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Abstract: In this paper, we are proposing a three-layered hybrid compact star model with a distinct equation of states

(EOSs) in the realm of general relativity. The core is assumed to be quark matter described by the MIT-bag model, an

intermediate layer filled with neutron liquid and a thin envelope of matter satisfying a quadratic EoS. Three pairs of

interfaces are matched by using Darmois–Israel conditions. For better and easier tuning, we have chosen a as a free

parameter for core, k for intermediate layer and g and t for envelope, while the rest of the constant parameters are linked

with mass and radius. Most of the physical parameters such as density, pressures and EoS parameters are continuous in all

the three regions; however, v2t and stability factor are discontinuous. This is because of the non-differentiability of pt’s at

the interfaces. Hence, stability is not defined at the interfaces. Further, matching of pt’s can be performed by tuning

suitable values of the free parameters a; k; g and t. Further, the most prevailing aspect of this method is that we can

arbitrarily choose the radii of each region. As per Buchler and Barkat (PRL 27: 48, 1971) and Baym et al.(PRL 175: 225,

1971) , there exists a smooth transition density between quark core and intermediate neutron-liquid layer at about

q[ 1014g=cc. Our calculation shows that the smooth transition density is at about qI ¼ 4:16� 1014g=cc which is in good

agreement with the above prediction.
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1. Introduction

Since the discovery of pulsars, scientists are still investi-

gating the possible structure of such highly dense, fast

rotating compact stars. The lack of detailed observational

evidence and very limited theoretical knowledge makes it

very difficult to determine the exact structure and matter

compositions at high-density regime. However, many

researchers have suggested various models on the possible

equation of state (EoS) and interior structure. As per

Ginzberg’s [1] perception, the structure of neutron star

consists of several layers:

(1) Thin gaseous plasma envelope and solid crust The

external layer (q� 1012g=cc) consists of nuclei and

electrons in gaseous plasma state. However, the main

part of this plasma envelope is a solid crust made up

of neutron-rich nuclei with degenerate electron gas.

The formation of solid crust is due to rapid cooling

down via emission of neutrino and electromagnetic

radiation below 1� 5� 108K just after its formation.

The thickness of the solid crust is about 10� 100 m

[2].

(2) Intermediate layer of neutron liquid Under the solid

crust there is 3P2�liquid neutron where the density is

greater than 3� 5� 1013g=cc while the

concentration of protons and electrons are of the

order of one or several percent [3]. The electrons

remain as normal Fermi liquid, while neutrons and

protons undergo Bose–Einstein condensation (BEC).

Therefore, neutrons will be in the state of
3P2�superfluid and protons are in
1S0�superconductor [4–10].

(3) Dense core The core is also sufficiently massive

however, non-superfluid and non-superconducting.
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Nowadays, many researchers have suggested various

possible matter compositions at the interior of compact

stars. At the core, strange particles like hyperons and BEC

pions and/or kaons may be abundant. It is also possible that

a mixed phase transition exists between hadrons and

deconfined quarks [11]. Various suggestions have been

made that quarks are in color-superconducting phase with

[12] and without mesons condensation [13]. The decon-

finement transition is a first-order phase transition at low

temperature and high density [14, 15]. Other exotic matters

such as l�;R�;K;D�ð1236MeV=c2Þ most likely appear at

the core [16].

Using extended semi-empirical mass formula, Langer

et al. [17], Bethe et al. [18] and Cameron [19] predicted a

sharp transition in density of about 4� 5� 1014g=cc at the

core–intermediate layer interface. However, using more

fundamental nuclear matter theories ensures a smooth and

continuous transition density at q[ 1014g=cc [20, 21].

Many investigations also suggested the possible existence

of quark-gluon plasma (QGP) at the core of neutron stars.

Study of Jacobsen et al. [22] on QGP in neutron stars

reveals that the maximum mass and radius decrease with

the increase in the baryon density of phase transition.

Existence of a quark phase at the interior of compact star

is more stable as compared to hadronic phases, and

therefore, quark core is highly possible [23, 24]. This

opened up a completely new possible variety of compact

star known as quark/strange star. Researchers already

suggested few strange star candidate, e.g., 4U 1820-30

[25], Her X-1 [26], SAX J 1808.4-3658 [27], 4U 1728-34

[28], PSR 0943?10 [29], RX J 185635-3754 [30]. Cheng

et al. [31], Kettner et al. [32] and Phukon [33] suggested

that strange stars have low-density nuclear crust with a thin

electron layer between crust and core. The electron content

ensures the charge neutrality. Predictions have been made

for Her X-1 in the presence of quark–diquark matter [34]

where a complex scalar field was used to describe the

bosonic diquarks with a U-four interaction potential. This

method was first suggested by Colpi et al. [35] and Kastor

and Traschen [36] where the quark–diquark core is wrap-

ped by a low density nucleon envelope. A modified model,

i.e., deconfined quark core inside a low-density mixed

phase envelope, was also put forwarded by Drago and

Lavagno [37].

Due to these layered structures of neutron stars, many

researchers have been inspired to further explore within the

framework of general relativity by considering core–en-

velope model [38–40]. This method is sometimes trou-

blesome while matching the interface boundaries and

thereby the realistic model of star could not be developed.

In this method, core and envelope are designed separately

either by considering separate equation of states and/or

metric potentials. Then the interfaces are matches with

Darmois–Israel condition to ensure the continuity of the

physical quantities.

