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Atoms to topological electronic materials: a bedtime story for beginners

A K Pariari*

Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India

Received: 09 July 2019 / Accepted: 16 September 2020 / Published online: 27 November 2020

Abstract: In this review, we discuss the theoretical foundation and experimental discovery of different topological

electronic states in solids. At first, we briefly discuss the conventional electronic states, which have been realized in band

theory of solid. Next, the simplest non-trivial insulating phase (integer quantum Hall state) and the concept of topological

order in condensed matter electronic system are introduced. In the following sections, we discuss quantum spin Hall (QSH)

state in two dimensions (2D) and review the theoretical and experimental developments from 2D QSH state to 3D

topological insulators. Subsequently, we give a brief overview on theoretical and experimental understanding on recently

discovered topological Dirac semimetals, Weyl semimetals, three-, six- , and eightfold degenerate semimetals, and nodal

line semimetals. Topological crystalline insulator, which cannot be considered as a descendent of QSH or integer quantum

Hall insulator, is discussed in the following section. Finally, we discuss the presence of magnetism in some topological

materials and its consequence on electronic band structure.
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1. Band theory and conventional electronic phases

In the case of a single isolated atom, there are various

discrete energy levels, known as atomic orbitals. When two

atoms join together to form a molecule, their atomic

orbitals overlap, and each atomic orbital splits into two

molecular orbitals of different energies. In a solid, a large

number of atoms are arranged systematically in space lat-

tice and each atom is influenced by neighboring atoms. As

a consequence, each atomic orbital splits into large number

of discrete molecular orbitals, each with a different energy.

The energy of adjacent levels is so close that they can be

considered as a continuum, forming an energy band. Fig-

ure 1 is a schematic diagram, representing the above*Corresponding author, E-mail: arnab.pariari@weizmann.ac.il
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discussion. The completely occupied lower band is called

the valence band, and the top most partially filled or

completely empty band is known as conduction band. For

the conduction of electrical energy in a material, there must

be partially filled band. In case of a metal, as shown in

Fig. 2, the valence and conduction bands overlap with each

other in such a way so that the conduction band is partially

filled and participates in charge conduction. A semimetal,

where the valence and conduction bands just touch at a

point without introducing any well-defined Fermi surface,

is also a conductor of charge. For an insulator, due to gap

between valence and conduction bands, the conduction

band is completely empty and there is no conduction or

negligible conduction of charge under external electric

field. In the materials where the gap is small (. 1 eV),

electrons thermally excited from valence to conduction

band near room temperature, and participate in charge

conduction. These materials are known as semiconductors.

It can be shown that via smooth deformation of the

Hamiltonian, an insulating gap can be tuned to an arbi-

trarily small value or to an exceptionally large value,

without closing the gap. In mathematical language, all the

conventional insulating states are related via an equiva-

lence relation. In that sense, vacuum, which, according to

the Dirac equation, has a band gap that corresponds to the

pair production (* 106 eV), is also a trivial insulator. Thus,

the band theory of solid is extremely successful in grouping

a wide variety of materials into just two categories: metals

and insulators. It has been thought to be most powerful

quantum mechanical tool available to understand the

electronic properties of crystalline solids, until the dis-

covery of integer quantum Hall effect (IQHE).

Fig. 1 A schematic diagram to

show the discrete energy levels

of an isolated atom and energy

band of crystalline solid.

Reproduced from Ref. [1]

Fig. 2 Electronic phases of matter classified by band theory
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2. The integer quantum Hall state and introduction

of topology in electronic systems

2.1. Experimental discovery and the strange

observation

The experimental discovery of integer quantum Hall effect

in 1980 by von Klitzing led to think a different classifi-

cation paradigm, beyond conventional band theory of solid

[2, 3]. IQHE is the simplest example of insulator which is

fundamentally not equivalent to vacuum. Two-dimensional

electron gas under application of out-of-plane external

magnetic field forms cyclotron orbits well inside the

boundary (Fig. 3(a)). The single particle Hamiltonian (H)

describing the motion of electron is given by the

expression:

H ¼ ðp� eAÞ2

2m
; ð1Þ

where p, m, and A are momentum of electron, effective

mass, and magnetic vector potential, respectively. In this

situation, each electronic energy band of parent state splits

into several sub-bands, known as Landau levels. The

energy of nth Landau level is En ¼ �hxcðnþ 1
2
Þ, where xc ¼

eB=mH

c and mH

c is the effective cyclotron mass of the

charge carrier. When N Landau levels are filled, there is an

energy gap between Nth filled band and (N?1)th empty

band, which causes the bulk to behave as an insulator.

Being a function of external magnetic field, the degeneracy

of Landau levels increases with increasing field strength.

As a consequence, the Landau levels pass through the

Fermi level of the system, which results in oscillations of

the electronic density of states at the Fermi level. This

phenomenon produces oscillations in several electronic

properties of a material including electrical resistance

(Shubnikov–de Haas effect) and magnetization (de Haas–

van Alphen effect), which is familiar as quantum oscilla-

tion. The frequency of this oscillation in a material is

proportional to the cross-sectional area of the Fermi sur-

face, perpendicular to the direction of magnetic field. By

applying magnetic field along different directions of a

crystal, one can measure the cross sections of the Fermi

surface. This technique has been established as a powerful

tool to probe the Fermi surface of a material.

However, the electrons at the edge of the two-dimen-

sional electron gas will behave differently from that of the

bulk, as illustrated in Fig. 3(a). Due to the bending of the

path by the Lorentz force, electrons form skipping orbits.

Hall conductivity (rxy), which has been obtained by mea-

suring the Hall resistivity as shown in Fig. 3(c), is found to

be finite, unlike trivial insulators, and rxy is quantized

depending on the number (N) of filled Landau levels. The

quantized value of Hall conductivity is given by the

expression, rxy ¼ Ne2

h [2, 4]. The mysterious thing about the

value of rxy is that the quantization can be measured to an

accuracy 1 part in a billion. Irrespective of material

forming the two-dimensional electron system and presence

of disorder, which modify the Hamiltonian of the system,

the value of rxy has been found to have such precise

quantization. To explain the robustness of this phenomenon

and quantized value of rxy, concept of topological order

has been introduced in solid-state electronic systems.

