SR for noisy monostable systems has also

been investigated [36–40]. The SR for a bias monos-

table system with frequency mixing force [37] and the SR

for a time-delayed exponential monostable system [38]

have been investigated. The SR for bilateral partnership

systems with a bias monostable Cobb–Douglas utility [39]

and Levy noise-driven SR for a coupled monostable system

[40] have been studied.

For a second-order system, due to the damping coeffi-

cient being a finity value, the system should be regarded as

an underdamped one. Impact fault detection of gearbox

based on variational mode decomposition for a coupled

underdamped system [41], the SR for an underdamped

asymmetric bistable system [42], and the SR for a coupled

bistable system with Poisson white noises [2] have been

investigated. The SR for an underdamped bistable system

driven by harmonic mixing signals [43], the SR for an

underdamped triple-well potential system [44], as well as

the SR for an underdamped bistable system driven by weak

asymmetric dichotomous noise [45], have also been

studied.

On the other hand, dichotomous noise is a common

noise model used in various fields [46–49], generated by a

two-state Poisson process and formed by quasiparticles

(defects, impurities, spins, etc.). In actual systems,

dichotomous noise and white noise maybe exist simulta-

neously. The synchronization and the SR enhanced by

dichotomous noise and by white noise have been studied

[50, 51]. For a communication system, a digital circuit may

be perturbed by Gaussian white noise induced by the

background noise around the circuit. This circuit can also

be perturbed by dichotomous noise induced by other digital

circuits close to it. It can be seen that the study of the effect

of both dichotomous noise and white noise on a dynamic

system is of important engineering significance. For a

practical application, the enhancement of SR in compar-

ison with standard stochastic systems is of great impor-

tance. By the enhancement of SR, one means that the

system output spectral power amplification and (or) the

signal-to-noise ratio can reach larger values. It has been

shown that SR can be enhanced in a first-order

bistable system driven additionally by a dichotomic noise

[52]. Thus, motivated by this, we study the effect of

dichotomous noise for a second-order system to investigate

its enhancement of SR for the system.

We note that, although the SR phenomenon has been

considered for a first-order monostable system with mul-

tiplicative noise [37–40, 49, 53] or for a second-order

system [2, 29, 41–45] with additive noise, few attention has

been paid on the SR phenomenon for a second-order (un-

derdamped) monostable system with multiplicative noise

and additive dichotomous noise. Thus, in this work, we aim

to investigate the nonlinear SR phenomenon for an

underdamped monostable system with multiplicative noise

and additive dichotomous noise.

2. The underdamped monostable system and its output

signal-to-noise ratio

Consider the movement of a particle described by the

following stochastic second-order differential equation

€xþ c _x ¼ � dVðxÞ
dx

þ xnðtÞ þ f ðtÞ þ gðtÞ; f ðtÞ
¼ BCðtÞ þ A cosðXtÞ; ð1Þ

where x is the displacement of the particle and €x ¼ d
2
x

dt2
and

_x ¼ dx
dt

denote the acceleration and velocity of the moving

particle, respectively. VðxÞ¼bx4=4 is the potential function

of system (1). c is the damping coefficient for the

underdamped system (1). CðtÞ is the dichotomous noise

with unit amplitude and transition rate k. We introduce the

dichotomous noise into f ðtÞ to study the effect of

dichotomous noise on the improvement in the system

output performance. nðtÞ and gðtÞ are the uncorrelated

multiplicative and additive Gaussian white noises with zero

means and characterized by their variances

nðt1Þ
gðt1Þ

� �
nðt2Þ gðt2Þ½ �

� �
¼ dðt1 � t2Þ

2D 0

0 2P

� �
; ð2Þ

where D and P are the strengths of the multiplicative and

additive noise, respectively.