Core–envelope model was in fact first proposed by

Bondi [41] assuming an EoS p ¼ q=3. Das and Narlikar

[42] forwarded the Bondi method with p ¼ kq and there-

fore a constant sound speed model however, discontinuous

at the CE interface. The continuity of density and sound

speed in CE model was presented by Durgapal et al.

[43, 44]. Vaidya and Tikekar [45] designed a core–en-

velope model with an anisotropic core. Soon later, Negi

et al. [46, 47] successfully followed the path of CE model

where Tolman IV and Tolman V were used to design the

core and envelope, respectively. Sharma and Mukherjee

[48] used ansatz Vaidya–Tikekar metric potential to

develop a CE model. However, the physical parameters

such as density and pressure, etc., are discontinuous at the

CE interface. CE model by considering anisotropic core

wrapped by an isotropic envelope was also reported by

several authors [49–51]. Very recently, Hansraj et al. have

presented a CE model satisfying Einstein–Maxwell field

equations [52]. A partially continuous CE model in few of

the physical parameters was also reported very recently

[53]. Very recently, two papers on core–envelop models

are also presented by Pant et al. [54] and Gedela et al. [55].

The most generalized Vaidya–Tikekar and Buchdahl

solutions were also used by Gupta & Jasim [56, 57] to

model physically acceptable compact stellar systems. In a

similar manner, Maurya et al. [58] have also extensively

discussed the Buchdahl solution for different cases and

model many compact stellar system.

In the current paper, we are developing a three-layered

hybrid compact star in the background of general relativity.

We will be considering a quark core with MIT-bag EoS, an

intermediate neutron fluid layer with modified BEC EoS

and a quadratic EoS envelope. We will use Darmois–Israeli

conditions at the interfaces in order to determine the con-

stants of integration. Some of the constants will be treated

as free parameters for tuning purposes. Several authors

[59–63] have suggested that during gravitational collapse

many exotic phase transitions may occur, out of which pion

condensation is also one of the possible phase transitions

that soften the equation of state [64]. This phase transition

may lead to anisotropy in pressure as well [65]. The pos-

sibility that protons inside compact stars condensate into

type-II superconductor was discussed by Jones [66] and

Easson and Pethick [67]. Here, the flux lines originate from

the anisotropic part of the stress tensor. The existence of

solid core [68, 69] and presence of type P superfluid are

few possible origins of anisotropy. Gleiser [70] presented a

model of spherically symmetric anisotropic boson star

bounded by gravity which was in equilibrium by consid-

ering a free or complex scalar field. To check the stability
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of such system, he considered charge conserving small

radial perturbation for both free and self-interacting /4-

theory. Another very promising source of anisotropy is the

two-fluid model. Letelier [71] has shown that anisotropy

can arise if two different types of fluids are contained in the

system. He thoroughly examined the nature of anisotropy

by considering two perfect fluids, one perfect fluid and a

null fluid, and two null fluids. Viscosity is also a source of

local anisotropy at very high density. Cores of compact

stars are usually highly dense, and therefore, neutrino

trapping may occur at a density of about 1011 � 1012g=cc.

Such trapped neutrinos have long mean free path and small

Reynolds number [72] which leads to a viscous core

[73, 74]. Herrera and Santos [75] have shown that the

classical Jeans equation for collisionless gas is equivalent

to the anisotropic TOV equation. They have also shown

that the first-order slow rotation approximation is equiva-

lent to the anisotropic one. Herrera [76] has also shown that

any initially isotropic configuration may end up as aniso-

tropic due to dissipative fluxes, inhomogeneities in density

and shear fluid flow during dissipative collapse. Therefore,

anisotropy is an inevitable component of this present paper.

The paper will be organized as follows: Sect. 2 will be

devoted to field equations, in sect. 3 we will elaborate our

work on three-layered stellar systems, while Sect. 4 will be

presenting the non-singular nature of the solution. The

matching of interior and exterior spacetimes using Dar-

mois–Israel condition will be discussed extensively in

Sect. 5, and the non-exotic nature of the fluid applying

energy condition will be given in Sect. 6. The stability

analysis of the system will be extensively discussed using

several techniques in Sect. 7. Section 8 presents slow

rotation of the model, while all the results are accumulated

and discussed in Sect. 9.

2. Einstein field equations in core–intermediate layer–

envelope model

Consider the interior of compact star that satisfies the same

spacetime which is of the form

ds2 ¼ emðrÞdt2 � ekðrÞdr2 � r2ðdh2 þ sin2 hd/2Þ: ð1Þ

Henceforth, the subscripts ‘‘c’’, ‘‘i’’ and ‘e’’ represent core,

intermediate layer and envelope, respectively.

Assuming the matter distribution inside the compact star

is anisotropic both at the core and envelope given as

Tl
m ¼ ðqþ ptÞulum � ptg

l
m þ ðpr � ptÞglgm ð2Þ

with ulul ¼ �glgl ¼ 1 and uigj ¼ 0. Here, the vector ui is

the fluid 4-velocity and gi is the spacelike vector which is

orthogonal to ui, q is the matter density, pr and pt are,

respectively, the radial and the transversal pressure of the

fluid.

Taking G ¼ 1 ¼ C the Einstein’s field equations are

8pq ¼ 1

r2
rð1� e�kÞ
� �0 ð3Þ

8ppr ¼� 1

r2
ð1� e�kÞ þ m0

r
e�k ð4Þ

8ppt ¼
e�k

4
2m00 þ m02 þ 2m0

r
� m0k0 � 2k0

r

� �
ð5Þ

where ‘0’ represents differentiation with respect to the

radial co-ordinate ‘r’.