2.2. Topology in geometry

Topology is a mathematical structure in geometry, and this

allows us to study the properties of an object, which remain

unaffected by the smooth deformation of shape or size. In

Fig. 3 (a) Schematic of two-

dimensional electron gas under

out-of-plane external magnetic

field. (b) Formation of Landau

levels under application of

magnetic field, and the variation

in the electronic density of

states across the Fermi level

with the increasing field. (c)

Hall measurement

configuration. VH is the Hall

voltage
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Fig. 4, four three-dimensional objects have been shown,

which belong to different topological class. The topological

quantity which distinguishes a sphere from a torus is called

genus (g). The values of genus for sphere, torus, double

torus, and triple torus are zero, one, two, and three,

respectively. So, the value of g is basically the number of

holes in an object. Since an integer cannot change

smoothly, objects with different genus cannot be deformed

into one another and are said to be topologically distinct. In

that sense, a clay ball and a plate, both of which have

g ¼ 0, can be deformed smoothly into one another. In other

words, any two objects with the same value of g can be

connected by a smooth deformation in size or shape. The

genus of an object with arbitrary shape is calculated by the

Gauss–Bonnet theorem,Z
Surface

KdS ¼ 2pð2 � 2gÞ; ð2Þ

where K ¼ 1
r1r2

is the Gaussian curvature, and r1 and r2 are

the radius along two perpendicular directions from a point

on the surface of an object [2, 5]. Considering, K ¼ 1
r2 on

the surface of a sphere,
R

Surface
KdS has been calculated to

be 4p. This implies that the value of g for a sphere is zero.

If we perform similar calculation for a plate like object, it

will give us the same value for g.

2.3. Topology in Quantum Hall Physics

How the concept of topology can be used to characterize

integer quantum Hall states? We explain this in the present

paragraph. From the mathematical point of view, the

Gaussian curvature of geometry, the Berry curvature of

electronic band theory, and magnetic field are same. All of

them are described by the same mathematical structure:

fiber bundles [5]. Now the question is: How the Berry’s

phase arises in solid-state electronic systems? The band

theory of solid classifies electronic states in terms of their

crystal momentum k, defined in a periodic Brillouin zone.

The Bloch states jumðkÞ[ , defined in a single unit cell of

the crystal, are eigenstates of the Bloch Hamiltonian, HðkÞ.

The eigenvalues EmðkÞ for all m collectively form the band

structure. However, the Bloch wave function, jumðkÞ[ ,

has an intrinsic phase ambiguity, ei/ðkÞ. The band structure

remains unaffected under the transformation,

jumðkÞ[ �! ei/ðkÞjumðkÞ[ , which is similar to gauge

transformation in electromagnetic theory. This leads to

introduce a quantity similar to electromagnetic vector

potential, which transforms Am �! Am þrk/ðkÞ under

gauge transformation. So, there must be an analog of

magnetic flux, Fm ¼ rk � Am, which is invariant under the

transformation [2]. This quantity is known as Berry cur-

vature, and Am is defined as Am ¼ i\umjrkjum [ .

Thouless, Kohmoto, Nightingale, and den Nijs have found

that the surface integral of Berry curvature over the Bril-

louin zone is an integer,
R
B:Z: Fmd

2k ¼ nm, similar to genus

in geometry [2, 6]. The topological invariant, nm, is called

Chern invariant, and the total Chern number, summed over

all occupied bands, n ¼
PN

m¼1 2 Z (Z denotes the integer,

i.e., 1; 2; . . .;1) is invariant, provided the gap separating

occupied and empty bands remains finite. n is also known

as TKNN invariant. It has been identified that this n is

nothing but the integer number, N, in the expression, rxy ¼
Ne2

h [6]. Being a topological invariant, n in a system does

not change under smooth deformation of Hamiltonian, i.e.,

without closing the gap between the occupied and empty

bands. This helps us to explain the robust quantization of

rxy in quantum Hall state.

The existence of skipping electron orbits or metallic

edge state at the interface of quantum Hall state and vac-

uum is the fundamental consequence of the topological

classification in gapped states. Topological protection

prevents states to deform smoothly from one value of n to

another, across the interface of two topologically different

insulators. As shown in Fig. 5(a), the quantum Hall ground

state has the value of n equal to one [2], whereas a trivial

insulator/vacuum has n equal to zero. As a consequence,

the Hamiltonian cannot be smoothly deformed from integer

quantum Hall state to trivial insulating state. The gap

between the valence and conduction band must close to

Fig. 4 Geometrical objects with different topology. The objects are classified by the value of genus, which is basically the number of holes in the

object. Reproduced from Wikipedia
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change the value of n at the boundary. This provides an

one-dimensional band dispersion for the edge state, resid-

ing in the bulk band gap (Fig. 5(b)) [2]. The number of

edge channels at the interface of two topologically different

systems is determined by the ‘bulk-boundary correspon-

dence’ [2]. This relates the number of edge modes (N)

intersecting the Fermi energy to the change in the bulk

topological invariant (n) across the interface by the

expression, N ¼ Mn. So, a quantum Hall state with

N number of filled Landau levels has N number of edge

channel at the interface with vacuum.

3. Quantum spin Hall (QSH) state

3.1. Discovery of QSH effect and failure of TKNN

characterization

Discovery of quantum spin Hall insulator state in HgTe

quantum well by Molenkamp and his collaborators, in the

year 2007, is the next milestone in classifying electronic

states of matter in terms of their underlying topology [7].

The two-dimensional quantum-well structure was made by

sandwiching a thin layer of mercury telluride (HgTe)

between layers of cadmium telluride (CdTe). In QSH state,

time-reversal symmetry is preserved due to the absence of

external magnetic field and spin–orbit coupling plays an

important role in generating intrinsic magnetic field, unlike

IQH state. The single particle effective Hamiltonian gov-

erning the quantum spin Hall physics is,

H ¼ ðp� eArzÞ2

2m
; ð3Þ

where rz is the z-component of Pauli matrices. It is evident

from the second term (within the bracket) in the numerator

that an effective magnetic field acts in the upward direction

on up-spin and in the downward direction on down-spin.

As a result, electrons with upward spin move in a separate

conducting channel, opposite to the spin-down electrons, at

the edge of the sample. So, a QSH phase can be realized by

a superposition of two quantum Hall systems for the up and

down spins, as shown in Fig. 6 [8]. However, there is no

net flow of charge, but net spin current in QSH state. A

QSH insulator cannot be characterized by the TKNN

invariant (n 2 Z). This is because the integer topological

invariant for up-spin electrons (n ") is equal and opposite

to the down-spin electrons (n #) in the presence of time-

reversal symmetry, and as a consequence, nð¼ n " þn #Þ is

zero. Considering the role of spin–orbit interaction and

time-reversal (T ) symmetry, Kane, Mele, and others have

introduced a new topological invariant, m [9, 10].

3.2. Role of time-reversal symmetry

To understand this new topological class, we have to

examine the role of T symmetry for spin-1
2

particles. The T
symmetry in an arbitrary spin system is represented by an

anti-unitary operator, H ¼ expð i�h pSyÞK, where Sy is the

spin operator and K is the complex conjugate. Existence of

time-reversal symmetry implies that H commutes with the

Hamiltonian of the system (where W represents the wave

function of the system), i.e.,

½H;H�W ¼ 0

) HHW� HHW ¼ 0

) HHW ¼ HHW

Let W be the rth eigenstate of H, i.e., HW ¼ erW. This

implies, HHW ¼ erHW. So, HW is also the rth eigenstate

of H. Thus, there are two possibilities: (a) W and HW are

same, or (b) W and HW are different wave functions, i.e., er
is doubly degenerate. To identify the right one, we have to

consider the following effect of T symmetry operation on

spin-half system. In a spin-half system, H flips the

direction of the spin by 180� and wave function gains a

Fig. 5 (a) The interface

between a quantum Hall ground

state and an trivial

insulator/vacuum. (b) The

electronic band structure, where

a single edge state connects the

bulk valence band to the bulk

conduction band. Reproduced

from Ref. [2]
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minus sign by the two times operation of H, i.e.,

H2W ¼ �W.

