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Abstract: We propose a powerful approach to provide the exact solutions of the time-dependent Fokker–Planck equation

(FPE) for a given pair of drift and diffusion functions in stochastic phenomena. First, we briefly review Nikiforov–Uvarov

mathematical method and then apply it to consider three important examples. Subsequently, the probability distribution

functions of FPE are obtained in terms of special orthogonal functions for three cases, as well as the corresponding

eigenvalues are derived. Several applications are proposed and it is shown that the results of our approach are in good

agreement with those obtained by other methods.
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1. Introduction

The study of stochastic phenomena has been extensively

increased in recent years, due to their applications in var-

ious fields such as physics, chemistry, biology, circuit

theory, and even finance [1–4]. In such phenomena, one of

the most popular differential equations, the so-called FPE,

naturally arises [4]. Actually, it has been historically pre-

sented not only to the investigation of stochastic systems

but also the Brownian motion of particles [4]. Mathemat-

ically, FPE is a linear partial differential equation that

describes the time evolution of the probability density

function associated with a dynamical system with random

features [5]. Depending on the dynamics of drift and dif-

fusion functions of such systems, the resulting FPE may be

extremely complicated or quite simple, and accordingly,

numerical algorithms or analytical solutions are proposed.

Among analytical methods, various approaches have been

presented, such as supersymmetry [4], Lie algebra [6],

Laplace transformation [7], Fourier analysis [8], variational

methods [9], Ornstein–Uhlenbeck process [10], etc. For

instance, Lo [6] solved FPE for time-dependent nonlinear

drift and diffusion coefficients using the Lie-algebraic

approach analytically. Likewise, Grain et al. [11] has used

a dynamical system technique to consider a stochastic

inflationary cosmological model in phase-space.

On the other hand, one of the most commonly proposed

approaches is the transformation of FPE into the Schro-

dinger equation formally, to get an analytical solution of

the first one. In this regard, Zarrinkamar et al. [7] consid-

ered harmonic oscillator, Morse potential, and free particle

using Laplace transformation. They showed that the

resulting FPE of these potentials are, respectively, equiv-

alent to quadratic, exponential, and logarithmic drift forces

with a constant diffusion. In a similar work, Brics et al.

[12] found exact solutions of FPE for tangent hyperbolic

and constant drift forces with constant diffusion, in analogy

to the Schrödinger equation for shifted Poschl–Teller and

constant potentials, respectively. Additionally, Anjos et al.

[4] provided analytical solutions of generalized Morse and

Hulthén potentials by using the supersymmetry technique

in quantum mechanics. However, the FPE-Schrödinger

analogy method, which is based on the solvability of the

latter equation, is limited only to consider confined

potentials, which restricts its applicability. Obviously, in

this analogy, each potential in the Schrodinger equation

corresponds to a pair of drift and diffusion functions in

FPE. This correspondence impose a specific mathematical

form to FPE naturally, that may have undesirable physical

properties in the framework of stochastic phenomena.

However, the existence of equivalence between FPE and

the differential equation of type (3), allows one to use

Nikiforov–Uvarov (NU) formalism, as a powerful*Corresponding author, E-mail: Motavalli@Tabrizu.ac.ir
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approach to solve FPE [13]. This method is based on

reducing the second-order linear differential equation to a

generalized equation of the hypergeometric type. The

solutions of the latter equation are presented in terms of

special orthogonal functions, as well as the corresponding

eigenvalues are obtained [13, 14]. One of the motivations

for the present work is to demonstrate the merit of the NU

method to get an analytical solution of FPE for a given pair

of drift and diffusion functions. We will realize this aim in

three important examples.