Using the variable transformations x ¼ r2; zðxÞ ¼ e�k

and yðxÞ ¼ em, we can rewrite the field equations as

8pq ¼ 1� z

x
� 2 _z; ð6Þ

8ppr ¼2z
_y

y
� 1� z

x
; ð7Þ

8ppt ¼zx
2€y

y
� _y2

y2

� �
þ _z 1þ x _y

y

� �
þ 1� z

x
; ð8Þ

here _y ¼ dy=dx and so on. The measure of anisotropy can

be given as D ¼ pt � pr.

3. Development of core, intermediate layer

and envelope

In this section, we will develop three-layered model by

assuming Vaidya–Tikekar type �grr along with MIT-bag

equation of state (EoS) for core, modified Bose–Einstein

condensate (BEC) EoS for intermediate layer and a quad-

ratic EoS for envelope. For continuity of the graphs, we

need to match the metric functions, density and pressure at

the interfaces. The constant parameters can be expressed in

terms of mass and radius of the configuration along with

some free parameters. This can be achieved only when the

spacetime of the envelope is matched with the exterior

vacuum solution.

3.1. Core: quark matter

Assuming the MIT-bag EoS and Vaidya–Tikekar type�grr
are given as

zcðxÞ ¼
1þ ax

1þ bx
; prc ¼ aqc � b; ð9Þ

one can solve the field equations for gtt�metric potential.

Here, a&b are constants, a ensures the satisfaction of

causality condition and b links with the bag constant and

interface density. By using the field Eqs. (6) and (7) with

(9), we get
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ycðxÞ ¼Aðaxþ 1Þne�4pbbx=a ð10Þ

where A is constant of integration and

n ¼ 8pbb� a2ð3aþ 1Þ þ aðabþ b� 8pbÞ
2a2

:

Now the physical parameters become

qcðxÞ ¼
ðb� aÞðbxþ 3Þ
8pðbxþ 1Þ2

ð11Þ

prcðxÞ ¼aqcðxÞ � b ð12Þ

DcðxÞ ¼ x

32ðpaxþ pÞðbxþ 1Þ2

�
h
a2 9a2 þ 12aþ 9a2 þ 18aþ 1

� �
bxþ 3

� 	

þ
�
a2 � 2af1ðxÞ þ b3xða� 8pbxþ 1Þ2

þ b232pabxþ 3ð1� 8pbxÞ2
	
þ 64p2b2

þ 16pbbð12pbx� a� 2Þ
i

ð13Þ

ptc ¼DcðxÞ þ prcðxÞ; ð14Þ

where

f1ðxÞ ¼8pð3aþ 2Þbþ b2x
�
24pabxþ 8pbx� 6a� 1

� 3a2
�
þ b 48pabx� 3a2 � 2aþ 24pbx� 3

� �
:

Equation of state parameter (x), redshift (Z), mass function

(m) and compactness parameter (u) can be determined as

xrc ¼
prc
qc

;xtc ¼
ptc
qc

ð15Þ

ZcðxÞ ¼ycðxÞ�1=2 � 1 ð16Þ

mcðxÞ ¼
Z xc

0

2pqðxÞ
ffiffiffi
x

p
dx ¼ x

3=2
c ðb� aÞ
2bxc þ 2

ð17Þ

ucðxÞ ¼
2mcðxÞffiffiffi

x
p : ð18Þ

Here, xc ¼ r2c .

3.2. Intermediate layer: BEC matter

Since classical BEC EoS has the form p / q2 [77], we have
modified by adding a constant term to obtain a free

parameter for the purpose of matching. In addition to

quadratic EoS, we are still assuming Vaidya–Tikekar

type�grr. This is because the matching at the interface is

much easier.

ziðxÞ ¼
1þ ax

1þ bx
; pri ¼ kq2i � q; ð19Þ

here k and q constants. On using the field Eqs. (6) and (7)

with (19), we get

yiðxÞ ¼B exp

�
1

16p

�
f2 lnðaxþ 1Þ
a2ða� bÞ þ 8ak � 4bk

bxþ 1

þ 2kða� bÞ
ðbxþ 1Þ2

� k lnðbxþ 1Þ
ðb� 3aÞ�2ða� bÞ

� 64p2bqx
a


�

ð20Þ

where B is constant of integration and

f2 ¼9a4k � 2a3ð3bk þ 4pÞ þ a2tðb2k þ 16pb

� 64p2qÞ � 8pabðb� 16pqÞ � 64p2b2q:

Now the physical parameters become

qiðxÞ ¼
ðb� aÞðbxþ 3Þ
8pðbxþ 1Þ2

ð21Þ

priðxÞ ¼kq2i ðxÞ � q ð22Þ

DiðxÞ ¼
x

2048p3ðaxþ 1Þðbxþ 1Þ7
h
f3ðxÞ � 4a3kðbxþ 3Þf4ðxÞ þ b8x4fk þ 8px

ð1� 8pqxÞg2 þ f5ðxÞ þ f6ðxÞ þ 2b6x2f7ðxÞ

þ 2a2ðbxþ 3Þ f8ðxÞ þ f9ðxÞf g � 4a
n
b3
�
81k2

� 4pkxð1264pqxþ 73Þ � 160p2x2ð88pqx� 7Þ
�

� 8pb2
�
kð336pqxþ 33Þ þ 64pxð18pqx� 1Þ

	