Suppose; W ¼ HW

) H2W ¼ HW ¼ W

) W 6¼ HW

So, condition (b) is right, which states W and HW are

independent wave functions, i.e., er is doubly degenerate.

This is the famous Kramer’s theorem, which states ‘all

eigenstates of a T -invariant Hamiltonian of spin-half sys-

tem are twofold degenerate.’

If the Kramer’s theorem is applied for the Bloch wave

state of solid, it will be found that for any Bloch wave state

Wk, there is another state HWk = W�k of same energy. So,

Kramer’s doublets are located at different momentum

points k and �k. Only at k ¼ 0 and k ¼ p (considering

lattice parameter is a unit quantity), both the points are

same. This implies that at k ¼ 0 and k ¼ p, each Bloch

state comes in pair. On the other hand, single particle

Hamiltonian of an electronic system smoothly deforms

from the bulk to edge. If any edge state is induced inside

the bulk band gap, at k ¼ 0 and k = p, it will be doubly

degenerate. Away from these special points, the spin–orbit

interaction will split the degeneracy. As electronic band

dispersion is continuous, the states at k = 0 and k = p have

to be connected. But there is only two possible ways

(Fig. 7), through which they can connect. For the first case

(Fig. 7(a)), edge state crosses the Fermi level at an even

(zero) number of points. So, there will be even numbers of

conducting channels or no channel at the edge. In this case,

the edge states can be eliminated by tuning the Fermi level,

or by smooth deformation of Hamiltonian in such a way so

that all the Kramer’s doublets appear outside the gap. In

conclusion, pairwise interconnection of states at k = 0 and

k = p gives rise to trivial insulating phase. For the second

case (Fig. 7(b)), when the edge band crosses the Fermi

level once, there is single conducting edge channel. This

type of edge state is unavoidable under any smooth

deformation of Hamiltonian or by shifting the Fermi level.

In this context, one can suggest the third possibility

(Fig. 7(c)), where the edge band crosses the Fermi levels

three times. However, this type of connection generates

two right-moving and one left-moving channels, and as a

consequence, there will be an effective single conducting

edge state. The one-to-one connection of states at k = 0 and

k = p , as shown in Fig. 7(b) and (c), leads to topologically

protected metallic boundary states. Which of the above-

mentioned scenarios will occur at the edge is determined

by the topological class of the bulk band structure?

3.3. Z2 topological classification

According to the ‘bulk-boundary correspondence’ princi-

ple, the number of edge modes has to be equal to the

change in the bulk topological invariant (Mm) across the

interface. This implies that the bulk topological invariant

(m) for two-dimensional insulating states in the presence of

time-reversal symmetry has to be either zero or one. m
obeys all the group operations of two-dimensional cyclic

group (Z2) such as, a� a ¼ a; a� b ¼ b and b� b ¼ a,

where a and b are the two group elements, and a is the

unity element of Z2. As a consequence, m has been named

as ‘Z2 topological invariant.’ As shown in Fig. 8(a), for

quantum spin Hall insulator, m encounters a unit change

across the interface with trivial insulator/vacuum. This

leads to single edge state for spin-up electrons and spin-

down electrons, separately. Figure 8(b) shows the corre-

sponding band structure in first Brillouin zone. Now the

question is: ‘how the value of m is determined for a two-

dimensional insulating state in the presence of time-re-

versal symmetry?’ There are several mathematical for-

malisms for determining the value of m; however, the

method, which has been developed by Fu and Kane, will be

Fig. 6 Schematic picture of the

QSH system as a superposition

of two QH systems. Reproduced

from Ref. [8]
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mentioned here [11]. In order to calculate m, the authors

have initially defined a unitary matrix

wmnðkÞ ¼ \umðkÞ j H j unðkÞ[ , using the occupied

Bloch functions. As H2 ¼ �1, it can be shown that

wTðkÞ ¼ �wð�kÞ. For a two-dimensional electronic sys-

tem, there are four inequivalent special points in the bulk

Brillouin zone, which have been identified as Ca¼1;2;3;4, in

Fig. 8(c). In these points, k and �k are equivalent, which

makes wðCaÞ antisymmetric matrix. The determinant of an

antisymmetric matrix is the square of its Pfaffian, which

allows us to define a quantity, da ¼ Pf½wðCaÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½wðCaÞ�

p ¼ �1. The

invariant m is determined by the expression,

ð�1Þm ¼
Y4

a¼1

da: ð4Þ

4. Three-dimensional topological insulators

Shortly after the discovery of QSH insulator state in two

dimensions, its three-dimensional (3D) counterpart has

been predicted theoretically, which has been named as ‘ 3D

topological insulator (3D TI)’ [12, 13]. Similar to the

conducting edge state of 2D-QSHI, 3D TI has topology

protected surface state which crosses the Fermi level,

residing in the bulk band gap. Time-reversal invariant 3D

bulk insulating state has also been characterized by Z2

topological invariant. However, 3D topological insulators

are described by four Z2 topological invariants (m0;m1 m2

m3), instead of single invariant in two dimensions. m0 is

known as strong topological index, and the other three are

known as weak topological indices. It is customary to write

the combination of the four invariants in the form (m0;m1 m2

m3), because (m1 m2 m3) can be interpreted as Miller indices

to specify the direction of vector Ca in the reciprocal space.

In the following section, we discuss two types of 3D TI

state, depending on the value of m0 [2, 3].

4.1. Weak topological insulators

m0 ¼ 0 represents the simplest 3D TI, which can be

understood as stacking of layers of QSHI, with weak

interlayer coupling. The orientation of layers is described

by (m1 m2 m3) such as, (0 0 1) represents stacking along z-

axis. The conducting edge state of monolayers, as shown

by the blue arrows in Fig. 9, forms a topological surface

state in bulk sample. A simple cubic Brillouin zone for the

Fig. 7 (a) The edge states cross the Fermi level an even (zero) number of times. (b) The edge states cross the Fermi level once. (c) The edge

states cross the Fermi level an odd number of times. Reproduced from Ref. [2]

Fig. 8 (a) The interface between a QSH insulator and an ordinary insulator. (b) The edge state dispersion. (c) High-symmetry points in 2D bulk

Brillouin zone. Figures (a) and (b) are reproduced from Ref. [2]
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three-dimensional bulk electronic system has eight time-

reversal invariant points, which are shown by red dots in

Fig. 9(b). Each of the planes in the Brillouin zone (e.g.,

ki ¼ 0; p planes) containing four such points is character-

ized by a 2D invariant, which is calculated using the

equation:

ð�1Þmi¼1;2;3 ¼
Y4

a¼1

da: ð5Þ

Earlier, it was believed that conducting surface state is only

present for a clean sample of a weak TI (WTI), but in the

presence of disorder, it can be localized. Later on, the

surface states of WTI are found to be protected from ran-

dom impurities and disorders, which do not break the time-

reversal symmetry and close the bulk energy gap [14]. As a

consequence, the surface conductance of a WTI remains

finite even in the presence of strong disorder. Bi14Rh3I9 is

one of the compounds, which has been experimentally

addressed to be a weak TI [15].

