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Abstract: In this study, we investigate the physical mechanism of the electro-osmosis fluid flow within a non-uniform

channel. Fluid model is characterized by the constitutive relation of the Oldroyd 4-constant fluid. We retrieved the Poisson

equations by utilizing the mass and momentum conservation models in order to obtain the mathematical formulation of the

given problem. The methodology used in obtaining the solution is classified into three different steps. Firstly, we linearized

the given differential equations to ascertain the potential Debye–Huckel function. Secondly, we implemented the widely-

used assumptions like low Reynolds number and long wavelength to reduce the momentum (partial differential) equations

into a system of ordinary differential equations. Thirdly, we solved the simplified differential equations numerically by

using the shooting method. Subsequently, we have calculated the graphical results to evaluate the influence of various

emerging parameters such as the electroosmotic parameter, viscoelastic fluid parameters and non-uniform parameter on the

fluid flow within a non-uniform channel. We have also computed several features of peristaltic pumping for the case of

Helmholtz-Smoluchowski velocity. Our results reveal that the behavior of velocity magnitude shows an increasing trend by

enhancing the values of the electroosmotic parameter, whereas it also manifests a decreasing trend if the value of the non-

uniform parameter is raised.
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1. Introduction

Electro-osmosis—first introduced by Friedrich Reuss in

1807—is the process of inducing fluid motion inside a

microchannel by applying an external electric potential

across its walls [1]. In recent years, the electroosmotic flow

(or EOF) has incurred a considerable attention of chemical

and biomedical engineers due to its utilization in a variety

of relevant applications such as soil analysis, chemical

processing, capillary electrophoresis, planar chromatogra-

phy, etc. Among these, capillary electrophoresis is a

notable and cost-effective separation approach for the

determination of ions in saliva and analysis of biological

fluids (and inks) in forensics. Similarly, the polymeric

chain reaction process in DNA detection (in forensic

analysis) is one of the major applications of the capillary

electrophoresis. Another class of applications of electro-

osmosis is micropumps (and microchips) exploited by

biomedical engineers/researchers for the diagnosis and

treatment of different diseases such as; type-1 diabetes,

increase of uric acid and cholesterol level in the blood,

retina replacement, development of artificial pancreas and

artificial stents inserted in the clogged arteries of heart.

Different experts relevant to the medical procedures reveal

that when the electric potential is applied at the walls of a

micropump or medical instruments, then they become more

durable as well as their maintenance issues are minimized.

In literature, many researchers have reported several

applications of electro-osmosis experimentally, theoreti-

cally and numerically. Sadr et al. [2] experimentally dis-

cussed the electroosmotic flow (EOF) in a rectangular

microchannel. The authors utilized the nanoparticle image

velocimeter to measure the components of velocity for a

fully-developed electroosmotic flow (steady) of B4Na2O7

buffer solution. For the case of cylindrical capillary, elec-

troosmotic process has been investigated by Herr et al. [3],

using the regular perturbation technique to obtain its
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analytic solution. A computational model was developed

by Yao [4] in order to simulate the three-dimensional

electroosmotic flow in microfluidic devices. The free sur-

face modeling technique is also incorporated in this study.

The interaction between the peristaltic mechanism and

electro-osmosis was first introduced theoretically by

Chakraboty [5]. In this study, the author highlighted that

the features of the peristaltic motion are highly affected

under the influence of axial electric field, and the dimen-

sionless mean flow rate increases by enhancing the elec-

troosmotic slip velocity. The influence of electro-osmosis

and Helmholtz-Smoluchowski velocity on different fea-

tures of peristalsis was studied by Tripathi et al. [6], for the

blood flow in a finite length tube. This study also concluded

that the size of the trapping bolus (for pressure magnitude)

reduces by increasing the magnitude of electroosmotic

parameter. In another study, Tripathi et al. [7] discussed the

effects of peristalsis along with applied electro potential on

an unsteady flow in a microchannel. A theoretical analysis

on the flow of viscous fluid by means of combined effects

of peristalsis and electro-osmosis was presented by Ban-

dopadhyay et al. [8] using the lubrication approach. The

applications of both peristalsis and electro-osmosis were

indicated in this study, such as in the design of organ chip

for an appropriate drug release and for mimicking a

physiological system. Further, Yadav et al. [9] investigated

the peristaltic motion of viscous fluid in the presence of

electrical double layer. Similarly, Narla et al. [10] pre-

sented the transient of two-dimensional electro-kinematic

transport of viscous fluid. It is concluded that the magni-

tude of net flow rate reduces with the motility of wall.

Jhorar et al. [11] discussed the flow of viscous fluid in

asymmetric channel, induced by peristaltic waves in the

presence of electrical double layer effects.