þ f10ðxÞ þ f11ðxÞ
oi

ð23Þ

pti ¼DiðxÞ þ priðxÞ; ð24Þ

where
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f3ðxÞ ¼a4k2ðbxþ 3Þ4 þ 64p2b2
�
1792p2q2x2 � 18kq

� 208pqxþ 3
�
þ 2048p3bq

ð16pqx� 1Þ�1
þ 4096p4q2

f4ðxÞ ¼b4x3ðk þ 20pxÞ þ b3x2ð9k þ 140pxÞ þ b2x

ð27k þ 244pxÞ þ bð27þ 148pxÞ þ 24p

f5ðxÞ ¼4b7x3
�
3k2 � 8pkxð40pqx� 3Þ þ 128p2x2ð1

� 8pqxÞ2
�
þ 32pb3

�
32px

�
224p2q2x2 � 36pqx

þ 1
�
� 21kð8pqxþ 1Þ

�

f6ðxÞ ¼4b5x
h
27k2 � 16pkxð152pqxþ 15Þ þ 128p2x2

�
448p2q2x2 � 100pqxþ 5

	�
þ b4

�
81k2 � 16p

kxð632pqxþ 95Þ þ 320p2x2
�
896p2q2x2 � 176

pqxþ 7
��

f7ðxÞ ¼27k2 � 16pkxð156pqxþ 1Þ þ 32p2x2
�
1792p2

q2x2 � 432pqxþ 25
�

f8ðxÞ ¼b5x3
�
3k2 þ 8pkxð11� 8pqxÞ þ 32p2x2

�

� 16pbð52pkqxþ k � 10pxÞ þ 32p2ð1� 6kqÞ
f9ðxÞ ¼b4x2

�
27k2 � 8pkxð56pqx� 73Þ þ 160p2x2

�

þ b3x 81k2 � 24pkxð48pqx� 37Þ þ 320p2x2
� �

þ b2 81k2 � 8pkxð176pqx� 47Þ þ 320p2x2
� �

f10ðxÞ ¼b7x4
�
k2 þ 4pkxð7� 16pqxÞ þ 32p2x2ð1� 8pqxÞ

�

þ 2b5x2
�
27k2 þ 12pkxð27� 104pqxÞ

þ 16p2x2ð25� 216pqxÞ
�
� 32p2bð18kqþ 104

pqx� 3Þ � 512p3q

f11ðxÞ ¼4b6x3
�
3k2 þ 2pkxð31� 80pqxÞ þ 64p2x2

ð1� 8pqxÞ
�
þ 4b4x

�
27k2 � 4pkxð304pqx� 25Þ

þ 320p2x2ð1� 10pqxÞ
�
:

The rest of the physical parameters can be determined as

xri ¼
pri
qi

;xti ¼
pti
qi

ð25Þ

ZiðxÞ ¼yiðxÞ�1=2 � 1 ð26Þ

miðxÞ ¼
Z xi

xc

2pqiðxÞ
ffiffiffi
x

p
dx ¼

�
x3=2ðb� aÞ
2bxþ 2

�xi

xc

ð27Þ

uiðxÞ ¼
2miðxÞffiffiffi

x
p : ð28Þ

3.3. Envelope: quadratic EoS

For the envelope, we have assumed a quadratic EoS along

with Vaidya–Tikekar type�grr, i.e.,

zeðxÞ ¼
1þ ax

1þ bx
; pre ¼ gq2e þ tqe � c; ð29Þ

here g, t and c are constants. By using the field Eqs. (6)

and (7) with (29), we get

yeðxÞ ¼F exp

�
1

16p

�
w1 lnðaxþ 1Þ
a2ða� bÞ þ 2gða� bÞ

ðbxþ 1Þ2

þ 8ag� 4bg

bxþ 1
� 64p2bcx

a
þ v lnðbxþ 1Þ

b� a


� ð30Þ

where B is constant of integration and

w1 ¼9a4g� 2a3ð3bgþ 4ð3pt þ pÞÞ þ a2
�
b2gþ 16b

ð2pt þ pÞ � 64p2c
�
� 8pabðbt þ b� 16pcÞ

� 64p2b2c

v ¼9a2g� 2að3bgþ 8ptÞ þ bðbgþ 16ptÞ:

Now the physical parameters become

qeðxÞ ¼
ðb� aÞðbxþ 3Þ
8pðbxþ 1Þ2

ð31Þ

preðxÞ ¼gq2eðxÞ þ tqeðxÞ � c ð32Þ

DeðxÞ ¼
x

2048p3ðaxþ 1Þðbxþ 1Þ7
h
a4g2ðbxþ 3Þ4

� 4a3gðbxþ 3Þw2ðxÞ þ 2a2
�
b2w11ðxÞ þ w8ðxÞ

þ w9ðxÞ þ w10ðxÞ
�
� 4a

�
b3w16ðxÞ þ w12ðxÞ

þ w13ðxÞ � w14ðxÞ þ w15ðxÞ
�
þ 4b7x3w7ðxÞ

þ 2b6x2w5ðxÞ þ 4b5xw6ðxÞ þ b4w17ðxÞ

þ 16pb3w4ðxÞ þ w3ðxÞ
i

ð33Þ

pte ¼DeðxÞ þ preðxÞ; ð34Þ

where
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w2ðxÞ ¼b4x3fgþ 4pðt þ 5ÞxÞ þ b3x2½9gþ 4pð8t þ 35Þ
x� þ b2xð27gþ 4pð22t þ 61Þxg þ bf27gþ 4p