4.2. Strong topological insulators

The strong topological invariant, m0, for a three-dimen-

sional bulk insulating state is determined by the expression:

ð�1Þm0 ¼
Y8

a¼1

da; ð6Þ

where ‘a’ is the index of time-reversal invariant points

(Fig. 10(a)) of bulk Brillouin zone. The materials, where

the value of m0 is found to be one, are known as strong

topological insulators. As all the eight time-reversal

invariant points are involved in determining the value of

m0, strong TI state cannot be interpreted as a descendant of

the 2D-QSHI. The surface Brillouin zone, as shown in

Fig. 10(b), consists of four time-reversal invariant points,

where the surface state must be Kramers degenerate. Away

from these special points, the spin–orbit interaction lifts the

degeneracy. As discussed in Sect. 3, for non-trivial surface

state, the surface band structure must resemble the situation

in Fig. 7(b). By looking at the constant energy contour at

the Fermi level (Fig. 10(b)), one can see that the closed

contour encloses odd number of time-reversal invariant

points for strong 3D TI. The novelty of this conducting

surface state is the rich physics associated with the

electronic band dispersion [2, 3]. It has been found that

the dynamics of charge carriers on the surface of a 3D TI is

governed by the Dirac-type effective Hamiltonian,

Hsurðkx; kyÞ ¼ ��hvFẑ� r � k: ð7Þ

As a consequence, the energy and momentum of charge

carriers follow gapless linear dispersion (Fig. 10(c)), unlike

conventional electronic system, where the dispersion rela-

tion is quadratic in nature. Another interesting character-

istic of 3D TI surface state is that the spin of the charge

carriers is always perpendicular to its momentum direction,

known as spin-momentum locking. This makes the motion

of charge carriers robust, against the non-magnetic impu-

rity in a sample. This can be inferred from a simple logic. If

there is any non-magnetic impurity in the system, to

change the direction of motion of charge carrier, the

impurity has to flip the direction of the spin. However, a

scalar field (impurity potential) cannot affect a vector field

(spin). So, there will be no backscattering of charge

carriers.

Following the specific prediction of Fu and Kane [16],

the 3D TI state has been first experimentally identified in

Bi0.9Sb0.1 by Princeton University group led by M. Zahid

Hasan, through the angle-resolved photoemission spec-

troscopy (ARPES) experiment [17]. This material is an

Fig. 9 (a) Weak three-dimensional topological insulators. (b) High-symmetry points in 3D bulk Brillouin zone
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alloy of Bi and Sb, which possesses two essential features:

(i) band inversion at odd number of time-reversal invariant

momentum points in the bulk Brillouin zone and (ii)

opening of band gap at these points. This leads to non-

trivial bulk Z2 topological invariant, which has been

identified as (1; 1 1 1). The surface electronic band struc-

ture of this compound has been found to be complicated,

and the bulk band has a small insulating gap. As a conse-

quence, at finite temperature, due to the presence of ther-

mally excited carriers, the quadratic bulk band has

significant contribution in electronic transport. However,

the overwhelming goal in the research on 3D TI is the

realization of transport properties associated with the

conducting surface state and utilization of this in next

generation electronic device. To achieve this goal, it is

necessary to find new materials, which have single spin-

momentum locked Dirac cone surface state and large

insulating gap in the bulk. Zhang et al. came up with a

concrete prediction that Bi2Se3, Bi2Te3, and Sb2Te3 are 3D

TIs, but Sb2Se3 is not [18]. The electronic band structures

of these materials, containing isolated surface and bulk

states, are shown in Fig. 11(a)–(d). Experimentally, the

existence of a single Dirac-cone surface state was reported

in 2009 for Bi2Se3 by Xia et al. [19], for Bi2Te3 by Chen

et al.[20] and also by Hsieh et al. [21], and for Sb2Te3 by

Jiang et al. [22].

5. Three-dimensional Dirac semimetal and its

derivatives (e.g., Weyl semimetal)

The research on TI and the experimental discovery of

graphene band structure (Fig. 12) have triggered a

tremendous interest in condensed matter physics, over the

past decade. The energy–momentum dispersion of charge

carrier and the form of the underlying Hamiltonian for the

surface state of 3D TI and in the bulk of graphene are the

reminiscence of those for massless fermions, usually

studied in high-energy physics, with two relevant differ-

ences. First, the characteristic velocity that appears in

condensed matter physics is roughly two orders of mag-

nitude smaller than the speed of light. And second, both in

graphene and 3D TIs, the electrons are constrained to move

in two spatial dimensions, whereas the framework of rel-

ativistic quantum mechanics was established to describe

fermions in three spatial dimensions. However, the con-

stant efforts for the realization of relativistic particles in

table-top experiments result in new quantum phases of

matter, which have linear dispersion along all the three

momentum (kx, ky, kz) directions in the shape of a cone.

The materials, which host this type of electronic band

structure, are known as 3D Dirac semimetals.

5.1. 3D Dirac semimetal state at quantum critical point

It has been predicted that 3D Dirac semimetal state can be

realized at a quantum critical point in the phase transition

from a trivial insulator to a topological insulator [8, 16]. In

an insulating material, the bulk band gap can be tuned by

chemical doping or external pressure, which actually

changes the lattice parameters and spin–orbit coupling in

the system. This type of physical operation can even

change the parity of an insulating gap from trivial to non-

trivial, and vice versa. In the process of band evolution, the

insulating gap for an inversion symmetric crystal has been

found to be zero at some unique value of tuning parameter.

At this critical value, the bulk conduction and valence

bands touch at a special point in momentum space (which

is known as ‘Dirac node’), and the dynamics of quasi-

particles in the bulk electronic band of the material is

Fig. 10 (a) High-symmetry points in 3D bulk Brillouin zone. (b) Constant energy contour at the Fermi level. (c) 2D Dirac cone surface state and

spin-momentum locking
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governed by the Dirac-type equation for massless fermion

in three dimensions,

i
dW
dt

¼ HW ¼ �hVF
r!� k! 0

0 � r!� k!

 !
W: ð8Þ

Here, r!, k
!