It is observed that most of the fluids transported by the

combined effects of electro-osmosis and propagation of

wave’s conduit are non-Newtonian in nature. The physical

importance of the rheology of non-Newtonian fluids flow

through a deformable tube in the presence of electric

potential using the Power law model has been investigated

by Goswami et al. [12]. Their results showed that the

magnitude of velocity becomes zero when the flow pres-

sure rises, and it is also affected by the strength of electric

potential; and the trapping phenomena vanishes when the

high electric field is applied. Afonso et al. [13] approxi-

mated the Poisson Nernst Planks (PNP) equations along

with viscoelastic fluid using the finite volume method in

order to investigate the effects of thin electric double layers

on the flow of Maxwell and Phan-Thin-Tanner (PTT)

models. Guo and Qi [14] presented an analytical solution

for the electroosmotic flow of the classical Jeffery fluid

along with fractional derivatives in a cylindrical

microchannel. Tripathi et al. [15] discussed the peristaltic

flow of coupled stress fluid through a complex wavy

channel with electromagnetic kinetic with body force under

the usage of lubrication approach and Debye length

approximation. In addition, the electroosmotic techniques

were also utilized for the improvement of clay soil by

Estabragh et al. [16]. The authors indicated that the electro-

osmosis could play a significant role in the enhancement of

the undrained strength and reimbursement of the soil. Chen

et al. [17] utilized the Lattice Poisson-Boltzmann (LPB)

method to investigate the electroosmotic flow of the Power

law fluid for different microstructures of a porous medium

and also showed that the permeability of shear thinning

fluids enhances with the increase an external potential.

Tripathi et al. [18] utilized the finite difference method to

simulate the electrokinetic flow of aqueous solution

through a microchannel containing an isotropic homoge-

nous porous medium. Chaube et al. [19] discussed the

electro-kinetically-driven peristaltic pumping of micropo-

lar fluid through a microchannel. The constitutive equation

of Sutterby fluid is utilized by Akram et al. [20] in order to

investigate the effects of graphene oxide on the electroos-

motic flow of blood in a capillary. A theoretical study is

performed by Remash et al. [21] in order to explore the

electroosmotic flow of Jeffrey fluid in a wavy channel.

Later, Prakash et al. [22] discussed the effects of Newto-

nian heating, electrical double layer and slip on the flow of

hybrid nanofluid in a microchannel with flexible walls.

Tripathi et al. [23] highlighted the simultaneous effects of

nanoparticles shape, thermal radiation, electric field and

micro-rotation on blood flow in a microchannel. In another

study, a mathematical model was developed by Tripathi

et al. [24] in order to discuss the aqueous electrolyte

motion within a microchannel. Further, Narla et al.

[10, 25, 26] discussed the transient blood flow, enhance-

ment in thermophysical properties and the entropy gener-

ation in the elector-osmosis modulated peristaltic motion in

a curved channel.

In literature, many models exist that are used to for-

mulate the peristaltic flow based on the lubrication theory,

but the solution of the flow problem depends upon the time

when it is brought together via the symmetric wall motility

at both walls. Some researchers used an elliptic tube in

order to investigate the peristaltic transport of chyme in the

intestine. Eytan et al. [27] used the constitutive relation for

viscous fluids in order to model the peristaltic transport in a

tapered channel to investigate the transport of sperms in the

fallopian tube. Similarly, Kothandapani et al. [28] obtained

the perturbation solution to study the impact of transverse

magnetic field on the peristaltic flow of fourth-grade fluid

in a tapered asymmetric channel. They concluded that the

axial velocity profile is a decreasing function of both the

Hartman number and non-uniform parameter. Akram et al.

[29] simulated the electroosmotic flow of methanol-based
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aluminum oxide nanofluid in a tapered channel. Prakash

et al. [30] studied the flow characteristic for the thermal

transport of viscous nanofluid in a tapered channel under

the combined effects of peristalsis and electro-osmosis.

Abbasi and Farooq [31] discussed the electro-osmosis

modulated peristaltic motion of hybrid nanofluid in a

trapped channel. Some other researchers like Hayat et al.

[32], Prakash and Tripathi [33], and Kothandapani and

Prakash [34] utilized the aforementioned models to study

the peristaltic flow for different fluid systems under various

conditions to describe their diverse rheological aspects.

Based on the above discussion, we can argue that still,

there remains some space in research for the electroosmotic

flow of the non-Newtonian fluids. It is evident that the

nature of non-Newtonian fluids is very complex, and a

single constitutive relation is inappropriate to predict the

behavior of all non-Newtonian fluids. For the correct and

realistic understanding of the physics of non-Newtonian

fluids, various constitutive relations have been proposed by

many researchers. Among these relations, the rate type

models are very popular for characterizing the viscous

elastic materials. Ali et al. [35] utilized the implicit finite

difference scheme to investigate the peristaltic flow of

Oldroyd 4-constant fluid in a planner channel. Oldroyd

4-constant fluid model exhibits the viscoelastic properties

of the fluid under the long wavelength approximation.

Therefore, in this paper, we have studied the physical

mechanism of the electroosmotic flow of Oldroyd 4-con-

stant fluid in a non-uniform channel. Firstly, we used basic

laws of conservation of mass and momentum along with

Poisson equation for the flow modeling. Subsequently, we

simplified the resultant modeled equations for the flow by

using the low Reynolds and long wavelength approxima-

tion, and solved these equations numerically by employing

the shooting technique. In addition, we used the Debye

approximation to find the potential function.