One can see that, for the absence of driving force, i.e.,

nðtÞ ¼ gðtÞ ¼ f ðtÞ ¼ 0, system (1) has a monostable po-

tential function with one stable state x ¼ 0. Let y ¼ _x, this

state can be expressed as a two-dimensional coordinate

Gðx; yÞ ¼ ð0; 0Þ. Equation (1) can be rewritten as

_x ¼ y
_y ¼ �cy� bx3 þ xnðtÞ þ f ðtÞ þ gðtÞ

�
; ð3Þ

and the Fokker–Planck equation for the probability density

corresponding to Eq. (3) can be written as

oqðx; y; tÞ
ot

¼ � o

ox
½yqðx; y; tÞ�

� o

oy
f½�cyþ Dx� bx3 þ f ðtÞ�qðx; y; tÞg

þ o2

oy2
½ðDx2 þ PÞqðx; y; tÞ�:

ð4Þ

Let oqðx; y; tÞ=ot ¼ 0, under the detailed balance

condition [52, 54], the solution for the stationary
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probability density qstðx; yÞ should meet the following

condition, i.e.,

o
ox ½yqstðx; yÞ�þ o

oy f½Dx� bx3 þ f ðtÞ�qstðx; yÞg ¼ 0

o
oy ½cyqstðx; yÞ� þ o2

oy2
½ðDx2 þ PÞqstðx; yÞ� ¼ 0

(
: ð5Þ

Substituting qstðx; yÞ ¼ M expð�ay2ÞUðxÞ into Eq. (5), for

the case of weak noise, i.e.,D � 1;P � 1, one can obtain

qstðx; yÞ ¼ N exp �Uðx; yÞ
P

� �
; ð6Þ

where N is the normalization constant and

Uðx; yÞ ¼ cP
2

y2

Dx2 þ P
� 2

Z
Dx� bx3 þ f ðtÞ

Dx2 þ P
dx

� �
ð7Þ

is the potential function for system (1). From Eq. (7), one

can see that for the presence of the multiplicative noise,

i.e., D 6¼ 0, the system thus becomes a two-dimension

bistable system with two stable states

Gsþðx; yÞ ¼ ð
ffiffiffiffiffiffiffiffiffi
D=b

p
; 0Þ,Gs�ðx; yÞ ¼ ð�

ffiffiffiffiffiffiffiffiffi
D=b

p
; 0Þ and one

unstable state Guoðx; yÞ ¼ ð0; 0Þ. The eigenvalues of

linearized matrix for the autonomous deterministic model

of the bistable system at points Gsþ and Gs� are

b1;2 ¼
�c�

ffiffiffiffiffiffiffiffiffiffi
c2�8D

p
2

. The eigenvalues of linearized matrix at

points Guo are b3;4 ¼
�c�

ffiffiffiffiffiffiffiffiffiffi
c2þ4D

p
2

. Based on two-state theory

[55], with the presence of dichotomous noise, the general

modified transition rate for the particle out of Gi

(i ¼ sþ; s�) can be expressed as

W0ðGs�;C�Þ ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b1b2b3

b4

s
exp �DU � cPkB=2

P

� 	
;

ð8Þ

with

DU ¼ ½UðGs�Þ � UðGuoÞ�jf ðtÞ¼0: ð9Þ

The master equation for system (1) can be described as

[50, 51, 53, 55]

d

dt
pðG;CÞ¼�W0ðGsþ;CþÞpðGsþ;CþÞþW0ðGs�;CþÞ

pðGs�;CþÞþ k½pðGsþ;C�Þ�pðGsþ;C�Þ�:
ð10Þ

The mean switching frequency of the system output can

be obtained by [50, 51, 54, 55]

