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Abstract: An electrically conducting three-dimensional non-Newtonian Carreau fluid induced by bidirectional movement

of sheet is demonstrated in this work. The aspects of viscous heating, radiation and first-order chemical reactions are

executed in energy transport and mass species expressions. The new variables are defined to restructure the mathematical

problem into single independent variable equations (ordinary differential equations, ODE’s). The re-framed ODE’s are

exploited numerically through the utilization of MATLAB bvp4c package. The derived results of velocities, temperature

and species distributions are executed graphically and interpreted physically for both shear-thinning and shear-thickening

cases. Also, the numerical results for coefficients of skin friction, rate of mass transfer in terms of Sherwood number and

rate of heat transfer in terms of Nusselt number are presented in tables. The influence of local Weissenberg numbers on

Sherwood and Nusselt numbers for shear-thinning fluids is reversed to shear-thickening fluids. The thermal radiation

parameter enhances the fluid temperature, and chemical reaction parameter decelerates the fluid concentration.
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List of symbols

B�
1; B

�
2 Dimensional slip parameters ðL=TÞ

B1; B2 Non-dimensional slip parameters

Cp Specific heat ðM0L2=T2KÞ
D Mass diffusion coefficient ðL2=TÞ
Ecx;Ecy Local Eckert numbers

K Porosity parameter

k� Mean absorption coefficient

k1 Reaction rate ð1=TÞ
kp Porous medium permeability ðL2Þ
Kr Chemical reaction parameter

KT Thermal diffusion ratio

M Magnetic field parameter

n Power law index

Pr Prandtl number

R Thermal radiation parameter

Rex;Rey Local Reynolds numbers

S Stretching ratio parameter

Sc Schmidt number

We1;We2 Local Weissenberg numbers

ðu; v;wÞ Velocity components ðLÞ
ðx; y; zÞ Velocity components ðLÞ
B0 Magnetic field of strength

T Temperature

C Concentration

p Pressure

I Identity tensor

A1 First Rivlin–Erickson tensor

Uw;Vw Velocity at the wall for components u; v (L/T)

qw Heat flux ðM=T3Þ
jw Mass flux ðM=TL2Þ

Greek symbols

a Thermal diffusivity ðL2=TÞ
r� Stefan–Boltzmann constant

r Electric conductivity ðT3A2=ML2Þ
l Dynamic viscosity coefficient

q Density of the fluid ðM=L3Þ
# Kinematic viscosity ðL2=TÞ
h Fluid temperature

/ Concentration of the fluid

g Similarity variable (dimensionless)*Corresponding author, E-mail: sabirali@cuisahiwal.edu.pk
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ðl1; l0 Þ Infinite and zero shear-rate viscosities ðL2=TÞ
_c Shear rate.

C Material time constant

Superscripts

� Non-dimensional quantities

Subscripts

1; x Along axial direction

2; y Along transverse direction

1. Introduction

The non-Newtonian fluids reflect the physiological prop-

erties. These fluids are utilized to analyze the physiological

materials, like peristaltic transport, swallowing food, the

motion of small blood vessels, chyme motion, etc. The

Carreau fluid is one of the physiological fluid models, and

it represents both shear-thickening and shear-thinning

characteristics based on power law index. This model was

firstly investigated by Pierre Carreau. It is a four-parameter

model and has effective properties of a truncated power

law model which did not have a discontinuous first

derivative. Cross [1] reported the rheological nature of non-

Newtonian materials and proposed the new relationship of

pseudo-plastic materials. Later on, Perktold et al. [4]

described the pulsatile phenomenon of non-Newtonian

blood material with different bifurcation angles. They

proposed the hemodynamic phenomenon which is impor-

tant in atherogenesis. Joshua et al. [5] analyzed the Car-

reau-Yasuda and Casson non-Newtonian models. Nadeem

et al. [4] investigated the time-dependent peristaltic Car-

reau material flow through eccentric cylinders. They

addressed that the presence of Weissenberg factor declines

the pressure rise in peristaltic pumping process. Khan et al.

[5] described the shear-thinning and shear-thickening

behavior of Carreau model. They reported that the tem-

perature for shear-thinning case is reversed to shear-

thickening situation for the influence of Weissenberg

number. Some more remarkable contributions on Carreau

model are reported in Refs. [7–9, 9, 12–15, 15, 16].