2. Fokker–Planck equation

The one-dimensional FPE of the probability distribution

P(x, t) is given by

o

ot
Pðx; tÞ ¼ � o

ox
ðFðxÞPðx; tÞÞ þ o2

ox2
ðDðxÞPðx; tÞÞ; ð1Þ

where F(x) and D(x) are the drift and diffusion functions,

representing the deterministic and the stochastic part of the

equation, respectively. In mathematical literature, this

equation is often referred to as the forward Kolmogorov

equation [15]. For analysis of this equation, one may use

separation of variables method and assume that

Pðx; tÞ ¼ TðtÞwðxÞ. It allows one to rewrite (1) as

w00ðxÞ þ 2D0ðxÞ þ FðxÞ
DðxÞ

� �
w0ðxÞ þ D00ðxÞ þ F0ðxÞ þ k

DðxÞ

� �
wðxÞ ¼ 0;

ð2Þ

with TðtÞ ¼ T0e
�kt in which T0 and k[ 0 are constants. To

solve this equation for a given pair of drift and diffusion

coefficients, let us consider the NU method.

3. The Nikiforov–Uvarov method

In this section, we briefly review the mathematical NU

method, which is based on reducing the second-order linear

differential equation to a generalized equation of the

hypergeometric type [13, 14]. In this formalism, solutions

are given in terms of special orthogonal functions. Here,

we apply this method to solve FPE for a given drift and

diffusion functions. By introducing an appropriate coordi-

nate transformation s ¼ sðxÞ, we rewrite this equation in

the following form

w00
nðsÞ þ

esðsÞ
CðsÞw

0
nðsÞ þ

erðsÞ
C2ðsÞ

wnðsÞ ¼ 0; ð3Þ

where esðsÞ is a first-degree polynomial, also CðsÞ and erðsÞ
are polynomials at most of second-degree. Depending on

the form of these polynomials, solutions of Eq. 3 are

presented in terms of several classes of orthogonal

functions, such as classical polynomials (Hermite, Jacobi,

and Laguerre), spherical harmonics, Bessel, and

hypergeometric functions. These functions, wnðsÞ, are

often referred to as the special functions of mathematical

physics. To obtain the particular solution of this equation,

one usually takes

wnðsÞ ¼ /nðsÞynðsÞ: ð4Þ

This factorization leads to the following hypergeometric

type of equation

CðsÞy00nðsÞ þ sðsÞy0nðsÞ þ kynðsÞ ¼ 0; ð5Þ

where the new function sðsÞ is defined as

sðsÞ ¼ esðsÞ þ 2pðsÞ; ð6Þ

in which

pðsÞ ¼C0ðsÞ � esðsÞ
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0ðsÞ � esðsÞ

2

� �2

�erðsÞ þ kCðsÞ

s
:

ð7Þ

Here, k is a parameter that plays an essential role in the

calculation of pðsÞ, and it is simply obtained by setting the

discriminant of the square root equal to zero. The values of

k are also used to determine the eigenvalues via

k ¼ kþ p0ðsÞ ¼ �ns0ðsÞ � n n� 1ð Þ
2

C00ðsÞ; n ¼ 0;1;2; :::;

ð8Þ

where k is a constant determined by n, and is often referred

to as the eigenvalue. Besides, each k corresponding to

n ¼ 0;1;2; :::, introduces a particular polynomial of degree

n, which is a special solution of FPE for a given pair of

drift and diffusion functions. It must be pointed out that

there are usually more than one sðsÞ functions in relation

(6), corresponding to different values of pðsÞ in (7) for

various k, where the suitable one satisfies the constraint

s0ðsÞ\0 based on the NU formulation. Polynomial

solutions of Eq. 5 are given by Rodrigues relation

ynðsÞ ¼
Bn

qðsÞ
dn

dsn
CnðsÞqðsÞ½ �; ð9Þ

where Bn is the normalization constant, and the weight

function qðsÞ is obtained as follows [14]

qðsÞ ¼ exp

Z
sðsÞ � r0ðsÞ

rðsÞ ds

� �
: ð10Þ

Furthermore, the other part of the solution is given by [14]

/nðsÞ ¼ exp

Z
pðsÞ
rðsÞds

� �
: ð11Þ
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4. Solving some examples of FPE by NU method

A comparison between Eqs. 2 and 3 implies that the former

may be solved using the NU method, for a given pair of

drift and diffusion coefficients. For this purpose, let us

consider three examples.