Wh iout¼
p
2

a1 þ a2 �
ða2 � a1Þ2

a1 þ a2 þ 2c

" #
; ð11Þ

with

a1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4D

p
� c

2
ffiffiffi
2

p
p

exp �DU � cPkB=2
P

� 	
ð12Þ

k ¼ arctanðD=
ffiffiffiffiffiffi
bP

p
Þ=

ffiffiffiffiffiffiffi
DP

p
: ð13Þ

With the presence of weak (A � 1) and slow (X � 1)

periodic force, the modified transition rate can be obtained

by

WðG;CÞ ¼ W0ðG;CÞ exp � ck
2
A cosðXtÞ

� �

� W0ðG;CÞ 1� ck
2
A cosðXtÞ

� �
: ð14Þ

The autocorrelation function for the system output can

be derived from Eqs. (10) and (14), which can be given by

d

dt
xðtÞxðt1Þh i¼�ða1þa2Þ xðtÞxðt1Þh iþða2�a1Þ CðtÞxðt1Þh i

þ ½ða1þa2Þ xðt1Þh i�ða2�a1Þ xðtÞCðtÞxðt1Þh i�
ck
2
AcosðXtÞ:

ð15Þ

The cross-correlation function meets the following

equation

d

dt
CðtÞxðt1Þh i ¼ �2k CðtÞxðt1Þh i: ð16Þ

Applying Fourier transform on both sides of Eq. (15),

one can get the output power spectrum for the system, i.e.,

SðxÞ ¼ SnðxÞ þ A2pSsðxÞdðx� XÞ; ð17Þ

where SnðxÞ denotes the power density of the background

SnðxÞ ¼
4ða1 þ a2Þ

ða1 þ a2Þ2 þ x2
1þ ða2 � a1Þ2

4c2 þ x2

" #

� 4ða2 � a1Þ2

ða1 þ a2 þ 2cÞð4c2 þ x2Þ ; ð18Þ

and SsðxÞ is the spectral power amplification

SsðXÞ ¼
ck=2ð Þ2

ða1 þ a2Þ2 þ X2
a1 þ a2 �

ða2 � a1Þ2

a1 þ a2 þ 2c

" #2

:

ð19Þ

On the basis of linear response theory, the signal-to-

noise ratio (SNR) defined as the ratio between the noise

power density and the signal spectral power can be given

by

SNR ¼ pSsðXÞ
SnðXÞ

: ð20Þ
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3. Discussion

Multiplicative noise is a fluctuation associated with a sys-

tem, which can be expressed as a product of the noise and

the system state variables. Because multiplicative noise

always results from the perturbation of system parameters,

it may change the output response of the noisy system. In

this paper, by virtue of the dependence of the multiplicative

noise nðtÞ on the state variable x of the system, the mul-

tiplicative noise can affect the structure of the system.

From Eq. (7), one can see that, with the presence of mul-

tiplicative noise nðtÞ, the potential function of system (1)

becomes a bistable one, i.e., the multiplicative noise has an

effect on the system’s potential function.

Based on two-state theory, by virtue of Eqs. (18)–(20),

we now analyze the nonmonotonic dependence of the

system SNR on the parameters of the noises and those of

the system. From Figs. 1 and 2, one can conclude that the

SNR depends nonmonotonically on the multiplicative

noise strength. With the increase in the multiplicative noise

intensity D, the curve of SNR shows a resonance peak, i.e.,

the SR phenomenon occurs, a similar phenomenon taken

place in first-order systems [37, 49, 52, 54] with multi-

plicative noise. Meanwhile, the values of SNR for the two

figures are much greater than those obtained in Refs.

[37, 49, 52, 54], where the dichotomous noise is absent.

This phenomenon means that the introduction of dichoto-

mous noise has greatly improved the system SNR.

This resonance behavior can be explained in the view of

the system potential function. The potential function

Vðx; 0Þ is shown in Fig. 3. From this figure, one can see

that for relatively small values of D, the system is almost a

monostable one. The particle moves around the stable state,

and the output signal is very small; but for relatively large

values of D, the potential barrier is too high for the particle

to jump over, which also suppresses the system output

signal. We point that although y ¼ 0 in Fig. 3, for any other

values of y, the trend of the variation for the potential

Vðx; yÞ is the same as that for Vðx; 0Þ. Moreover, the peak

value moves in the direction of large values of D with the

increase in the parameter b, while it shifts to small values

of noise strength D with the increase in the damping

coefficient c, as shown in Figs. 1 and 2, respectively. This

suggests that in order to maximize the system output sig-

nal, for small values of multiplicative noise intensity, rel-

atively small values of b and large value of c should be

chosen.