Study of velocity slip is the most challenging and has

noteworthy role in myriad applications. One of the

archetypal benefits of slippage is the deduction of flow

resistance in micro-channels. The velocity slip instantly

occurs in complex fluids such as colloids, polymeric

solutions, suspensions and foams. The materials which

reflect the boundary slip have remarkable technological

implications include the artificial heart and internal cavities

polishing. In early nineteenth century, Navier [16] firstly

described the concept of slip condition. The boundary-

driven slip momentum flow was reported by Khader and

Megahed [17]. They noticed that the local factors of skin

friction reduced with the incrementing slip velocity values.

Bhargava and Goyal [18] presented the hydro-magneto

nanofluid flow under momentum slip and revealed that the

velocity declines for stronger slip and the opposite phe-

nomenon founded in temperature and concentration fields.

Mutlag et al. [31] analyzed the momentum slip condition

on the power-law material flow through radiation. They

reported that the momentum slip factor reduces the rate of

energy transport and skin friction. Khan et al. [34] pre-

sented the slip conditions on the flow of Phan-Thien–

Tanner fluid over double-layered optical fibers. Raisi et al.

[21] analyzed the micro-channels flow under slip and no-

slip circumstances. They addressed that the rate of energy

transportation is not affected by slip condition at low

Reynolds number. Georgiou [22] considered the slip at the

wall on extradite-swell and Poiseuille flow of Carreau fluid.

The viscous dissipation is also important in the analysis

of heat transfer problems, and it has various applications

like cooling of turbine blades and controlling the heat

transfer in machines. Gebhart [23] described the influence

of viscous heating in naturally convected viscous material

flow. Gireesha et al. [24] evaluated the Joule and Ohmic

dissipation consequences on the nonlinear Carreau–Casson

fluids under magnetic force with heterogeneous and

homogeneous reactions. In this research, they executed that

the Eckert number improves the thermal layer and liquid

temperature. The Joule and Ohmic dissipation nature on the

unsteady radiated flow with the transverse magnetic field is

considered by Jana et al. [25]. They stated that the tem-

perature and velocity distributions raise with Eckert num-

ber. Cookey et al. [26] and Das et al. [27] addressed the

viscous dissipation influence on free-convected time-de-

pendent fluid flow. Recently, some more investigations on

viscous dissipation for different kinds of fluid flows with

momentum slip conditions are presented in [28–34].

Sheremet et al. [35] illustrated the combined effect of

variable viscosity and thermal conductivity on mixed

convection flow of viscous fluid over a vertical channel by

considering the chemical reaction effect. The impact of

chemical reaction over a vertical duct with convection

condition was discussed by Sheremet et al. [36]. Jabeen

et al. [37] thermal radiations and mass transfer analysis of

the 3D magnetite Carreau fluid flow past a horizontal

surface of paraboloid of revolution. Ullah et al. [38] ana-

lyzed the nonlinear thermal radiations and mass transfer

analysis of the magnetite Carreau fluid flowing past a

Permeable stretching or shrinking surface under cross-dif-

fusion and Hall effects.

To the best of author’s knowledge, the three-dimen-

sional flow of magnetized Carreau material by the
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bidirectional stretched surface immersed in porous space is

not available in the literature. Hence, the present article is

focused to describe the different effects on the three-di-

mensional flow of magnetized Carreau material by the

bidirectional stretched surface immersed in porous space.

The set of transformed ordinary system of expressions is

tackled numerically. The impression of distinct flow con-

straints on the practically important quantities for both

shear-thickening and shear-thinning models are described

and interpreted.

2. Problem formulation

The laminar three-dimensional (3D) Carreau non-Newto-

nian material flow induced by the bidirectional movement

of surface in porous surface is considered.

• The slip condition mechanisms are taken into

consideration.

• The constant magnetic force having strength B0 is

performed in the normal direction of sheet.

• The viscous heating and radiation phenomenon is

retained.

• The first-order chemically reaction term is accounted.

• The electric and induced magnetic forces are removed

due to account of small magnetic Reynolds number.

• The Hall current and Joule dissipative effects are

ignored.