The remainder of the paper is presented as follow.

Section 2 presents the problem formulation. Section 3

describes the numerical solution of the problem. Section 4

presents our graphical results and provides a detailed dis-

cussion on these results. Finally, Sect. 5 lists our main

findings and conclusions.

2. Problem formulation

The unsteady flow of an Oldroyd 4-Constant fluid driven

by peristalsis and electro-osmosis in a non-uniform channel

with half width d1(See Fig. 1) is investigated in this study.

The Cartesian coordinates ðX; YÞ are considered in such a

way that the wave propagates in X� direction, and Y�
direction is perpendicular to the wave propagation.

The equations of the wall in mathematical form can be

expressed as [34]:

�H1ð �X; �tÞ ¼ �d1 � m0 �X � b1 sin
2p
k
ð �X � c�tÞ þ U

� �
; ð1Þ

H2 X; t
� �

¼ d1 þ m
0
X þ b2 sin

2p
k

X � ct
� �� �

: ð2Þ

where d1 is the half width of the channel, k is the

wavelength,m0 is the non-uniform parameter, b1 and b2 are

the amplitudes of the lower and upper boundaries,

respectively, and U is the phase difference. Furthermore,

the condition is followed by b1; b2; d1 and a is

b2
1 þ b2

2 þ 2b1b2cos Uð Þ� 2d1ð Þ2:

The governing equations for mass and momentum are

represented mathematically as [18–22]

divV� ¼ 0 ð3Þ

q
dV�

dt
¼ �r �P þ div �S þ qe

�E ð4Þ

where V� ¼ UðX; Y; tÞ;VðX; Y ; tÞ; 0
� �

designate the

velocity field, q denotes fluid density, P is pressure, I is the

identity tensor, qe represents the electric charge density and

E is the electric field which is applied in axial direction.

Furthermore, the extra stress tensor S for Oldroyd 4-

constant can be expressed as [36]:

S þ k1
DS

Dt
þ k3tr S

� �
A1 ¼ l 1þ k2

D

Dt

� �
A1; ð5Þ

in which �k1 and �k3 relaxation times parameters, �k2 is the

retardation time parameter, �A1
is the first Revilian Erisken

tensor, l is the dynamic viscosity, and D �S=D�t is the upper

convected time derivative. The component form of the

governing equations in fixed frame is as follows:

Fig. 1 The geometry of the problem
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oU

oX
þ oV

oY
¼ 0; ð6Þ

q
o

ot
þ U

o

oX
þ V

o

oY

� �
U ¼ � oP

oX
þ oSXX

oX
þ oSXY

oY
þ qeEX;

ð7Þ

q
o

ot
þ U

o

oX
þ V

o

oY

� �
V ¼ � oP

oX
þ oSYX

oX
þ oSYY

oY
: ð8Þ

where q;U;V ;P; SXX; SYY ; SXY and EX denotes the density,

axial velocity, transverse velocity, normal stress

components in X and Y directions, shear stress

component and axial electrical field (in the electro kinetic

body force term). Due to no-slip at lower and upper wall of

the non-uniform channel, the boundary conditions in

dimensionless form are:

�U ¼ 0; �V ¼ o �H1

o�t at �Y ¼ �H1

�U ¼ 0; �V ¼ o �H2

o�t at �Y ¼ �H2

)
; ð9Þ

The electric positional distribution is employed due to

the presence of EDL in a non-uniform channel and is

defined by Poisson equation [18]:

r2/ ¼ � qe

e
; ð10Þ

here qe is the density of the total ionic charge, e is

permittivity and qe ¼ ez nþ � n�ð Þ, where e is the electric

charge, z is charge balance nþ and n� are the number of

densities of cautions and anions, respectively. The Nernst-

Plank is defined to determine the potential distribution, and

it is used to describe the charge density as [18]:

o

o�t
þ �U

o

o �X
þ �V

o

o �Y

� �
n� ¼ D

o2n�

o �X2
þ o2n�

o �Y2

� �

� ez

KBT

o

o �X
n�

o �/
o �X

� �
þ o

o �Y
n�

o �/
o �Y

� �� � ð11Þ

in which KB is the Boltzmann constant, D represents the

diffusivity of chemical species, and T is the average

temperature.

The governing equations can be reduced to their

dimensionless forms by introducing the dimensionless

variables:

x ¼ 2p �X

k
:y ¼

�Y

d1

; u ¼
�U

c
; v ¼

�V

cd
; d ¼ d1

k
; h1 ¼

�H1

d1
; h2 ¼

�H2

d1
; a ¼ b1

d1
;

b ¼ b2

d1

;m ¼ km0

d1

; t ¼ c�t

k
;Re ¼ qcd1

l
; p ¼ 2pd2

1

klc
�P;Uhs ¼ �

�E �Xed
2
1

lc
;

k ¼ ezd1

ffiffiffiffiffiffiffiffiffiffiffi
2n0
eKBT

r
; �/ ¼ ez/

KBT
; �ni ¼

ezni

KBT
; i ¼ 1; 2;

9>>>>>>>>=
>>>>>>>>;

ð12Þ

where d is the wave number, Re is the Reynolds number, n
is the constant zeta function, Uhs is the electroosmotic

velocity (Helmholtz-Smoluchowski velocity), and k is the

wavelength.