We analyze the effect of the additive noise strength P on

the SNR from Figs. 4 and 5. From these two figures, one

can easily find that the SNR obtains one maximum value

with the variety of the additive noise intensity. Therefore,

we observe again the SR phenomenon from these figures,

Fig. 1 The signal-to-noise ratio (SNR) versus the multiplicative noise

intensity D for P ¼ 0:5, c ¼ 5, B ¼ 3, X ¼ 0:1 for different values of

the system parameter b. The lines with no markers are the theoretical

results, and the lines with markers are numerical simulation results

Fig. 2 The signal-to-noise ratio (SNR) versus the multiplicative noise

intensity D for b ¼ 1, P ¼ 0:5, B ¼ 3, X ¼ 0:1 for different values of

the damping coefficient c

Fig. 3 The potential function V(x,0) for c ¼ 0:6, b ¼ 0:5, P ¼ 0:3,
A ¼ 0, B ¼ 0 for different values of multiplicative noise strength D
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similar effects occurred in first-order systems

[37, 38, 49–51, 53–55] and second-order systems Refs.

[42–44], while it is somewhat different from that appeared

in second-order tristable system [29]. The SNR curve for

Ref. [29] firstly obtained one minimum value and then

reached its maximum value. The occurrence of the reso-

nance peak can also be interpreted applying the

stable states and barrier of potential function Vðx; 0Þ shown
in Fig. 6. The peak value of SNR moves in the direction of

small amount of additive noise with the increase in the

parameter b, while it shifts to large values of noise strength

P with the increase in the damping coefficient c, as shown
in Figs. 4 and 5, respectively. This suggests that in order to

enhance the system performance, for small values of

multiplicative noise intensity, one should select relatively

large values of b and small values of c, respectively. The
comparison between Figs. 1, 2 and Figs. 4, 5 indicates that,

for small (or large) values of parameter b and c, the effect

of the multiplicative noise on the SNR is different from that

of the additive noise.

We investigate the effect of the amplitude B of the

dichotomous noise on the system SNR from Figs. 7 and 8.

It can be seen from these figures that the SNR obtains one

maximum value with the variety of the amplitude B, i.e., a

typical SR phenomenon appears, similar to those occurred

in Ref. [54] and [55]. In addition, the peak value shifts to

large values of B with the increase in the system parameter

b or with the decrease in the damping coefficient c, which
means that for large values of B, large values of b or small

values of c should be chosen to optimize the system SNR.

Fig. 4 The signal-to-noise ratio (SNR) versus the additive noise

intensity P for D ¼ 0:3, c ¼ 4, B ¼ 2, X ¼ 0:1 for different values of

the system parameter b. The lines with no markers are the theoretical

results, and the lines with markers are numerical simulation results

Fig. 5 The signal-to-noise ratio (SNR) versus the additive noise

intensity P for b ¼ 1,D ¼ 0:3, B ¼ 2, X ¼ 0:1 for different values of

the damping coefficient c

Fig. 6 The potential function V(x,0) for c ¼ 0:6, b ¼ 0:5, D ¼ 0:3,
A ¼ 0, B ¼ 0 for different values of multiplicative noise strength D

Fig. 7 The signal-to-noise ratio (SNR) versus the amplitude B of the

dichotomous noise for D ¼ 0:9, P ¼ 0:1, c ¼ 5, X ¼ 0:1 for different

values of the system parameter b. The lines with no markers are the

theoretical results, and the lines with markers are numerical

simulation results
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The nonlinear dependence of the SNR on the damping

coefficient c can be discussed using Figs. 9 and 10. With

the increase in c, the SNR increases until it reaches a

maximum value and then it decreases monotonically. Thus,

the SR in a broad sense occurs; a similar phenomenon

appeared in a second-order system [44]. It can be seen that

the system output no longer decreases monotonically with

the damping coefficient resulting from the nonlinear effect

between the noise and the nonlinear system. With the

increase in the amplitude B and the system parameter b, the

resonance peak shifts to large and small values of c,
respectively. Moreover, the SNR depends nonmonotoni-

cally on the system parameter b, as shown in Figs. 11 and

12. At the same time, to maximize the SNR, small values

of amplitude B and damping coefficient c should be

selected for small parameter b.