, and VF are the Pauli spinor, crystal momen-

tum, and Fermi velocity of charge carriers, respectively. In

solid-state crystallographic environment, speed of light (c)

and linear momentum ( p!) of original Dirac equation are

replaced by VF and k
!

, respectively (Fig. 13). As the Pauli

matrices are two-dimensional, H is a 4�4 matrix, and Eq. 8

Fig. 11 (a)–(d) Energy and momentum dependence of the local

density of states for the Bi2Se3 family of materials on the [111]

surface. A warmer color represents a higher local density of states.

Red regions indicate bulk energy bands, and blue regions indicate a

bulk energy gap. The surface states can be clearly seen around the C
point as red lines dispersing inside the bulk gap. Reproduced from

Ref. [18] (color figure online)

Fig. 12 Left: Honeycomb lattice of graphene. A and B are the two

types of lattice, identified for band structure calculations, using tight-

binding model. Right: Energy bands of graphene obtained from the

tight-binding model and zoom around the Dirac point at K.

Reproduced from Ref. [23]
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has four components. Following the theoretical prediction

[16, 24], the 3D Dirac semimetal state has been naively

identified in Bi1�xSbx at a quantum critical point x ¼ 0:04,

through ARPES experiment [17]. Later on, similar topo-

logical phase transition has been observed in BiTl(S1-

dSed)2, which is shown in Fig. 14 [25]. With increasing

selenium concentration, the direct bulk band gap reduces

from 0.15 eV at d ¼ 0:0 to 0.05 eV at d ¼ 0:4. At d ¼ 0:6,

the bulk conduction and valence bands touch each other,

resulting in a 3D Dirac dispersion. For compositions

d� 0:6, the material becomes an inverted indirect band gap

insulator with spin-polarized topological surface state.

However, Bi1-xSbx and BiTl(S1-dSed)2 fail to create sig-

nificant excitement due to some limitations. As the Dirac

cone state appears at a particular chemical composition in

these compounds, it is not robust against uncontrolled

doping during sample preparation. In addition, it has been

found that the presence of conventional quadratic band

masks the non-trivial band, which undergoes topological

phase transition with chemical doping.

5.2. Crystalline symmetry protected 3D Dirac

semimetal

It is important to note that the previously discussed sce-

nario of topological phase transition and the emergence of

Dirac cone state at the quantum critical point do not take

into account any additional space group symmetries,

which, if present, may alter the conclusion [8]. Several

theoretical studies have predicted the existence of second

generation 3D Dirac semimetals, where the Dirac cone

band appears from the protection of certain space group

crystalline symmetries, and are, therefore, proposed to be

more robust to disorders or chemical alloying [26–28]. For

Fig. 13 Schematic band

inversion between two bands:

The trivial band gap in

(a) closes at a critical point in

(b) and reopens inverted in

(c) with the two states swapping

their orbital characters at the

symmetry point

Fig. 14 Topological phase transition in BiTl(S1�dSed)2. (A) High-

resolution ARPES dispersion maps from a spin–orbit band insulator

(left panel) to a topological insulator (right panel). Topological

quantum numbers (TQNs) are denoted by topological invariant m0. (B)

ARPES-mapped native Fermi surfaces and their spin texture for

different chemical compositions (from left to right, d ¼ 0:0 to

d ¼ 1:0). (C) Left and right panels: Energy distribution curves for

stoichiometric compositions d ¼ 0:0 and d ¼ 1:0, respectively. Cen-

ter panels: ARPES spectra indicating band gap and Dirac node for

compositions d ¼ 0:2 to d ¼ 0:8. Figures are reproduced from Ref.

[25]
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example, theoretical studies have identified Na3Bi and

Cd3As2 as 3D Dirac semimetals, which are protected by the

C3 and C5 crystalline rotational symmetry, respectively

[27, 28]. This type of Dirac semimetal, which is also

known as 3D topological Dirac semimetal (TDSM), differs

from the earlier-mentioned type because it possesses strong

spin–orbit coupling driven inverted bulk band structure. At

the special momentum points along the symmetry axis, the

band crossings are protected by the space group symmetry.

Since both time-reversal and inversion symmetries are

present, there is a fourfold degeneracy at these points,

around which the band dispersions can be linearized,

resulting in a 3D massless Dirac semimetal. The C4 rota-

tional symmetry protected unavoidable band crossing in

Cd3As2 is shown in Fig. 15(a), as a representative. The

surface state of TDSM is also distinct from the closed

constant energy contour in 3D TIs (Fig. 15(b)), identified

as Fermi arc. As shown in Fig. 15(c), spin-momentum

locked arc-like contour at the Fermi level connects two

discrete points on surface Brillouin zone, which are the

projection of bulk Dirac nodes on the surface. There is

another important difference between the surface state of

3D TI and TDSM in the spin texture on the constant energy

contour. The magnitude of spin projection perpendicular to

momentum directions is constant throughout the closed

loop in case of 3D TI, whereas in TDSM, it gradually tends

to zero as the Fermi arc approaches toward the points of

discontinuity.

Understanding the dynamics of relativistic Dirac fer-

mions in table-top experiments is not the only fundamental

importance of TDSM phase in solid-state electronic sys-

tems. It has been predicted that by breaking different

symmetries of a crystal, having this novel electronic phase,

different new quantum phases of matter can be observed

[27, 28]. It has been theoretically understood that under

broken time-reversal symmetry scenario, in external mag-

netic field or upon magnetic impurity doping, TDSM acts

like a 3D topological Weyl semimetal (TWSM). Breaking

the inversion symmetry of a TDSM, 3D TI state or TWSM

state can be induced, depending on the crystalline space

group symmetry of the material. By tuning the space group

symmetry of a TDSM, axion insulator state can be induced.

Chemical doping can also lead to new exotic phases such

as topological superconductivity. We will provide a brief

overview on TWSM state of matter, before going to discuss

the experimental discovery of space group symmetry pro-

tected Dirac semimetals and the recent advancement in

experiment.