After introducing the dimensionless parameters in

Eqs. (6–11), the nonlinear terms are appeared in the form

O Ped2
� �

; where Pe is ionic Peclet number. Using the

limitations Re;Pe; d � 1 and introducing stream functions

w defined as u ¼ ow=oy and v ¼ �dow=ox, the equation of

continuity is identically satisfied, and rest of equations

takes the form:

� op

ox
þ oSxy

oy
þ k2Uhs/ ¼ 0; ð13Þ

op

oy
¼ 0; ð14Þ

o2/
oy2

¼ k2
nþ � n�

2

� �
; ð15Þ

o2n�

oy2

� �
� o

oy
n�

o/
oy

� �� �
; ð16Þ

The solution of (16) is subject to boundary conditions

n� ¼ 1 at / ¼ 0 and on�=oy ¼ 0 at o/=oy ¼ 0 (bulk

condition), we get

n� ¼ e�/: ð17Þ

After using Eq. (17) in (15), we have

o2/
oy2

¼ k2sinh /ð Þ: ð18Þ

Assuming that electrical potential is small as compared

with the thermal energy of the ions, so for further

simplifications, we follow [37–39] and apply the Debye–

Huckel linearization approximation ðsinh/ � /Þ; and

using the boundary conditions / ¼ n1 at the lower wall

and / ¼ n2 at the upper wall, the potential function can be

calculated as:

/ yð Þ ¼ n1
sinh k y � h2ð Þ½ 	 � Rnsinh k y � h1ð Þ½ 	

sinh k h1 � h2ð Þ½ 	 ; ð19Þ

in which Rn ¼ n2=n1 is the ratio of zeta potential of the two

walls. Equation (18) holds for h1 � y� h2 and symmetric

potential case discussed in Bandopadhyay et al. [8] is

obtained when Rn ¼ 1; h ¼ 0 ¼ U:
Eliminating pressure from Eqs. (13) and (14):

o2Sxy

oy2
þ k2Uhs

o/
oy

¼ 0; ð20Þ

where the expression for Sxy is obtained from Eq. (5) and is

given by:
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Sxy ¼
1þ 2a1

o2w
oy2

	 
2

1þ 2a2
o2w
oy2

	 
2

o2w
oy2

; ð21Þ

in which a1 ¼ k2k3 and a2 ¼ k1k3: here Oldroyd 4-

Constant fluid model reduces to viscous fluid, if we take

a1 ¼ a2. The appropriate dimensionless boundary

conditions in the fixed frame are [31]:

w ¼ �F

2
;
ow
oy

¼ 0 at y ¼ h1 ¼ �1� mx � asin 2p x � tð Þ þ Uð Þ

w ¼ F

2
;
ow
oy

¼ 0 at y ¼ h2 ¼ 1þ mx þ bsin 2p x � tð Þð Þ

9>=
>;

ð22Þ

The instantaneous volume rate of flow Fðx; tÞ in

Eq. (20) can be derived as:

F x; tð Þ ¼ Hþ asin 2p x � tð Þð Þ þ bsin 2p x � tð Þ þ Uð Þ
ð23Þ

in the above relation, F ¼ Q
cd1

;H ¼ q
cd1

;

F ¼
R h2

h1
udy ¼ w h2ð Þ � wðh1Þ, where H is the time

average flow of one period of the wave. The expression

for shear stress at lower wall can be expressed as:

Sxy ¼
oh1

ox

1þ 2a1
o2w
oy2

	 
2

1þ 2a2
o2w
oy2

	 
2

o2w
oy2

0
B@

1
CA
�������
y¼h1

; ð24Þ

Similarly, the shear stress at the upper wall can be

expressed by the formula:

Sxy ¼
oh2

ox

1þ 2a1
o2w
oy2

	 
2

1þ 2a2
o2w
oy2

	 
2

o2w
oy2

0
B@

1
CA
�������
y¼h2

; ð25Þ

3. Numerical solution

To illustrate the physical importance of various flow pat-

terns of the Oldroyd 4-Constant fluid driven by the com-

bined effects of external electro kinetic and peristalsis in a

tapered asymmetric channel. We have solved Eq. (20)

subject to the boundary conditions given in Eq. (22) for w
by a well-known numerical technique termed as the

shooting method, which is frequently used in [40, 41].

After using the value of shear stress, we reduce the

Eq. (18) into corresponding system of first-order equations:

Let

w
0 ¼ u; ð26Þ

u
0 ¼ v; ð27Þ

v
0 ¼ w; ð28Þ

w0 ¼ 1þ 2v2a2ð Þ2A1 þ 4vw2 a1 � a2ð Þ �3þ 2v2a2ð Þ 1þ 2v2a2ð Þ�3

1þ 2v2 �a2 þ a1 3þ 2v2a2ð Þð Þð Þ
ð29Þ

where A1 ¼ k3n1
cosh k y�h2ð Þ½ 	�Rncosh k y�h1ð Þ½ 	

sinh k h1�h2ð Þ½ 	 :
Subject to the initial conditions

w h1ð Þ ¼ �F

2
;w0 h1ð Þ ¼ 0;w00 h1ð Þ ¼ s1;w

000 h1ð Þ ¼ s2

The above system of first-order equations is now

computed with Runge–Kutta-Fehlberg integration

scheme, and s1 and s2 are missing slopes, which are

updated by Newton’s method until the boundary conditions

are satisfied. All necessary computation is carried out in the

computational software, Mathematica.