In order to examine the validity of theoretical results,

numerical simulations are performed by directly integrat-

ing Eq. (1). The numerical data for the time series are

obtained by using the forward Euler procedure. The power

spectra were calculated by virtue of a fast Fourier trans-

form of the auto-correlation function, and the output signal-

to-noise ratio is defined as the height of the peak in the

power spectrum at the input frequency divided by the

height of the noisy background in the power spectrum

around the input frequency. Figures 13, 14, 15, 16 and 17

show the system output time-domain signal xðtÞ. From

Fig. 8 The signal-to-noise ratio (SNR) versus the amplitude B of the

dichotomous noise for b ¼ 4, D ¼ 0:9, P ¼ 0:1, X ¼ 0:1 for different

values of the damping coefficient c

Fig. 9 The signal-to-noise ratio (SNR) versus the damping coeffi-

cient c for b ¼ 2, D ¼ 0:1, P ¼ 0:1, X ¼ 0:1 for different values of

the amplitude B of the dichotomous noise. The lines with no markers

are the theoretical results, and the lines with markers are numerical

simulation results

Fig. 10 The signal-to-noise ratio (SNR) versus the damping coeffi-

cient c for D ¼ 0:1, P ¼ 0:1, B ¼ 0:5, X ¼ 0:1 for different values of

the system parameter b

Fig. 11 The signal-to-noise ratio (SNR) versus the system parameter

b for D ¼ 0:2, P ¼ 0:3, c ¼ 2, X ¼ 0:1 for different values of the

amplitude B of the dichotomous noise
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these five figures, one can easily find that as the increase in

multiplicative noise strength D, the noise component in the

output signal xðtÞ first is small for relatively small amount

of noise (D ¼ 0:05, 0.1) and then it becomes larger for

relatively more amount of noise (D ¼ 0:2, 0.3), which

results in the resonance behavior of the system SNR with

the variety of the multiplicative noise. Some simulation

results are also shown in Figs. 1, 4, 7 and 9. From these

figures, one can conclude that the theoretical results are

consistent with the numerical simulations.

Fig. 12 The signal-to-noise ratio (SNR) versus the system parameter

b for D ¼ 0:2, P ¼ 0:2, B ¼ 1, X ¼ 0:1 for different values of the

damping coefficient c

Fig. 13 The simulation results of the system output time-domain

signal xðtÞ for D ¼ 0:05, c ¼ 5, b ¼ 1, P ¼ 0:5, B ¼ 3, A ¼ 0:2,
X ¼ 0:1

Fig. 14 The simulation results of the system output time-domain

signal xðtÞ for D ¼ 0:10, c ¼ 5, b ¼ 1, P ¼ 0:5, B ¼ 3, A ¼ 0:2,
X ¼ 0:1

Fig. 15 The simulation results of the system output time-domain

signal xðtÞ for D ¼ 0:15, c ¼ 5, b ¼ 1, P ¼ 0:5, B ¼ 3, A ¼ 0:2,
X ¼ 0:1
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4. Conclusions

In conclusion, in this work, we have investigated the SR

phenomenon for an underdamped monostable system with

multiplicative and additive noise. Under the detailed bal-

ance condition and weak noise limit, the stationary prob-

ability density for the system is obtained. For the presence

of multiplicative noise, the equivalent potential function is

then regarded as a bistable one. Based on two-state theory,

the system output SNR is derived. Traditional SR has been

observed on the curves of SNR versus the intensities of the

multiplicative and additive noises and on the curves of

SNR versus the amplitude of the dichotomous noise. The

SR in a broad sense has been occurred on the curves of

SNR versus the damping coefficient and versus the system

parameter b.
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