The coordinate system and physical configuration of the

present investigation with the above assumptions are pic-

tured in Fig. 1.

2.1. Rheological model

Steady-state generalized non-Newtonian material that ful-

fills the rheological nature of Carreau model is considered

in this analysis. The Cauchy stress tensor expression for

Carreau non-Newtonian fluid is considered as [39]:

s ¼ �pI þ lð _cÞA1 ð1Þ

with

lð _cÞ ¼ l1 þ ðl0 � l1Þ½1þ ðC _cÞ2�
n�1
2 ; ð2Þ

where
l�l1
l0�l1

defines the slope in the region of power-law,

A1 ¼ ðrVÞT þrV the first Rivlin–Erickson tensor and

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
trðA1Þ2

q

is the shear rate.

In most practical cases, l0 [ [ l1 and l1 tends to be

zero. Consequently, Eqs. (1) and (2) reduced to the fol-

lowing expression:

s ¼ �pI þ l0½1þ ðC _cÞ2�
n�1
2 A1: ð3Þ

Carreau fluid model can be grouped into two types

namely pseudo-plastic or shear-thinning fluids for 0\n\1

and dilatants or shear-thickening when n[ 1. For n ¼ 1 or

C ¼ 0; this model converted to Newtonian model.

From the above assumptions, the governing equations

are taken as [5, 24, 28]:
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The related conditions for the problem are as follows:

Fig. 1 Physical model and co-ordinate system
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u ¼ B�
1

ou

oz
þ Uw; v ¼ B�

2

ov

oz
þ Vw; w ¼ 0;

C ¼ Cw; T ¼ Tw at z ¼ 0;

u ! 0; v ! 0; T ! T1; C ! C1 as z ! 1:

ð9Þ

2.2. Solution of problem

The following similarities variables are considered [5, 31]:

u ¼ axf 0ðgÞ; w ¼ �
ffiffiffiffiffiffi

a#
p

½f ðgÞ þ gðgÞ�; v ¼ ayg0ðgÞ;

g ¼
ffiffiffi

a

#

r

z; hðgÞ ¼ T � T1
Tw � T1

; /ðgÞ ¼ C � C1
Cw � C1

:

ð10Þ

Equation (4) is directly satisfied. Equations (5)–(8) and

boundary conditions (9) are reduced to the following

forms:

f 000
3ðn� 1Þ

2
We21f

002 þ 1

� �

� f 02 þ ðf þ gÞf 00 � ðK þM2Þf 0

¼ 0;

ð11Þ

g000
3ðn� 1Þ

2
We22g

002 þ 1

� �

� g02 þ ðf þ gÞg00 � ðK

þM2Þg0
¼ 0; ð12Þ

ð1þ RÞh00 þ Pr h0ðf þ gÞ þ Pr Ecxf
002 þ Pr Ecyg

002 ¼ 0;

ð13Þ

/00 þ Sc/0ðf þ gÞ � KrSc/ ¼ 0: ð14Þ

Transformed non-dimensional boundary conditions are:

f ð0Þ ¼ gð0Þ ¼ 0; f 0ð0Þ ¼ 1þ B1f
00ð0Þ;

g0ð0Þ ¼ Sþ B2g
00ð0Þ; hð0Þ ¼ /ð0Þ ¼ 1;

f 0ð1Þ ! 0; g0ð1Þ ! 0; hð1Þ ! 0; /ð1Þ ! 0:

ð15Þ

The non-dimensional constraints are defined as follows:

We1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2a3x2

#

s

; We2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2a3y2

#

s

; M2 ¼ rB2
0
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;

K ¼ #

aKp
; Pr ¼ lCP

k
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a
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a
;

R ¼ 16rT3
1

kk�
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a2x2
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a2y2
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#

D
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1

ffiffiffi

a

#

r
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B2 ¼ B�
2

ffiffiffi

a

#

r

:

2.3. Quantities of interest

The quantities from practical point of view are skin-friction

factors along Y and X directions, the local Nusselt and

Sherwood numbers which are defined below:

Cfy ¼
syz
qV2

w

; Cfx ¼
sxz
qU2

w

; Nux ¼
xqw

kðTw � T1Þ ;