4. Graphical results and discussion

The objective of this section is to present the graphical

illustrations of the simulation results obtained from the

numerical methods mentioned in the previous section. Our

main focus is to examine the effects of the rheological

parameter of fluid, Helmholtz-Smoluchowski velocity,

non-uniform parameter and electroosmotic parameter on

axial velocity, pressure rise, axial pressure and shear stress.

The trapping phenomenon is also illustrated by plotting

streamlines.

4.1. Velocity profile

In this subsection, we examine the effects of fluid param-

eter a1 and a2, electroosmotic parameter k, non-uniform

parameter m and zeta potential function Rn on the axial

velocity uðyÞ in Figs. 2, 3, 4, 5, 6, for both negative and

positive values of Helmholtz-Smoluchowski velocity

i.e.Uhs ¼ �1:0. During the analysis, the parameters like

U ¼ p=2; a ¼ 0:2; b ¼ 0:3; x ¼ 0:5; t ¼ 0:3 and H ¼ 1:7

are fixed. It is observed that, when we take Uhs ¼ 1:0 the

velocity increases at the highest velocity point, which is the

center of the channel and also in the lower half the velocity

decreases, but this decreases is not encountered enlarge at

scale near the upper boundary. As we move toward the

Newtonian fluid (i.e., a1 ¼ 0:5), the viscous effects reduce

and consequently, the velocity increases by increasing a1.
The effects of a1 for Uhs ¼ �1:0 on the velocity profile are

quite opposite in behavior in the upper half of the channel.

This behavior is actually due to the positive values of the

electroosmotic velocity, which creates its influence in the

opposite direction to the flow. The velocity profile
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decreases at the central line of the channel for both nega-

tive and positive values of Helmholtz-Smoluchowski

velocity i.e., Uhs ¼ �1:0 when we increase the fluid

parameter a2. Furthermore, when we take the negative

values of electroosmotic velocity (i.e., Uhs ¼ �1:0), the

increase in velocity is noticeable in the upper half of the

channel. The velocity at the central line decreases because

when we increase the non-Newtonian behavior (or the

elastico-viscous effects are enhanced), the velocity is

reduced consequently. The effects of non-Newtonian fluid

parameter a2 for the positive values of Helmholtz-Smolu-

chowski velocity i.e., Uhs ¼ 1:0 is quite opposite compared

to the negative values of electroosmotic velocity. The

Fig. 4a and b depict the effects of electroosmotic parameter

on the axial velocity profile for both negative and positive

values of Helmholtz-Smoluchowski velocity i.e., Uhs ¼

Fig. 2 Effects of a1 on velocity

profile uðyÞ for (a)
Uhs ¼ �1:0(b) Uhs ¼ 1:0. Other
parameters are k ¼ 1:0; a2 ¼
0:5; n ¼ 1:0;m ¼ 0:1 and
Rn ¼ 0:5

Fig. 3 Effects of a1 on velocity

profile uðyÞ for (a)
Uhs ¼ �1:0(b) Uhs ¼ 1:0. Other
parameters are k ¼ 1:0; a1 ¼
0:5; n ¼ 1:0;m ¼ 0:1 and
Rn ¼ 0:5

Fig. 4 Effects of k on velocity

profile uðyÞ for (a)
Uhs ¼ �1:0(b) Uhs ¼ 1:0. Other
parameters are a2 ¼ 1:0; a1 ¼
0:5; n ¼ 1:0;m ¼ 0:1 and
Rn ¼ 0:5

Fig. 5 Effects of m on velocity

profile uðyÞ for (a)
Uhs ¼ �1:0(b) Uhs ¼ 1:0. Other
parameters are a2 ¼ 1:0; a1 ¼
0:5; n ¼ 1:0; k ¼ 1:0 and
Rn ¼ 0:5
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�1:0: The velocity reduces in the lower half of the channel

but increases in the upper half of the channel, for the

increasing values of electroosmotic parameter k when

Uhs ¼ �1:0. The velocity increases in the lower half of the

channel with increasing the strength of electric field i.e.,

increasing k and effects disappear near the upper wall of

the channel for the opposing case for flow i.e., Uhs ¼ 1:0.