5.3. Understanding topological Weyl semimetal

as a transmuted state of topological Dirac

semimetal

In the year 1929, Hermann Weyl proposed that a four-

component massless Dirac equation (Eq. 8) in three

dimensions can be separated into two two-component

equations [30],

i
dW
dt

¼ HW ¼ �c r!� p!W: ð9Þ

The above equation describes particles with a definite

projection of spin to its momentum, known as Weyl fer-

mions. When the sign on the right-hand side of the equa-

tion is positive, r! has to be antiparallel to p!, to minimize

the energy. Massless fermions, obeying this specific spin

orientation, are the positive chirality Weyl fermions. Again

Fig. 15 (a) C4 rotational symmetry protected unavoidable band

crossing in Cd3As2, as a representative. Here, k3 is the third

momentum direction, i.e., k3 direction. (b) Schematic of the spin-

polarized surface states in a 3D TI. (c) Schematic of a TDSM with

spin-polarized Fermi arcs on its surface connecting projections of two

bulk Dirac nodes. The red and blue balls surrounded by a black

boundary indicate that one Dirac node is the degeneracy of two Weyl

nodes, which will be discussed in the following section. Figures (b) and

(c) are reproduced from Ref. [29] (color figure online)
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for the particles, which obey the above-mentioned equation

with the negative sign, the spin has to be parallel to the

momentum direction. This type of particles is called neg-

ative chirality Weyl fermions. If we look at the momentum

space (Fig. 16), it will be found that the expectation value

of r! in an eigenstate of a given chirality forms a vector

field, like a hedgehog. In condensed-matter physics,

specifically in solid-state band structures, Weyl fermions

appear when two electronic bands cross and low energy

effective Hamiltonian around the band crossing point

mimics the expression, H ¼ �c r!� p!. The crossing point

is called a Weyl node, away from which the bands disperse

linearly in the lattice momentum, giving rise to 3D Weyl

semimetal state. As illustrated in Fig. 17(a), the TWSM

state can also be generated by breaking the time-reversal

symmetry or inversion symmetry of a 3D Dirac semimetal,

where a single four-component Dirac cone splits into two

two-component Weyl cones. Theory also predicts that the

materials, which possess Weyl fermions in the bulk elec-

tronic state, would exhibit a new kind of surface state: an

open Fermi arc that connects two Weyl nodes and then

continues on the opposite surface through bulk Weyl nodes

(Fig. 17(b)) [31]. In the year 2015, two groups simultane-

ously predicted the existence of Weyl-type electronic

excitations in TaAs, TaP, NbAs, and NbP [32, 33]. Sub-

sequent after the theoretical predictions, the first experi-

mental discovery of Weyl semimetal state in TaAs family

of materials has been done by Xu et al. [34] and Lv et al.

[35].

5.4. Experimental discovery of topological Dirac

semimetal

Following the theoretical prediction [27, 28], investigation

of electronic band structure of Na3Bi and Cd3As2 through

ARPES experiment has established the Dirac cone band

dispersion in these compounds [36, 37]. Stacking plots of

constant-energy contours at different binding energies for

both the compounds are shown in Fig. 18, where the

gradually increasing radius of the circular contours lies on

a straight line passing through the Dirac nodes. Immediate

after the observation of bulk Dirac cone band, Yi et al. and

Xu et al. have revealed the existence of Fermi-arc surface

state in Cd3As2 and Na3Bi [38, 39]. Although both the

materials are equally compelling, experimental research on

Na3Bi has been found to be little challenging compared to

Cd3As2 due to its extreme sensitivity to air. Later on, 3D

topological Dirac semimetal phase was theoretically pre-

dicted and experimentally proposed in plenty of com-

pounds. However, the existence of this novel electronic

phase has been unambiguously established in a very few

materials. ZrTe5 and ZrSiS are the examples of materials,

which have emerged as suitable candidates for extensive

experimental research [40–42].

5.5. Further classification of topological Dirac

and Weyl semimetal

Topological Dirac and Weyl semimetal was further clas-

sified into two categories. Depending on the orientation of

band crossing in momentum space, these semimetals can

be identified as type-I or type-II. For type-I topological

semimetals, as shown in Fig. 19(a) and (c), by tuning the

chemical potential it is possible to avail the Dirac/Weyl

node without introducing any finite density of states in the

system, whereas for type-II cases, as shown in

Fig. 19(b) and (d), tilted orientation of Dirac/Weyl cones

force to introduce finite density of states at the Fermi level

at any value of chemical potential. Type-II Dirac/Weyl

points always appear at the contact of electron and hole

pockets. The fundamental principle of nature ensures that

the laws of physics or any experimental results should be

independent of the orientation or the boost velocity of the

reference frame, known as Lorentz invariance. From the

earlier discussion, it is evident that type-II topological

semimetals violate Lorentz symmetry. All the materials

mentioned in sections C and D host type-I Dirac/Weyl

band crossing in electronic structure. Later on, WTe2,

MoTe2, etc., have been found to host type-II Weyl

Fig. 16 Weyl nodes of opposite

chirality. The arrows indicate

the direction of the spin vector,

which can be parallel or

antiparallel to the momentum

vector. Reproduced from Dr.

Pavel Buividovich’s

presentation in the website

http://www.lattice.itep.ru
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semimetal state [43, 44]. Type-II Dirac band crossing has

been predicted and identified in VAl3 and PtTe2 [45, 46].

6. Topological semimetal beyond Dirac and Weyl

In high-energy physics, the relativistic fermions are pro-

tected by Poincare symmetry (i.e., translation ? Lorentz

symmetry), while in condensed matter, they respect one of

Fig. 17 (a) A four-component 3D Dirac node in a TDSM as a

superposition of two two-component Weyl nodes, and the splitting of

Dirac cone into two Weyl cones of opposite chirality under broken

time-reversal symmetry. (b) Schematic of a WSM with spin-polarized

Fermi arcs on its surfaces connecting the projections of two Weyl

nodes with opposite chirality. The red and blue colors of the bulk

Weyl cones and the corresponding projection points on the surfaces

represent opposite chirality of the Weyl nodes. The red arrows on the

surfaces indicate the spin texture of the Fermi arcs. Figure (b) is

reproduced from Ref. [29] (color figure online)

Fig. 18 Stacking plot of

constant-energy contours at

different binding energies

shows Dirac cone band

structure. (a) White dashed lines

are the guide to the eye that

trace the linear dispersions in

Na3Bi. Figure reproduced from

Ref. [36]. (b) Red dotted lines

are guide to the eye that indicate

the linear dispersions and

intersect at the Dirac point in

Cd3As2. Figure reproduced from

Ref. [37]

Fig. 19 Types of TDSM and TWSM, classified based on the band crossing. (a) Type-I Dirac semimetal, (b) Type-II Dirac semimetal, (c) Type-I

Weyl semimetal, (d) Type-II Weyl semimetal
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the 230 space group symmetries. The variation of crystal

symmetry from one material to another escalates the

potential to explore free fermionic excitations such as

Dirac, Weyl, Majorana, and beyond. Subsequent after the

discovery of Dirac and Weyl semimetal, Bradlyn et al.

have predicted the existence of exotic fermions near the

Fermi level in several materials, governed by their

respective space group symmetry [47]. Unlike two- and

fourfold degeneracy in Weyl and Dirac semimetals, these

systems exhibit topology protected three-, six- , and

eightfold degenerate band crossing at high-symmetry

points in the Brillouin zone. For example, three-component

fermion has recently been observed in molybdenum

phosphide [48] and tungsten carbide [49]. Bradlyn et al.

have suggested many materials, and some of them have

reported to exist in single crystal form such as, Ag3Se2Au,

Pd3Bi2S2, LaPd3S4, Li2Pd3B, and Ta3Sb. A schematic of

three-component band crossing and its difference from

Dirac and Weyl cone are shown in Fig. 20(a). Crossing

between two doubly degenerate bands, two non-degenerate

bands, and one doubly degenerate and one non-degenerate

bands leads to fourfold degenerate Dirac fermion, twofold

degenerate Weyl fermion, and three-component fermion,

respectively. It is to be noted that not only one doubly spin

degenerate band and one spin non-degenerate band pro-

duce three-component fermion but also the band crossing

between three spin non-degenerate bands leads to three-

component fermion. An example is shown in Fig. 20(b) for

Pd3Bi2S2. Similar to Dirac and Weyl semimetals, these

threefold or higher-fold degenerate topological semimetals

also have Fermi-arc surface state [49].