• Case 1

As a first example, we assume an exponential form drift

force with a constant diffusion coefficient as follows

FðxÞ ¼ ae�ax � b; DðxÞ ¼ r2; ð12Þ

where a, a, b[ 0 and r are constant. With this choice, the

corresponding Eq. 2 yields

w00ðxÞ � ae�ax � b
r2

� �
w0ðxÞ þ aae�ax þ k

r2

� �
wðxÞ ¼ 0:

ð13Þ

By introducing the auxiliary variable s ¼ e�ax, it is easily

transformed into

w00ðsÞ þ lsþ m
s

n o
w0ðsÞ þ lsþ g

s2

n o
wðsÞ ¼ 0; ð14Þ

with l ¼ a
ar2, m ¼ 1 � b

ar2 and g ¼ k
a2r2. Now, by comparing

the last equation with Eq. 3, one obtains

esðsÞ ¼ lsþ m; erðsÞ ¼ lsþ g CðsÞ ¼ s: ð15Þ

By inserting them into relation (7) we get p function as

follows

pðsÞ ¼ � 1

2
ðlsþ m� 1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l
2

� �2

s2 þ k � 1

2
lð3 � mÞ

	 

sþ 1

4
f2

s ð16Þ

where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � mÞ2 � 4g

q
. Now, by setting the

discriminant of the square root equal to zero we find

pðsÞ ¼

ð1 � m� fÞ=2 � ls for kþ ¼ lð3 � mþ fÞ=2

ð1 � mþ fÞ=2 for kþ ¼ lð3 � mþ fÞ=2

ð1 � mþ fÞ=2 � ls for k� ¼ lð3 � m� fÞ=2

ð1 � m� fÞ=2 for k� ¼ lð3 � m� fÞ=2:

8>>><
>>>:

ð17Þ

In this stage, by choosing a suitable value for k which

satisfies the condition s0ðsÞ\0 in relation (6), and

considering a physical solution one achieves

pðsÞ ¼ 1

2
f1 � m� fg � ls; for kþ ¼ 1

2
lð3 � mþ fÞ

ð18Þ

with sðsÞ ¼ 1 � f� ls. By inserting it into relation (10),

the weight function is given by

qðsÞ ¼ exp �
Z

lþ f
s

� �
ds

� �
;

¼ Const s�fe�ls:

ð19Þ

Substituting qðsÞ into the Rodrigues relation (9) leads to

ynðsÞ ¼Bns
fels

d

ds

� �n

sn�fe�ls
� �

¼Lðn�fÞ
n ðsÞ;

ð20Þ

where L
ðn�fÞ
n ðsÞ is the associated Laguerre polynomial. On

the other hand, the other part of the solution is easily

obtained from (11) as

/nðsÞ ¼ exp

Z
1 � f� m

2s
� l

� �
ds

� �
;

¼ Const s�
1
2
ðfþm�1Þe�ls:

ð21Þ

By multiplying the two parts, the final solution yields

wnðxÞ ¼ N exp ðfþ m� 1Þax=2 � le�axf gLðn�fÞ
n ðe�axÞ;

ð22Þ

where N is the normalization constant. The quantization

condition (8) becomes 1
2
ð3 � mþ fÞ � 1 ¼ n, or explicitly

k ¼ anðb� anr2Þ; n ¼ 0; 1; 2; ::: ð23Þ

The behavior of the probability distribution of P(x, t) is

illustrated in Fig. 1 in terms of x. Accordingly, the

figure exhibits a Gaussian form, and its values decrease

with increasing time. The main features of this solution are

associated with pair functions (12), which is corresponding

to Morse potential in the framework of non-relativistic

quantum mechanics [3]. This potential has various

applications, such as a description of, atomic interactions

in physics [16], structure of the DNA in genetics [17],

elastic and fracture behaviors in engineering mechanics

[18], etc. It is also worthwhile to mention that Eq. 14 has

already been solved based on the formal analogy with the

Schrodinger equation using the supersymmetry approach

[3], which confirms our results.