The influence of non-uniform parameter m on the velocity

profile for both assisting flow case ðUhs ¼ �1:0Þ and

opposing flow case ðUhs ¼ 1:0Þ is presented in Fig. 5a and

b. The axial velocity reduces at the highest velocity point,

which is the central line of the channel when we move from

uniform to non-uniform channel. Furthermore, the increase

in the velocity is observed near the boundaries of the

channel for both assisting and opposing flows. In addition,

the increasing region near the upper wall reduces when

Uhs ¼ �1:0; whereas, it increases in case of Uhs ¼ 1:0. In

Fig. 6, the effects of zeta potential function Rn is examined

for both positive and negative values of electro kinetic

pumping. This parameter is the ratio of zeta potentials

imposed on both boundaries of microchannel. When we

increase the zeta potential ratio, the flow is significantly

decreased in lower half of the channel, and flow is accel-

erated in the upper half of the channel when Uhs ¼ 1:0:

The converse behavior is observed for Uhs ¼ �1:0 when

we increase the zeta potentials ratio in both halves of the

channel.

4.2. Trapping phenomena

Trapping is an essential transportation phenomenon of

physiological fluids driven by the peristaltic pumping. In

fluid mechanics, trapping can be observed at a fixed flow

rate due to the circulation of streamlines. These streamlines

under various conditions split to trap a bolus, that as a

whole travels with the speed of the peristaltic wave. The

effects of important parameters like a2, k;m and Rn are

presented in Figures 7, 8, 9, 10, 11, 12, 13 and 14,

respectively. The size of streamline bolus decreases, when

we transform from Newtonian to non-Newtonian fluid for

both negative and positive values of Helmholtz-Smolu-

chowski velocity (i.e., Uhs ¼ �1:0), and are depicted in

Figs. 7 and 8. The size of trapping bolus reduces in lower

half for opposing electro kinetic pumping when we take

a2 ¼ 2:0 i.e., strong non-Newtonian effects are encoun-

tered. On the other hand, the size of trapping bolus reduces

by increasing non-Newtonian character when Uhs ¼ �1:0:

Furthermore, the circulation becomes weak, when we

move toward non-Newtonian behavior for both assisting

and opposing flow cases (i.e., Uhs ¼ �1:0). Figures 9 and

10 display the effects of electroosmotic parameter on the

streamlines for both positive and negative values of

Helmholtz-Smoluchowski velocity (i.e., Uhs ¼ �1:0). For

the positive value of Helmholtz-Smoluchowski velocity

(i.e., Uhs ¼ 1), the increasing values of electroosmotic

parameter k reduce the size of trapping bolus in the lower

half of the channel. It is also observed that, if we take the

electric field in the flow direction (i.e., Uhs ¼ �1) the quite

opposite effects are obtained in the pattern of streamlines

by increasing the values of k, are taken into account in

comparison with the case of positive values of Helmholtz-

Smoluchowski velocity (i.e., Uhs ¼ 1). The response of

streamlines for the increasing values of non-uniform

parameter is presented in Figs. 11 and 12. The size of

streamlines increases, when we move from uniform to non-

uniform channel for both the assisting and opposing flows.

In Fig. 13, the streamlines are plotted for both positive and

negative values of zeta potential ratios when Uhs ¼ 1:0. It

is observed that the size of trapping bolus is large in upper

half of the tapered channel for Rn ¼ �1:0, whereas the size

of bolus is large in lower half for Rn ¼ 1:0. In addition, the

increase in the zeta potential ratios shifts streamlines in the

lower half of the channel. From Fig. 14, it is clear that the

reverse behavior in both halves of the channel is noticed

when Uhs ¼ �1:0 i.e., assisting electrokinetic pumping.

4.3. Axial Pressure

Figures 15, 16, 17 and 18 are plotted to depict the impact

of fluid parameters a1 and a2, electroosmotic parameter k

and zeta potentials ratio Rn for both the positive and neg-

ative values of Uhs with fixed parameters U ¼ p=4; a ¼
0:3; b ¼ 0:4 and t ¼ 0:2: The axial pressure decreases for

the increasing values of a1, and it is depicted in Fig. 15 for

Fig. 6 Effects of Rn on velocity

profile uðyÞ for (a)
Uhs ¼ �1:0(b) Uhs ¼ 1:0. Other
parameters are a2 ¼ 1:0; a1 ¼
0:5; n ¼ 1:0; k ¼ 1:0 and
m ¼ 0:1
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both Uhs ¼ �2:0. In addition, the axial pressure is small for

the Newtonian case and reduces as we move toward

Newtonian fluid from the viscoelastic fluid. Furthermore,

the magnitude of axial pressure is large for Uhs ¼ 2 i.e., the

pressure reduces in the assisting flow case. The effects of

non-Newtonian fluid parameter a2 are represented in

Fig. 16 for Uhs ¼ �2. The pressure rise per wavelength

increases when the viscoelastic effects are increased in

assisting flow case (i.e., Uhs ¼ �2:0) and opposing flow

case (i.e., Uhs ¼ 2:0). The axial pressure decreases for the

increasing values of electroosmotic parameter k when the

flow is assisting, whereas it increases for the increasing

values of electroosmotic parameter when the flow is

opposing (i.e., Uhs ¼ 2:0:Þ. Figure 18 is plotted to examine

the effects of zeta potentials ratio on axial pressure for

several values of electroosmotic velocity Uhs: The axial

pressure is a decreasing function of Rn for assisting electro

kinetic pumping (i.e., Uhs ¼ �2:0Þ, while on the other

hand axial pressure rises with Rn for the opposing electro

kinetic pumping.