7. Topological nodal line semimetal

In three-dimension, there is another class of topological

semimetal, where the conduction and valence bands cross

each other along a line, unlike at a discrete point in TDSM

or TWSM. Materials which host this type of band crossing

are known as topological nodal line semimetal (TNLSM).

The nodal line can be either closed loop or a discrete line.

The schematic of nodal line band crossings and its contrast

with Dirac/Weyl node are shown in Fig. 21. Electronically,

TNLSM can be considered as an intermediate state of

topological point node semimetals (i.e., Dirac/Weyl

semimetals) and normal metals. The reasons behind that

are the following: (i) exactly at the half filling, the Fermi

surface of TDSM/TWSM, TNLSM, and normal metal are

zero-, one-, and two-dimensional, respectively, and (ii) the

density of states scale as q0 / ðE � Ef Þ2
, q0 / jðE � Ef Þj,

and q0 /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Ef

p
in TDSM, TNLSM, and normal metal,

respectively [50].

To protect non-trivial band crossing over a line, nodal

line semimetal needs more number of symmetries and

conditions compared to Dirac and Weyl semimetals. A

combination of inversion plus time-reversal symmetry,

mirror reflection symmetry, and non-symmorphic symme-

try and usually the absence of spin–orbit coupling (SOC)

(there are few examples of TNLSM state in the presence of

SOC) are required to protect the line node. If there is a

nodal line state, which hosts Dirac-type spinless fermions

as quasi-particle excitation, it can be tuned into different

other topological states by breaking or imposing different

symmetries and in the presence of spin–orbit coupling [51].

Starting from nodal line semimetal with spinless Dirac-

type quasi-particle excitation, sufficient SOC could lift the

degeneracy along the band crossing line and destroy the

line node. However, if inversion, time-reversal, and non-

symmorphic symmetry are preserved in the system, it

protects the line of degeneracy in spite of the fact that the

spin degeneracy between the crossing bands is lifted.

Similarly, different combinations of time-reversal, inver-

sion, mirror, and rotation symmetry lead to nodal line

semimetal with Weyl-type quasi-particle excitations, Dirac

Fig. 20 Schematic and band structure of materials beyond Dirac and

Weyl semimetals. (a) Schematic of three-component/threefold

Fermion. Each color represents band of a particular spin type.

Figure reproduced from Ref. [49]. (b) Threefold band crossing in

Pd3Bi2S2, as predicted in Ref. [47]
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semimetal, Weyl semimetal, and topological insulator.

Schematic of different topological states and their rela-

tionship with Dirac-type spinless nodal line semimetal are

illustrated in Fig. 22(a). Review article by S.-Y. Yanga

et al. [51] has discussed the above-mentioned topological

electronic transformation in details.

Unlike 1D Fermi-arc surface state in Dirac/Weyl

semimetals, nodal line semimetals host drumhead 2D sur-

face state, as shown in Fig. 22(b). In the three-dimensional

Brillouin zone, the ‘drumhead’ surface state is embedded

inside the ‘direct gap’ between conduction and valence

band in the 2D projection of the nodal ring. This unique

surface state is nearly dispersionless, analogous to the

acoustic vibration of the surface of a drum, and gives rise

to large density of states over the region [51]. ZrSiS and

PbTaSe2 are among the first batch of proposed candidate

materials which have been experimentally realized as Dirac

nodal line semimetals and Weyl nodal line semimetal,

respectively [53, 54].

8. Topological crystalline insulators (TCI)

8.1. A sense of new topological invariant

from geometry

Are Z (Integer quantum Hall) and Z2 only topological

classification of insulators in materials depending on the

presence and absence of time-reversal symmetry and

dimensionality? The simple answer is, No. It is possible to

find different topological classes or define different topo-

logical invariants of a system. In the following section, we

have given an example from geometry, and then, we

introduce topological insulators having topological invari-

ant other than Z and Z2. So far, we discussed ‘Genus’ in

Sect. 2.2 as a topological invariant in geometry. However,

‘Euler characteristic’ is another useful topological invariant

in geometry [5], which has been rarely discussed in the

context of topological materials in condensed matter phy-

sics. Before introducing the definition of ‘Euler charac-

teristic,’ we suggest the readers to imagine a polyhedron

(K) in 3D space which is a geometrical object surrounded

by faces. The boundary of two faces is an edge, and two

edges meet at a vertex. Two geometrical objects are con-

sidered to be equivalent (more correctly ‘homeomorphic’

in mathematical sense) if their ‘Euler characteristic’ is

defined as v = (number of vertices in K) - (number of edges

in K) ? (number of faces in K). So ‘Euler characteristic’ is

a number which can be used to classify polyhedrons in

geometry. A numbers of geometrical object with their v
value are shown in Fig. 23.

8.2. Crystalline topological invariant protected

insulating state

Similar to geometry, considering different point group

symmetries of crystal (mirror, rotation, inversion, etc.), it is

possible to introduce new topological invariant to charac-

terize insulating bulk bands in materials [55]. Metallic

surface states which appear on high-symmetry crystal

surfaces are similar to that observed in Z2 TI (Fig. 24). The

gapless boundary states can only be gapped out, and the

bulk ground state can only be adiabatically connected to an

atomic limit by breaking only the crystal symmetry, not the

time-reversal symmetry as in case of Z2 TI. The materials

which are characterized in this way are known as ‘Topo-

logical Crystalline Insulators (TCIs).’ For an example, in

TCIs with mirror symmetry the topology is specified by the

mirror Chern number, nM . In this context, it will be worthy

to mention that time-reversal symmetry can also be pre-

served in TCIs and it only adds some fine structure to the

gapless surface state. The first burst of excitation in this

specific topic of research has been created by theoretical

prediction of mirror symmetry protected TCI state in SnTe

Fig. 21 Distinct features of topological nodal line. (a) Dirac node,

(b) Weyl node, (c) nodal line either in the form of closed loop or in

the form of discrete line
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[56]. From the band structure calculations, Hsieh et al.

showed that electronic band structure of SnTe is topolog-

ically protected by reflection symmetry of the crystal with

respect to the 110 mirror plane, which gives rise to a non-

trivial mirror Chern number nM ¼ �2, while its Z2

invariant is trivial, (0;000). Subsequent after the theoretical

prediction, gapless surface states inside bulk band gap and

its spin-polarized Dirac cone structure have been observed

through ARPES in SnTe- and Pb-doped SnTe [57–59]. It is

interesting to know that crystalline topological Chern

number can be found in Z2 TIs. For example, well-known

Z2 topological insulator Bi2Se3 has mirror Chern number,

nM ¼ �1. The sign of nM depends on the direction of spin

texture on constant energy contour of Surface Dirac cone

band [60]. Various values of mirror Chern number in dif-

ferent systems and its dependence on spin-texture orien-

tation are illustrated in Fig. 25.