ð24t þ 37Þxg þ 12pð3t þ 2Þ
w3ðxÞ ¼b8x4fgþ 8pxðt � 8pcxþ 1Þg2 þ 64p2b2

�
9t2

� 18cg� 8tð38pcxþ 1Þ þ 1792p2c2x2 � 208

pcxþ 3
�
þ 1024p3bcð32pcx� 3t � 2Þ

þ 4096p4c2

w4ðxÞ ¼27gt � 42gð8pcxþ 1Þ þ 8px
�
21t2 � 408pc

tx� 13t þ 1792p2c2x2 � 288pcxþ 8
�

w5ðxÞ ¼27g2 � 16pgxð1� 23t þ 156pcxÞ þ 32p2x2
�
39t2 þ tð28� 528pcxÞ þ 1792p2c2x2

� 432pcxþ 25
�

w6ðxÞ ¼27g2 � 8pgxð30� 45t þ 304pcxÞ þ 64p2x2
�
19t2 þ tð3� 260pcxÞ þ 896p2c2x2 � 200p

cxþ 10
�

w7ðxÞ ¼3g2 þ 4pgxð11t � 80pcxþ 6Þ þ 32p2x2
�
5t2

þ tð7� 72pcxÞ þ 4ð1� 8pcxÞ2
�

w8ðxÞ ¼4b3x
�
81g2 þ 4pgxð135t � 304pcxþ 190Þ

þ 32p2
�
19t2 þ 63t þ 10

�
x2
�

þ 96p2
�
3t2 � 6cgþ 4t þ 1

�

w9ðxÞ ¼b6x4
�
3g2 þ 8pgxð3t � 8pcxþ 11Þ

þ 32p2ðt2 þ 6t þ 1Þx2
�
þ 4b5x3

�
9g2

þ 2pgxð33t � 80pcxþ 106Þ
þ 16p2 5t2 þ 27t þ 4

� �
x2
�

w10ðxÞ ¼2b4x2
�
81g2 � 24pgxð52pcx� 55� 23tÞ

þ 16p2ð39t2 þ 168t þ 25Þx2
�
� 8pb

�
gð6� 81t

þ 336pcxÞ � 8pð21t2 þ 39t þ 8Þx
�

w11ðxÞ ¼243g2 � 8pgxð632pcx� 243t � 139Þ
þ 32p2 79t2 þ 198t þ 35

� �
x2

w12ðxÞ ¼4b6x3
�
3g2 þ pgxð33t � 160pcxþ 62Þ þ 16p2

x2 5t2 � 36pctxþ 17t � 32pcxþ 4
� ��

� 32

p2b
�
18cg� 9t2 þ 2tð76pcx� 1Þ þ 104pcx

� 3
�
� 256p3cð3t þ 2Þ

w13ðxÞ ¼b7x4
�
g2 þ 4pgxð3t � 16pcxþ 7Þ � 32p2x2

8pctx� t2 � 4t þ 8pcx� 1
� ��

þ 4b4x
�
27g2

þ 2pgxð135t � 608pcxþ 50Þ � 32p2x2
�
130p

ctx� 19t2 � 33t þ 100pcx� 10
��

w14ðxÞ ¼4pb2
�
gð672pcx� 81t þ 66Þ þ 16px

�
204p

ctx� 21t2 � 13t þ 144pcx� 8
��

w15ðxÞ ¼2b5x2
�
27g2 þ 12pgxð23t � 104pcxþ 27Þ � 16

p2x2
�
264pctx� 39t2 � 98t þ 216pcx� 25

��

w16ðxÞ ¼81g2 � 4pgxð1264pcx� 243t þ 73Þ � 32p2

x2 600pctx� 79t2 � 88t þ 440pcx� 35
� �

w17ðxÞ ¼81g2 � 16pgxð632pcx� 81t þ 95Þ þ 64p2x2
�
79t2 � 2tð600pcxþ 11Þ þ 5

�
896p2c2x2

� 176pcxþ 7
��
:

The rest of the physical parameters can be determined as

xre ¼
pre
qe

;xte ¼
pte
qe

ð35Þ

ZeðxÞ ¼yeðxÞ�1=2 � 1 ð36Þ

meðxÞ ¼
Z xe

xi

2pqeðxÞ
ffiffiffi
x

p
dx ¼

�
x3=2ðb� aÞ
2bxþ 2

�xe

xi

ð37Þ

ueðxÞ ¼
2meðxÞffiffiffi

x
p : ð38Þ

4. Regularity of the solution

The finiteness in the central values of the physical

parameters will ensure a regular solution, i.e.,

qc0 ¼
3ðb� aÞ

8p
[ 0;8b[ a; ð39Þ

prc0 ¼ptc0 ¼
3ðb� aÞa

8p
� b[ 0 ð40Þ

and for rest of the parameters can be seen from graphs.

Zeldovich’s criterion is also needed to fulfill by any

physical solutions, i.e.,

prc0
qc0

¼ a� 8pb
3ðb� aÞ � 1: ð41Þ

In the view of (40) and (41), we get

3ðb� aÞða� 1Þ
8p

� b\
3ðb� aÞa

8p
: ð42Þ
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5. Boundary conditions

The three boundaries, i.e., core–intermediate layer inter-

face, intermediate layer–envelope interface and envelope–

vacuum interface, match for the continuity of the physical

parameters using Darmois–Israel conditions.