4.4. Amplitude of shear stress

In this subsection, we illustrate the effects of electroos-

motic parameter k and non-Newtonian fluid parameter a2
on the amplitude of shear stress on both walls of the

channel in Figs. 19 and 20 when U ¼ p=2; a ¼ 0:3; b ¼
0:4; t ¼ 0:2;m ¼ 0:2 and H ¼ 1:2: The results are obtained

for both positive and negative values of the electroosmotic

velocity (i.e., Uhs ¼ �2:0). The behavior of shear stress at

both the walls of non-uniform asymmetric channel is

oscillatory in behavior. For the assisting flow case (i.e.,

Uhs ¼ �2:0), the shear stress at the upper wall of the

channel increases, while it decreases when the electroos-

motic parameter k increases. Furthermore the response of

shear stress at both walls of channel is quite opposite in

behavior for the increasing values of electroosmotic

Fig. 7 Streamlines (a) a2 ¼ 0:5
(b) a2 ¼ 2:0 with Uhs ¼ 1:0.
Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2;m ¼
0:2; k ¼ 0:6; t ¼ 0:5;H ¼
1:4; a1 ¼ 0:5; n ¼ 1:0 and

Rn ¼ 0:5

Fig. 8 Streamlines (a) a2 ¼ 0:5
(b) a2 ¼ 2:0 with Uhs ¼ �1:0.
Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2;m ¼
0:2; k ¼ 0:6; t ¼ 0:5;H ¼
1:4; a1 ¼ 0:5; n ¼ 1:0 and

Rn ¼ 0:5

Fig. 9 Streamlines (a) k ¼ 0:1
(b) k ¼ 0:8 with Uhs ¼ 1:0
Other parameter are U ¼ p=5;
a ¼ 0:1; b ¼ 0:2;m ¼ 0:1; t ¼
0:5;H ¼ 1:4; a1 ¼ 0:5; a2 ¼
2:0; n ¼ 1:0 and Rn ¼ 0:5
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parameter k when the opposing flow case is studied (i.e.,

Uhs ¼ 2:0). In Fig. 20, the effects of rheological fluid

parameter a2 on the shear stress for both the positive and

negative values of electroosmotic velocity (i.e.,

Uhs ¼ �2:0) are represented. The shear stress decreases at

both walls of the channel, when we move from Newtonian

to non-Newtonian for both the assisting and opposing flow

cases.

5. Validation of results

In order to check the accuracy of our numerical results, we

solved the equations using finite difference method and

presented both the results for comparison in Table 1 for

several values of Uhs. Furthermore, comparison is carried

out for Newtonian and non-Newtonian fluids. It is observed

that the numerical results, by both the techniques, show a

good agreement up to 4 decimal places for Uhs ¼ �2:0 and

in absence of electric potential. Furthermore, the results of

the present study are also compared with the results of

Prakash et al. [42] for the viscous fluid in Fig. 21.

6. Concluding remarks

In this study, we have rendered a detailed analysis of the

physical mechanisms of electro-osmosis fluid flow in a

Fig. 10 Streamlines (a) k ¼ 0:1
(b) k ¼ 0:8 with Uhs ¼ �1:0
Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2; k ¼
0:5; t ¼ 0:5;H ¼ 1:4; a1 ¼
0:5; a2 ¼ 2:0; n ¼ 1:0 and

Rn ¼ 0:5

Fig. 11 Streamlines (a) m ¼
0:0 (b) m ¼ 0:2 with Uhs ¼ 1:0
Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2; k ¼
0:5; t ¼ 0:5;H ¼ 1:4; a1 ¼
0:5; a2 ¼ 2:0; n ¼ 1:0 and

Rn ¼ 0:5

Fig. 12 Streamlines (a) m ¼
0:0 (b) m ¼ 0:2 with Uhs ¼ 1:0
Other parameter are U ¼ p

5
; a ¼

0:1; b ¼ 0:2; k ¼ 0:5; t ¼
0:5;H ¼ 1:4; a1 ¼ 0:5; a2 ¼
2:0; n ¼ 1:0 and Rn ¼ 0:5
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non-uniform channel. Our mathematical model is based on

a standard non-Newtonian Oldroyd 4-Constant fluid. We

solved the model numerically, and simulated it against a

given set of parameters. Our results examined the velocity

profile, trapping phenomena, axial pressure and shear stress

of the fluid on the basis of these parameters. Our main

findings are summarized as follows:

Fig. 13 Streamlines (a) Rn ¼
�1:0 (b) Rn ¼ 1:0 with Uhs ¼
1:0 Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2; k ¼
0:5; t ¼ 0:5;H ¼ 1:4; a1 ¼
0:5; a2 ¼ 1:0; n ¼ 1:0 and

m ¼ 0:2

Fig. 14 Streamlines (a) Rn ¼
�1:0 (b) Rn ¼ 1:0 with Uhs ¼
�1:0 Other parameter are U ¼
p=5; a ¼ 0:1; b ¼ 0:2; k ¼
0:5; t ¼ 0:5;H ¼ 1:4; a1 ¼
0:5; a2 ¼ 1:0; n ¼ 1:0 and

m ¼ 0:2

Fig. 15 Axial Pressure dp=dx
for different values of a1 (a)

Uhs ¼ �2:0 (b) Uhs ¼ 2:0.
Other parameter are m ¼
0:1; k ¼ 1:0;H ¼ 1:2; a2 ¼
0:5; n ¼ 1:0 and Rn ¼ 0:5
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• Both the rheological parameters have the opposite

effects on the velocity profile under the influence of an

axial electric field.