Shx ¼
xjw

DðCw � C1Þ :
ð16Þ

The stresses at wall along Y and X directions are given

by

sxz ¼ l
ou
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þ ðn� 1Þ

2
C2 ou

oz

� �3
" #
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;

syz ¼ l
ov
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þ ðn� 1Þ

2
C2 ov

oz

� �3
" #

z¼0

:

ð17Þ

Energy and mass species fluxes at the surface are:

qw ¼ � k þ 16rT3
1

3k�

� �

oT

oz

� �

z¼0

; jw ¼ �D
oC

oz

� �

z¼0

:

ð18Þ

The above equations are reduced to following non-

dimensional form by using similarity transformations:

Re1=2x Cfx ¼ f 00ð0Þ þ ðn� 1Þ
2

We21f
003ð0Þ; ð19Þ

Re1=2y Cfy ¼ g00ð0Þ þ ðn� 1Þ
2

We22g
003ð0Þ; ð20Þ

Re�1=2
x Nux ¼ �ð1þ RÞh0ð0Þ; ð21Þ

Re�1=2
x Shx ¼ �/0ð0Þ: ð22Þ

Here, Rey ¼ Vwy
# and Rex ¼ Uwx

# are the local Reynolds

numbers.

3. Results and discussions

The structured mathematical problem in Eqs. (11)–(15) is

described numerically by the help of bvp4c scheme in

MATLAB. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18 and 19 interpret the trends of distinct

emerging constraints on non-Newtonian fluid velocity,

energy field and mass species for shear-thinning ðn\1Þ
and shear-thickening ðn[ 1Þ cases.

Figures 2, 3, 4 and 5 are the descriptions of local

Weissenberg numbers We1 and We2 on axial and trans-

verse velocity distributions. Figures 2 and 3 reveal the

velocity distributions for rising values of We1. From these

figures, we observed that the axial velocity distribution

increases for shear-thickening case ðn ¼ 1:5Þ and decreases
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Fig. 2 Axial velocity profiles for different values of We1
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Fig. 3 Transverse velocity profiles for different values of We1
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Fig. 4 Axial velocity profiles for different values of We2
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Fig. 6 Velocity profiles for different values of M
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for shear-thinning case ðn ¼ 0:5Þ: However, the transverse

velocity profiles improve for shear-thickening materials

and augmented in the case of shear-thinning. The opposite

phenomenon occurred in Figs. 4 and 5 for incrementing

trend of We2: Here, the transverse velocity risen for shear-

thickening and declines for shear-thinning materials. On

contrary, axial velocity decreases in shear-thickening case

and enhances for shear-thinning situation. Practically, the

Weissenberg number is inverse to liquid viscosity and

directly related to the factor of relaxation time. Also, the

larger Weissenberg number corresponds to stronger thick-

ness of momentum layer for shear-thinning fluids and

weaker for shear-thickening materials. Figure 6 explains

the trends of magnetic constraint M on velocity distribu-

tions for both shear-thickening and shear-thinning materi-

als cases. Generally, the Lorentz force is arisen by the

enforcing of stronger magnetic force. Such forces create

resistance in the material velocity. Hence, the fluid veloc-

ities are suppressed with the incrementing M: The larger

porosity parameter K values decrease the velocity distri-

butions (see Fig. 7). The presence of porous medium

causes to high restriction to the fluid flow and then slow-

down its motion. Therefore, with an enhancement in

porosity parameter, the resistance to the fluid flow rises

which suppress the velocity of the fluid.

Figures 8 and 9 reflect that the improving S reduces the

velocity curves in axial direction and opposite tendency

occurs in transverse direction. Practically, the stretching

ratio S is the relation of movement in the X-direction to

movement of sheet in the Y-direction. Hence, the increas-

ing S demonstrates that the velocity in transverse direction

dominates the velocity in axial direction due to which the

velocity in transverse direction raises while declines the

velocity in the axial direction. Figures 10, 11, 12 and 13

demonstrate the momentum slip parameters B1 and B2 on

velocity fields. It is seen that the enhancing value of B1

causes the reduction in axial velocity. For higher values of

velocity slip parameter, the momentum boundary layer

thickness is reduced and the stretching velocity is partially

changed to fluid and thus the velocity decreases. The

increasing trend is noticed in transverse velocity. The quite

opposite behavior is observed for B2 (see Figs. 12 and 13).