8.3. Higher-order topological insulators

So far, we observed that topological insulators in d di-

mensions have gapless states in (d-1) dimensional bound-

aries. According to the nomenclature introduced by

Schindler et al. [61], they belong to first-order topological

Fig. 22 Daughter states from spinless TNLSM and its surface state.

(a) Different topological electronic states which can be realized from

TNLSM state upon breaking or imposing different symmetries and in

the presence of SOC. Red and blue indicate the symmetries which

need to be preserved and broken, respectively. Asterisk represents the

proper strength of SOC which is required for the topological

transition from TNLSM to Weyl semimetal. Otherwise, in the

presence of strong SOC, the parent state becomes fully gapped

insulator. Reproduced from Ref. [51]. (b) Nodal line band crossing

and drum head surface state. Reproduced from Ref. [52] (color

figure online)

Fig. 23 Classification of Polyhedrons according to ‘Euler characteristic,’ v
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insulators. However, there exists three-dimensional topo-

logical insulators that host no gapless surface states, but

exhibit topologically protected gapless states at hinge, i.e.,

at (d-2) dimensional boundaries. This class of materials has

been regarded as higher-order topological insulators. Their

topological character is protected by combinations of

specific crystal symmetries and time-reversal symmetry

such as time-reversal and a fourfold rotation symmetry and

time-reversal and mirror symmetry. Second-order TI state

has been first realized in SnTe under small distortion

induced by ferroelectric displacement along (111) direction

[61] (Fig. 26).

9. Magnetic topological materials

So far, the presence of magnetism in a material did not add

new topological class over the existing paradigm of topo-

logical materials. Magnetism actually plays the role of a

new spice in the recipe of topological materials to make its

electronic properties more exotic and exciting by breaking

time-reversal symmetry or through the coupling with

topological electronic bands. The magnetic-ion doping to

3D Z2 TI has been started to see the effect of time-reversal

symmetry breaking and as a result, the consequence of gap

opening at the surface Dirac cone (Fig. 27(a), (b)).

Examples are Mn or Fe or Cr doping in Bi2Se3, Bi2Te3, and

Fig. 24 A schematic of bulk band and surface state (red line) on

(001) face of SnTe. Reproduced from Ref. [56]

Fig. 25 Schematic diagrams for

spin textures of the lower Dirac

cones in distinct topological

phases associated with various

values of mirror Chern number.

(a) nM ¼ �2, (b) nM ¼ 2, (c)

nM ¼ �1, and (d) nM ¼ 1. Blue

lines indicate the axis of mirror

symmetry. Reproduced from

Ref. [60] (color figure online)
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Sb2Te3 [62–64]. This was a topic of enormous research

interest until recently, when topological insulating state

with intrinsic antiferromagnetism (AFM) has been dis-

covered in van der Waals (vdW) material, MnBi2Te4 [65].

Considering interlayer AFM ordering in MnBi2Te4

(Fig. 27(c)), it has been found that the combination of

time-reversal and primitive-lattice translation symmetries

introduce Z2 topological classification of AFM insulators

and the value of topological invariant is 1 for this material.

A recent review article by Tokura et al. discusses a detail

history of magnetic topological insulator [66].

Similar to magnetic topological insulator, magnetism in

topological semimetals is a subject of considerable

research interest. As discussed, to be a Weyl semimetal

either inversion or time-reversal or both have to be absent

in a material. However, all the materials mentioned in

Sect. 5.3 belong to inversion symmetry breaking Weyl

semimetal. The presence of magnetism is important to

realize the spontaneous time-reversal symmetry breaking

Weyl semimetal state. Although several ferromagnetic and

antiferromagnetic materials have been theoretically pro-

posed and experimentally established as time-reversal

symmetry breaking Weyl semimetals, we have mentioned a

few such as non-collinear antiferromagnet Mn3Sn and

Mn3Ge [68–71], Kagome-lattice ferromagnet Co3Sn2S2

[72], and both ferromagnetic and antiferromagnetic ordered

BaMnSb2 [73]. Not only in Weyl semimetal, the presence

of magnetism and its consequence on bulk Dirac cone band

structure has also been understood concurrently. Ferro-

magnetic Kagome metal Fe3Sn2 is the candidate material,

where bulk Dirac band with mass gap 	 30 meV has been

observed/realized through ARPES and scanning tunneling

microscopy (STM) [74, 75]. Kagome lattice is a two-di-

mensional network of corner-sharing triangles, as shown in

Fig. 28(a). The simple tight-binding model in Kagome

lattice structure predicts Dirac cone band in the bulk

Fig. 26 Higher-order

topological insulators. (a) Time-

reversal breaking model with

Ĉz
4-preserving bulk termination

results in chiral hinge currents

running along the corners.

(b) Time-reversal invariant

model with preserved mirror

symmetries (planes invariant

under the mirror symmetries are

highlighted in gray) results in

anti-propagating Kramers pairs

of hinge modes. Reproduced

from Ref. [61]

Fig. 27 Electronic structure of magnetic elements doped topological

insulators and intrinsic AFM ordering in topological insulator

MnBi2Te4. (a) The massless Dirac-like dispersion of the surface

state with spin-momentum locking in a topological insulator. The

surface state band connects the bulk valence and the bulk conduction

bands. (b) The gapped Dirac-like dispersion of the surface state in a

magnetic topological insulator. The blue solid line inside the gap

represents the band dispersion due to induced quantum anomalous

Hall state at the edge. Figures (a) and (b) reproduced from Ref. [66].

(c) Interlayer magnetic ordering in vdW topological insulator,

MnBi2Te4. Reproduced from Ref. [67] (color figure online)
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(Fig. 28(b)). However, the presence of ferromagnetic

ordering (Fig. 28(c)) and, as a consequence, the time-re-

versal symmetry breaking splits the spin-degenerate Dirac

band (Fig. 28(d)). As illustrated in Fig. 28(e), (f), further

inclusion of spin–orbit coupling injects non-trivial Berry’s

curvature into the band structure and generates a mass gap

in the Dirac cone. The Berry’s phase accrued by the hop-

ping of electrons is the source of intrinsic anomalous Hall

effect in this material. In addition, magnetic frustration

coming from corner sharing lattice and ferromagnetic order

makes the material more exciting. A fascinating interplay

between the massive Dirac band and magnetization direc-

tions, tuned by the external magnetic field, has been real-

ized through STM and quantum oscillation study [75, 76].
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