• The velocity increases in the upper half of the channel

for the increasing values of electroosmotic parameter k

when Uhs ¼ �1:0, while for the opposing electrokinetic

pumping, the velocity manifests an increasing trend.

• The increase in zeta potentials ratio increases the

velocity in the lower half and decreases it in the upper

half for Uhs ¼ �1:0:

• The size of the circulation bolus increases by increasing

the values of the electroosmotic parameter.

• The increase in the magnitude of non-Newtonian

parameter increases the size of trapping bolus.

• Axial pressure decreases by increasing the values of

electroosmotic parameter for assisting the electroki-

netic pumping.

• The axial pressure is an increasing function of the non-

Newtonian parameter for both the assisting and oppos-

ing cases.

• The shear stress increases for the negative values of the

electroosmotic velocity, whereas it decreases for the

positive values of the electroosmotic velocity after an

increase in the values of electroosmotic parameter.

Fig. 16 Axial Pressure dp=dx
for different values of a2 (a)

Uhs ¼ �2:0 (b) Uhs ¼ 2:0.
Other parameter are m ¼
0:1; k ¼ 1:0;H ¼ 1:2; a1 ¼
0:5; n ¼ 1:0 and Rn ¼ 0:5

Fig. 17 Axial Pressure dp=dx
for different values of k (a)

Uhs ¼ �2:0 (b) Uhs ¼ 2:0.
Other parameter are H ¼
1:2; a1 ¼ 0:5; a2 ¼ 2:0; n ¼ 1:0
and Rn ¼ 0:5

Fig. 18 Axial Pressure dp=dx
for different values of Rn (a)

Uhs ¼ �2:0 (b) Uhs ¼ 2:0.
Other parameter are H ¼
1:2; a1 ¼ 0:5; a2 ¼ 2:0; n ¼ 1:0
and k ¼ 2:0:
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Fig. 19 Shear stress Sxy for

different values of k for (a)

Uhs ¼ �2:0 and (b) Uhs ¼ 2:0:
Other parameter are a1 ¼
0:5; a2 ¼ 1:0 ¼ n and Rn ¼ 0:5

Fig. 20 Shear stress Sxy for

different values of a2 for (a)

Uhs ¼ �2:0 and (b) Uhs ¼ 2:0:
Other parameter are a1 ¼
0:5; k ¼ 1:0 ¼ n and Rn ¼ 0:5

Table 1 Comparison of u yð Þ at different cross sections with k ¼ 1:0;U ¼ p=2; a ¼ 0:1; b ¼ 0:2; t ¼ 0:3;m ¼ 0:1; x ¼ 0:5; n ¼ 1:0;Rn ¼ 0:5
and H ¼ 1:2

y uðyÞ for Newtonain fluid a1 ¼ a2 ¼ 0:5:

Uhs ¼ �2:0 Uhs ¼ 0:0 Uhs ¼ 2:0

Shooting method FDM Shooting method FDM Shooting method FDM

h1 0:00000 0:000000 0:00000 0:00000 0:00000 0:00000

�0:2 0:813201 0:813211 0:825975 0:825981 0:838749 0:838754

�0:6 0:531645 0:531639 0:576152 0:576148 0:620659 0:620664

0:6 0:735803 0:735815 0:700614 0:700608 0:665425 0:665434

0:2 0:890324 0:890319 0:867462 0:867459 0:844601 0:844614

h2 0:00000 0:000000 0:000000 0:000000 0:000000 0:000000

uðyÞ for non-Newtonain fluid a1 ¼ 0:5; a2 ¼ 2:0:

h1 0:00000 0:00000 0:00000 0:00000 0:00000 0:00000

�0:2 0:770462 0:770459 0:760711 0:760708 0:775339 0:775342

�0:6 0:481854 0:481843 0:631787 0:631785 0:725007 0:725012

0:6 0:801398 0:801387 0:704627 0:704629 0:623009 0:623014

0:2 0:845069 0:845055 0:777123 0:777124 0:736838 0:736844

h2 0:00000 0:00000 0:00000 0:00000 0:00000 0:00000
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• The shear stress decreases at both walls of the channel

by increasing the fluid parameter a2.
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Fig. 21 Comparison of axial velocity when x ¼ 0:4; t ¼ 0:2; a ¼
0:6; b ¼ 0:4;m ¼ 0:1; U ¼ p=8;H ¼ 1:2; a1 ¼ a2 ¼ 0:5 and
Uhs ¼ 0:0
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