5.1. Envelope-vacuum boundary

Assuming the exterior vacuum solution to be Sch-

warzschild’s solution, i.e.,

ds2þ ¼ 1� 2mSch

R

� �
dt2 � 1� 2mSch

R

� ��1

dR2

� R2ðdh2 þ sin2 hd/2Þ
ð43Þ

the boundary matching at R ¼ re and M ¼ mSchðreÞ yields

1� 2M

re
¼ 1þ br2e
1þ ar2e

ð44Þ

1� 2M

re
¼F exp

�
1

16p

�
w1ðreÞ lnðar2e þ 1Þ

a2ða� bÞ

þ 2gða� bÞ
ðbr2e þ 1Þ2

þ 8ag� 4bg

br2e þ 1
� 64p2bcr2e

a

þ v lnðbr2e þ 1Þ
b� a


�

ð45Þ

preðreÞ ¼gq2eðreÞ þ tqeðreÞ � c ¼ 0: ð46Þ

In the view of (44, 45, 46). we get

a ¼� 2bM

re
þ b� 2M

r3e
ð47Þ

c ¼
ðb� aÞ br2e þ 3

� �

64p2 br2e þ 1
� �4 �

gðb� aÞ br2e þ 3
� �

þ 8pt br2e þ 1
� �2h i

;

ð48Þ

F ¼ re � 2M

re
ar2e þ 1
� �d

br2e þ 1
� �g

exp
h 1

8p

n 32p2

a

bcr2e �
ag 4br2e þ 5

� �

br2e þ 1
� �2 þ

bg 2br2e þ 3
� �

br2e þ 1
� �2

oi ð49Þ

where

d ¼ 1

16pa2ða� bÞ
h
a3ð6bgþ 8ð3pt þ pÞÞ � a2

�
b2g

þ 16bð2pt þ pÞ � 64p2c
�
þ 8pabðbt þ b� 16pcÞ

þ 64p2b2c� 9a4g
i

g ¼ 9a2g� 6abg� 16pat þ b2gþ 16pbt
16pa� 16pb

:

5.2. Intermediate layer–envelope boundary

The boundary conditions at intermediate layer–envelope

interface can be written as

ziðriÞ ¼zeðriÞ ð50Þ

yiðriÞ ¼yeðriÞ ð51Þ

priðriÞ ¼priðriÞ: ð52Þ

Here, ri is the radius at intermediate layer–envelope

interface. Since ziðriÞ and zeðriÞ are assumed to be of same

metric function, the densities at intermediate layer qi and at
envelope qe are continuous by itself.

Now using the boundary conditions (50, 51, 52), we get

ai ¼ae ¼ a ¼ b� 2bM

re
� 2M

r3e
ð53Þ

B ¼F ar2i þ 1
� �

x br2i þ 1
� �

r exp
h 1

8p

n aðg� kÞ
br2i þ 1ð Þ2

4br2i þ 5
� �

þ 32p2br2i ðq� cÞ
a

� bðg� kÞ
br2i þ 1ð Þ2

2br2i þ 3
� �oi

ð54Þ

q ¼ 1

64p2ðbr2i þ 1Þ4
h
kða� bÞ2ðbr2i þ 3tÞ2 � gða� bÞ2

ðbr2i þ 3tÞ2 þ 8ptða� bÞ br2i þ 3
� �

br2i þ 1
� �2

þ 64p2c br2i þ 1
� �4i

;

ð55Þ

where,

x ¼ 1

16pa2ða� bÞ

h
9a4ðg� kÞ � 6a3fbðg� kÞ þ 4ptg

þ a2 b2ðg� kÞ þ 32pbt þ 64p2ðq� cÞ
� 	

� 8pabfbt

þ 16pðq� cÞg þ 64p2b2ðq� cÞ
i

r ¼ 1

16pða� bÞ

h
6abðg� kÞ � 9a2ðg� kÞ þ 16pat

þ b2ðk � gÞ � 16pbt
i
:

5.3. Core–intermediate layer boundary

The boundary conditions at outer core–intermediate layer

interface can be written as

ziðrcÞ ¼zcðrcÞ ð56Þ

yiðrcÞ ¼ycðrcÞ ð57Þ

priðrcÞ ¼prcðrcÞ: ð58Þ

Here, rc is the radius at core–intermediate layer interface.

Again, since ziðrcÞ and zcðrcÞ are assumed to be same
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metric function, the densities at outer core qi and at core qc
are continuous by itself. After using (56)-(58), we get,

ac ¼ai ¼ ae ¼ a ¼ b� 2bM

re
� 2M

r3e
ð59Þ

A ¼B ar2c þ 1
� �l

br2c þ 1
� ��kðb�3aÞ2

16pða�bÞexp
h
� 1

8p
n 32p2br2c ðq� bÞ

a
�
ak 4br2c þ 5
� �

br2c þ 1
� �2 þ

bk 2br2c þ 3
� �

br2c þ 1
� �

2

oi

ð60Þ

b ¼
aðb� aÞ br2c þ 3

� �

8p br2c þ 1
� �2 �

kða� bÞ2 br2c þ 3
� �2

64p2 br2c þ 1
� �4

þ q;

ð61Þ

where

l ¼ 1

16pa2ða� bÞ
h
9a4k � 6a3ðbk � 4paÞ þ a2

�
b2k

� 32pabþ 64p2ðb� qÞ
	
þ 8pabfabþ 16pðq� bÞg

þ 64p2b2ðb� qÞ
i
:

6. Energy conditions

Energy conditions are required to be satisfy by any solu-

tions of field equations if they represent physical matter

distributions. There are four energy conditions (EC):

weak : q[ 0; qþ pj � 0; ð62Þ

null : qþ pj � 0; ð63Þ

dominant : q� jpjj; ð64Þ

strong : qþ
X

i

pj � 0 ð65Þ

where j � ðr; tÞ for radial and transverse components.