• Case 2

As a second example, we consider the following set

FðxÞ ¼ ae�2ax

1 � be�2ax
þ c; DðxÞ ¼ r2: ð24Þ

For this choice, Eq. 2 can be rewritten as

w00ðxÞ � 1

r2

ae�2ax

ð1 � be�2axÞ þ c

� �
w0ðxÞ

þ 1

r2

2aae�2ax

ð1 � be�2axÞ2
þ k

( )
wðxÞ ¼ 0:

ð25Þ
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It can be easily shown that, by introducing the auxiliary

variable s ¼ e�2ax, this equation is transformed into

w00ðsÞ þ ða� bc� 2abr2Þsþ cþ 2ar2

2ar2½sð1 � sÞ�

� �
w0ðsÞ

þ kb2s2 þ 2ðaa� kbÞsþ k

4a2r2½sð1 � sÞ�2

( )
wðsÞ ¼ 0:

ð26Þ

Now, by comparing the last equation with Eq. 3, one obtains

esðsÞ ¼ ða� bc� 2abr2Þsþ cþ 2ar2

2ar2
;

erðsÞ ¼ kb2s2 þ 2ðaa� kbÞsþ k
4a2r2

CðsÞ ¼sð1 � sÞ:

ð27Þ

By inserting them into relation (7) we get p function as

follows

p ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k � K�sþ �b k þ bc2

16a2r4

� �
þ 1

4
bþ a� bc

2ar2

� �	 

s2

s

� 1

2

2abr2 þ a� bc
2ar2

sþ c
2ar2

	 


ð28Þ

where K ¼ 4aar2�bc2þcð2abr2þa�bcÞ
8a2r4 , and we have assumed

c2 ¼ 4kr2 for simplicity. By setting the discriminant of the

square root equal to zero, an appropriate choice yields

p ¼ � c
4ar2

� 2abr2 þ a� bc� f
4ar2

s for k ¼

� acþ 2abcr2 � 4aar2

8a2r4
;

ð29Þ

where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2abr2 þ a� bcÞ2 þ b½2a

q
cþ 4abcr2�

bc2 � 8aar2�. Since the derivative of the s function in

relation (6) should be negative; one must select a positive

sign for f in the last relation of p. Accordingly, sðsÞ is

sðsÞ ¼ � 2bþ f
2ar2

� �
sþ 1: ð30Þ

Now, by simple manipulation, integration of (10) yields

qðsÞ ¼ exp � f
2ar2

Z
ds

1 � bs

� �
;

¼ Const ð1 � bsÞ
f

2abr2 :

ð31Þ

By substituting this into the Rodrigues relation (9) we have

ynðsÞ ¼Bnð1 � bsÞ�
f

2abr2
d

ds

� �n

snð1 � bsÞnþ
f

2abr2

h i
;

¼BnP

f
2abr2;0

� �
n ð2bs� 1Þ

ð32Þ

where P
ðl;mÞ
n ðsÞ denotes the generalized Jacobi-polynomial.

The other part of the wave function in relation (11) simply

becomes

/nðsÞ ¼ exp � 1

4ar2

Z
cþ ½aþ 2abr2 þ f� bc�s

sð1 � bsÞ ds

� �
;

¼ Const s�
c

4ar2ð1 � bsÞ
aþf

4abr2þ1=2
:

Finally, by multiplying the two parts, the total function is

given by

wnðxÞ ¼N e
cx

2r2ð1 � be�2axÞ
aþf

4abr2þ1=2

P

f
2abr2;0

� �
n ð2be�2ax � 1Þ

ð33Þ

where N is the normalization constant. Now, from the

relation (8) we calculate the quantization condition as
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x
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(
x)

t = 0.1
t = 0.2
t = 0.3

Fig. 1 Variation of the

probability distribution

P(x, t) for FðxÞ ¼ ae�ax � b
and DðxÞ ¼ r2 in terms of x for

a ¼ 1, a ¼ 0:37, b ¼ 0:4, and

r ¼ 0:16
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� acþ 2abcr2 � 4aar2

8a2r4

� fþ a� bcþ 2abr2

4ar2
¼ n

fþ 4abr2

2ar2

� �

or explicitly

k ¼ c2

4r2
¼ 4½ðnþ 1Þa� 2abr2ð3nþ 1Þ�2a2r2=a2;

n ¼ 0; 1; 2; ::::