The improving value of radiation R accelerates the tem-

perature curves shown in Fig. 14. Physically, thermal

radiation exerts more heat in the fluid that resulted in the

incrementing temperature field. Figure 15 reveals the

impact of Pr on temperature. Generally, the thermal con-

ductivity is enhanced at low Prandtl number. Hence, the

larger Pr declines the temperature curves.

Figures 16 and 17 reflect the nature of Eckert number

along Y and X directions for both shear-thinning and shear-

thickening materials temperatures. It is achieved that the

temperature is increased in both shear-thinning and shear-

thickening cases along with local Eckert numbers Ecx and

Ecy. Generally, frictional heating is improved for larger

Eckert numbers that resulted the higher temperature curves.

Figure 18 depicts the features of Sc on the concentration

field /ðgÞ for shear-thickening and shear-thinning phe-

nomenon. The species concentration is reduced for rising

Schmidt number. The species concentration is decreased

with increasing chemical reactive parameter Kr (see

Fig. 19).

We verified the present methodology with the Khan

et al. [5] and Ariel [40] in Table 1. The remarkable

agreement between the present and previous solutions is

achieved under limiting cases

(n ¼ 3; M ¼ K ¼ We1 ¼ We2 ¼ 0). Additionally,

Tables 2 and 3 describe the numeric results of local friction

factors, Nusselt and Sherwood numbers. Complete dis-

cussion is based on the following physical parameters Kr ¼

Table 1 Comparison results of �f 00ð0Þ and �g00ð0Þ for different values of S with n ¼ 3; M ¼ K ¼ We1 ¼ We2 ¼ 0:

S �f 00ð0Þ �g00ð0Þ

Ariel [40] Khan et al. [5] Present results Ariel [40] Khan et al. [5] Present results

0 1 1.000003 0 0 0

0.1 1.02025978 1.020264 1.020265 0.06684715 0.0668485 0.066849

0.2 1.03949519 1.039497 1.039498 0.14873691 0.1487382 0.148738

0.3 1.05795478 1.057956 1.057957 0.24335980 0.2433607 0.243361

0.4 1.07578811 1.075788 1.075789 0.34920865 0.3492087 0.349209

0.5 1.09309502 1.093095 1.093096 0.46520485 0.4652046 0.465205

0.6 1.10994694 1.109946 1.109948 0.59052892 0.5905229 0.590526

0.7 1.12639752 1.126397 1.126399 0.72453174 0.7245312 0.724528

0.8 1.14248862 1.142488 1.142490 0.86668292 0.8666822 0.866679

0.9 1.15825383 1.158253 1.158255 1.01653870 1.016538 1.016535

1 1.17372074 1.173720 1.173722 1.17372074 1.173720 1.173717
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R ¼ S ¼ M ¼ K ¼ B1 ¼ B2 ¼ We1 ¼ We2 ¼ 0:5; Pr ¼ 3;

Sc ¼ 0:6;Ecx ¼ Ecy ¼ 0:05 as long as there is no special

mention. In this study, n ¼ 1:5 represents shear-thickening

fluids and dotted line at n ¼ 0:5 represents the shear-thin-

ning fluids.

Table 3 Nusselt number and Sherwood number in shear-thinning and shear-thickening cases

M K We1 We2 Ecx Ecy R Kr NuxRe
�1=2
x ShxRe

�1=2
x

Shear-thinning fluid

ðn ¼ 0:5Þ
Shear-thickening fluid

ðn ¼ 1:5Þ
Shear-thinning fluid

ðn ¼ 0:5Þ
Shear-thickening fluid

ðn ¼ 1:5Þ

0.5 0.5 0.25 0.25 0.05 0.05 1 1 1.344578 1.348970 0.883677 0.884233

1 1.193079 1.198705 0.866896 0.867583

1.5 1.028255 1.034870 0.849369 0.850178

1 1.237793 1.243077 0.871751 0.872401

1.5 1.153057 1.158968 0.862601 0.863319

0.5 1.338392 1.354569 0.882889 0.884941

0.75 1.327085 1.363266 0.881437 0.886035

0.5 1.343839 1.349685 0.883586 0.884322

0.75 1.342599 1.350850 0.883429 0.884467

0.1 1.314269 1.318598 0.883677 0.884233

0.15 1.283961 1.288225 0.883677 0.884233

0.1 1.336985 1.341381 0.883677 0.884233

0.15 1.329399 1.333792 0.883677 0.884233

2 1.588456 1.593128 0.883677 0.884233

3 1.824775 1.829473 0.883677 0.884233

2 1.344578 1.348970 1.180840 1.181271

3 1.344578 1.348970 1.415516 1.415880

Table 2 Local skin friction coefficients in shear-thinning and shear-thickening cases