These conditions must be satisfied in each region.

7. Stability and equilibrium analysis

7.1. TOV equation and equilibrium

All the forces acting of a stellar system are at equilibrium

for a stable star which is represented by TOV equation. The

following equations are needed to satisfy at the respective

regions:

� m0c
2
ðqc þ prcÞ �

dprc
dr

þ 2Dc

r
¼0 ð66Þ

� m0i
2
ðqi þ priÞ �

dpri
dr

þ 2Di

r
¼0 ð67Þ

� m0e
2
ðqe þ preÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Fg

� dpre
dr|fflffl{zfflffl}

Fh

þ 2De

r|{z}
Fa

¼0: ð68Þ

The TOV equation not only satisfies separately but also

requires the continuity of the graph at the interfaces.

7.2. Causality and stability

Any physical solution must obey causality condition, i.e.,

the speed of sound must be subluminal. The speed of sound

can be determined as

vre ¼
ffiffiffiffiffiffiffiffi
dpre
dqe

s

; vte ¼
ffiffiffiffiffiffiffiffi
dpte
dqe

s

ð69Þ

vri ¼
ffiffiffiffiffiffiffiffi
dpri
dqi

s

; vti ¼
ffiffiffiffiffiffiffi
dpti
dqi

s

ð70Þ

vrc ¼
ffiffiffiffiffiffiffiffi
dprc
dqc

s

; vtc ¼
ffiffiffiffiffiffiffiffi
dptc
dqc

s

: ð71Þ

Since the radial pressures at the interfaces were matched,

the radial sound speeds will be continuous; however,

continuation of tangential sound speed may not be possible.

Therefore, the stability factor v2t � v2r also may not be

continuous, however must lie within 0 and �1 [85, 86].

7.3. Adiabatic index and stability

Bondi [41] has clearly mentioned that the adiabatic index

must be greater than 4/3 in Newtonian case. However, this

condition is modified for relativistic fluid and if anisotropy,

depends on nature of anisotropy [78]. For positive aniso-

tropy Cr [ 4=3 and vice versa. The adiabatic indices can

be found as

Crc ¼
prc þ qc

prc
v2rc;Cri ¼

pri þ qi
pri

v2ri

Cre ¼
pre þ qe

pre
vre:

2
ð72Þ

A more accurate limit on the critical value of C that

depends on compactness parameter M/R was derived by

Moustakidis [79] as

Ccrit ¼
4

3
þ 19

42
2b: ð73Þ

Hence, for a stable stellar solution one requires C[Ccrit.
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7.4. Static stability criterion

The stability analysis adopted by Harrison et al. [80] and

Zeldovich & Novikov [81] implied that for static

stable configuration the mass of the star must be increasing

with central density, i.e., omðq0Þ=oq0 [ 0. For the solution,

we get

mðq0Þ ¼
4pR3q0

3aR2 þ 8pR2q0 þ 3
ð74Þ

omðq0Þ
oq0

¼ 12pR3 aR2 þ 1ð Þ
3aR2 þ 8pR2q0 þ 3ð Þ2

ð75Þ

8. Slow rotation model

Since the EoS is more sensitive to moment of inertia (I) and

mass M graph as compare to M � R graph. Therefore,

plotting M � I graph will enlighten more insight on the

nature of EoS. The moment of inertia is defined as [82]

I ¼ 8p
3

Z R

0

r4ðqþ prÞeðk�mÞ=2 �x
X
dr ð76Þ

where X is the angular velocity, �x the rotational drag

satisfying the Hartle’s equation [83]

d

dr
r4j

d �x
dr

� �
¼ �4r3 �x

dj

dr
: ð77Þ

with j ¼ e�ðkþmÞ=2 which has boundary value jðRÞ ¼ 1. An

approximate moment of inertia I up to the maximum mass

Mmax was given by Bejger and Haensel [84] as

I ¼ 2

5

�
1þM=R

M�

�
	MR2: ð78Þ

9. Discussion and conclusion

We have successfully presented for the first time a three-

layered compact star model consisting of a quark core, an

intermediate layer of neutron liquid and a thin envelope

satisfying quadratic EoS. All the interfaces are matched

using Darmois–Israel conditions. Further, matching of pt’s

cannot be preformed analytically due to their complex and

lengthy expressions. Indeed, it can be performed by tuning

proper values of a few free parameters, i.e., g, t, k, and

a for a chosen values of M and R.

We have completely analyzed the solution for a chosen

compact star, i.e., PSR J1614-2230. To plot the graphs,

we have taken M ¼ 1:97M�; re ¼ R ¼ 9:69km; k ¼
400; rc ¼ 3:5km; ri ¼ 8:59km; a ¼ 0:752; b ¼ 0:004; g ¼
140 and t ¼ 0:345. With these values, we found that the

physical parameters, i.e., metric potentials, density,

pressures, anisotropy, equation of state parameters, red-

shift, energy conditions, TOV equation, adiabatic index, v2r ,

mass function and compactness parameter are well

behaved and continuous at the interfaces (see Figs. 1, 2, 3,

4, 5,6, 7, 8, 9, 10, 11, 13); however, dpt=dr; v
2
t and stability

factor are discontinuous at the interfaces (see Figs. 8, 11,

12). This is because pt is continuous throughout within the

star but not differentiable at the interfaces; thereby, v2t and

stability factor are discontinuous at the interfaces. In our

model, the c2 ¼ a ¼ 0:752 at the core. As we have dis-

cussed in section at the quark core, there may exist many

hadrons, which will lead to a mixed phase hybrid EoS.