M K We1 We2 B1 B2 S CfxRe
1=2
x CfyRe

1=2
y

Shear-thinning fluid

ðn ¼ 0:5Þ
Shear-thickening fluid

ðn ¼ 1:5Þ
Shear-thinning fluid

ðn ¼ 0:5Þ
Shear-thickening fluid

ðn ¼ 1:5Þ

0.5 0.5 0.25 0.25 0 0 0.5 1.378471 1.401833 0.631356 0.634226

1 1.617105 1.654127 0.763460 0.767954

1.5 1.946470 2.010911 0.943532 0.951320

1 1.541881 1.574098 0.722062 0.725981

1.5 1.688728 1.730791 0.802737 0.807835

0.5 1.334945 1.431863 0.629947 0.635134

0.75 1.172284 1.473843 0.623819 0.636349

0.5 1.378262 1.402038 0.628015 0.637341

0.75 1.378701 1.402357 0.614246 0.642270

0.5 0.762595 0.770857 0.604857 0.607083

1 0.539056 0.542503 0.593567 0.595498

0.5 1.354742 1.376755 0.371982 0.373163

1 1.344167 1.365583 0.267358 0.267914

0.2 1.339916 1.361102 0.227243 0.227637

0.4 1.365830 1.388438 0.488972 0.490544
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The numeric values of friction factor coefficients

CfxRe
1=2
x and CfyRe

1=2
y at the surface in X and Y-directions

for distinct physical parametric values of shear-thinning

and shear-thickening cases are given in Table 2. The values

of CfxRe
1=2
x and CfyRe

1=2
y are augmented with the increas-

ing values of porosity parameter and magnetic field

parameter. This is due to involvement of porosity and

magnetic field at the surface. The velocities and momen-

tum thickness are reduced in both cases. The values of

CfxRe
1=2
x and CfyRe

1=2
y are decreased with the increasing

values of velocity slips B1 and B2. With the increasing

values of local Weissenberg numbers We1 and We2, local

friction factors are decreased in shear-thinning and oppo-

site tendency is noticed in shear-thickening fluids. The

Weissenberg number is inversely proportional to the vis-

cosity of the fluid due to which such trends are shown in

Table 2. Also, the local friction factor coefficients are

increased with an increase in the stretching parameter S.

Table 3 illustrates the NuxRe
�1=2
x and ShxRe

�1=2
x values for

different parameters. With the increasing values of mag-

netic and porosity parameters, the values of NuxRe
�1=2
x and

ShxRe
�1=2
x are falling down. The progressive values of local

Weissenberg numbers decline the NuxRe
�1=2
x and

ShxRe
�1=2
x in thinning fluids and opposite phenomenon

occurred for thickening fluids. The Nusselt number is

decreased by raising the values of local Eckert numbers.

Nusselt number is increased with incrementing radiation

parameter.

4. Conclusions

The three-dimensional hydromagnetic slip flow of Carreau

non-Newtonian material under viscous heating, radiation

and first-order destructive chemical reactions is investi-

gated. Both shear-thickening ðn[ 1Þ and shear-thinning

ðn\1Þ cases are reported. The key outcomes of the present

investigation are summarized here:

• The velocities f 0ðgÞ and g0ðgÞ are opposite in both

shear-thinning and shear-thickening cases for incre-

menting ratio parameter.

• The magnetic and porous medium effects are acted as

drag forces in velocity fields.

• The local friction factor coefficients are decreased as

the velocity slip increases.

• Temperature profile is extended with peaked values of

thermal radiation and local Eckert numbers.

• The influence of local Weissenberg numbers on Sher-

wood and Nusselt numbers for shear-thinning fluids is

reversed to shear-thickening fluids.
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