Such quark–hadron hybrid phase includes two vector-

coupling parameters g2 and g4 that may arise the sound

speed even up to light speed [87].

The variations of the EoSs within stellar interior are

shown in Fig. 17, and we can see that there exist smooth

transitions from quark matter to neutron liquid at a density

of about qI ¼ 4:16� 1014g=cc and neutron liquid to crustal

matter obeying quadratic EoS at a density of about

qII ¼ 2:934� 1014g=cc. A smooth transition density

between quark core and neutron liquid intermediate layer

Fig. 1 Variation of metric potentials for PSR J1614-2230

Fig. 2 Variation of density for PSR J1614-2230
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as predicted by Buchler & Barkat [20] and Baym et al. [21]

was at q[ 1014g=cc which is in quite agreement with our

prediction (i.e., qI). Further, we predicted that the transition
density at the neutron liquid-quadratic EoS envelope hap-

pens around qII . Since the stability factor is not defined as

the tangential pressure is discontinuous at the junctions,

one cannot define the stability using the stability factor.

However, we can determine its stability using the static

stability criterion. From Fig. 14, it is confirmed that the

solution is stable under radial perturbations.

Fig. 3 Variation of pressure for PSR J1614-2230

Fig. 4 Variation of anisotropy for PSR J1614-2230

Fig. 5 Variation of pressure to density ratio for PSR J1614-2230

Fig. 6 Variation of red-shift for PSR J1614-2230

Fig. 7 Variation of mass and compactness parameter ratio for PSR

J1614-2230

Fig. 8 Variation of density and pressure gradients for PSR

J1614-2230
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The M � R shown in Fig. 15 is in good agreement with

the observed values of masses and radii. Here, we have

shown for 4U 1538-52 (M ¼ 0:87
 0:07M�,
R ¼ 7:866
 0:21km, [88]), LMC X-4

(M ¼ 1:04
 0:09M�, R ¼ 8:301
 0:2km, [88]), 4U

1820-30 (M ¼ 1:58
 0:06M�, R ¼ 9:1
 0:4km, [89])

and 4U 1608-52 (M ¼ 1:74
 0:14M�, R ¼ 9:3
 1:0km,

[89]). Therefore, we have also predicted the ranges of

moment of inertia for the above stars as

ð48:998
 5:824Þ � 1043gcm2,

ð124:173
 7:599Þ � 1043gcm2, ð143:24
 16:83Þ �
1043gcm2 and ð65:044
 8:447Þ � 1043gcm2; respectively

Fig. 9 Variation of energy conditions for PSR J1614-2230

Fig. 10 Variation of forces in TOV-equation for PSR J1614-2230

Fig. 11 Variation of sound speed for PSR J1614-2230

Fig. 12 Variation of stability for PSR J1614-2230

Fig. 13 Variation of adiabatic index for PSR J1614-2230

Fig. 14 Variation of mass with central density for a ¼ 0:01327
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(see Fig. 16). The complete profile of the EoSs inside the

compact can be seen in Fig. 17, and the visualization of the

model is given in Fig. 18.

All the three solutions of the three layers can be gen-

erated from two generating functions. As per Herrera et al.

[90], any spherically symmetric anisotropic static solutions

can be generated by using two generators; one generator

links with the metric potential gtt and the other with pres-

sure anisotropy. These generators fðrÞ andPðrÞ are defined
via the following equations:

em ¼ exp

Z
2fðrÞ � 2

r

� �� �
ð79Þ

PðrÞ ¼8pðpr � ptÞ: ð80Þ

For the core, the two generators are

fcðrÞ ¼
1
ffiffiffi
x

p þ
ffiffiffi
x

p
ðaxþ 1Þ�ne

4pbbx
a

A

�
aAnðaxþ 1Þn�1

e�
4pbbx

a � 4pAbbðaxþ 1Þne�4pbbx
a

a

� ð81Þ

PcðrÞ ¼ � 8pDcðrÞ; ð82Þ

for intermediate layer,

fiðrÞ ¼
1
ffiffiffi
x

p þ
ffiffiffi
x

p

16p

�
f2

aða� bÞðaxþ 1Þ �
bkðb� 3aÞ2

ða� bÞðbxþ 1Þ

� bð8ak � 4bkÞ
ðbxþ 1Þ2

� 4bkða� bÞ
ðbxþ 1Þ3

� 64p2bq
a

�

ð83Þ

PiðrÞ ¼ � 8pDiðrÞ; ð84Þ

and for envelope are

Fig. 15 Determination of maximum mass on assuming

a ¼ 0:01; b ¼ 0:075

Fig. 16 Determination of maximum moment of inertia on assuming

a ¼ 0:01; b ¼ 0:075

Fig. 17 Equation of state for PSR J1614-2230

Fig. 18 Visualization of the three-layered compact object
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feðrÞ ¼
ffiffiffi
x

p

16p

�
� 64p2bc

a
� 4bgða� bÞ

ðbxþ 1Þ3
� bð8ag� 4bgÞ

ðbxþ 1Þ2

þ w1

aða� bÞðaxþ 1Þ þ
bv

ðb� aÞðbxþ 1Þ

�
þ 1

ffiffiffi
x

p

ð85Þ

PeðrÞ ¼ � 8pDeðrÞ: ð86Þ
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