Figure 2 shows the variations of the probability

distribution of P(x, t) in terms of x. The distribution

spreads to the right side as time goes on, and the

probability decreases before x � 180, and afterward it

grows slowly. This solution of the FPE, which is

associated with pair functions (24), is corresponding to

Hulthen potential in the Schrodinger equation [4]. The

exact solution of this equation has been obtained by

Anjos et al. using the supersymmetric quantum

mechanics approach [4], which is in agreement with

our result. It is worthwhile to mention that Hulthen is

one of the essential short-range potentials with

interesting applications in nuclear, solid-state, and

atomic physics [19, 20]. Furthermore, in the biological

models, this potential is also used to describe the cellular

differentiation process, dynamics of tumor growth, and

cancer therapy [21–23].

• Case 3

As a last example, let us set a logarithmic drift function

with a quadratic diffusion as follows

FðxÞ ¼ ax� bxLnx; DðxÞ ¼ r2x2: ð34Þ

Substituting them into Eq. 2 leads to

w00ðxÞ þ 4r2 � aþ bLnx
r2x

� �
w0ðxÞ

þ 2r2 þ kþ b� aþ bLnx
r2x2

� �
wðxÞ ¼ 0:

ð35Þ

By applying the transformation s ¼ Lnx, we find the

following simple form

w00ðsÞ þ flsþ mgw0ðsÞ þ flsþ ggwðsÞ ¼ 0; ð36Þ

where l ¼ br�2, m ¼ 3 � ar�2 and g ¼ 2 þ ðkþ b
�aÞr�2. By comparing this equation with Eq. 3 we have

esðsÞ ¼ lsþ m; erðsÞ ¼ lsþ g CðsÞ ¼ 1; ð37Þ

and the corresponding p function becomes

pðsÞ ¼
�ls� mþ 1 for k ¼ kþb

r2

�1 for k ¼ kþb
r2 :

(
ð38Þ

Here, we assume b[ 0 and a[ r2 without loss of

generality. Subsequently, from the relation (6) one should

take sðsÞ ¼ �ls� mþ 2, to ensure that sðsÞ has a negative

derivative for l[ 0. By inserting it into relation (10), the

weight function is given by

qðsÞ ¼ Const e�ls2=2þð2�mÞs: ð39Þ

Further, polynomial solution ynðsÞ is obtained from the

Rodrigues relation (9) as

ynðsÞ ¼Bne
ls2=2�ð2�mÞs d

ds

� �n

e�ls2=2þð2�mÞs;

¼Hn

ffiffiffiffiffiffiffiffi
l=2

p
sþ m� 2ffiffiffiffiffiffi

2l
p

� �
:

which is the Hermit function. On the other hand, the other

part of the solution is easily obtained from (11) as

0 100 200 300 400 500 600
x

0

0.1

0.2

0.3

0.4

0.5

0.6

p(
x)

 t = 1
 t = 2
 t = 3

Fig. 2 Variation of the

probability distribution

P(x, t) for FðxÞ ¼ ae�2ax

1�be�2ax þ c

and DðxÞ ¼ r2 in terms of x for

a ¼ 0:5, a ¼ 0:3, b ¼ 0:1,

r ¼ 0:4, and c ¼ �1
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/nðsÞ ¼ Const e�ls2=2þð1�mÞs: ð40Þ

Finally, by multiplying the two parts, the total function

wnðxÞ is obtained as follows

wnðxÞ ¼ Ne�
l
2
Lnxþm�1

lð Þ2

Hn

ffiffiffiffiffiffiffiffi
l=2

p
Lnxþ m� 2ffiffiffiffiffiffi

2l
p

� �
; ð41Þ

where N is the normalization constant. Furthermore, the

relation (8) leads to the quantization condition as

k ¼ nb; n ¼ 0; 1; 2; :::

Figure 3 shows the dynamics of the probability

distribution of P(x, t) in terms of x. According to this

figure for three different time values, the probability grows

sharply at the beginning, and then drops to small values,

and eventually disappears. It shifts to the right side, by

increasing the time. This model is usually used to predict

the evolution of various stochastic biological phenomena in

the literature [3, 10, 24]. For instance, Polotto et al. used

this pattern to consider the evolution of the probability

density function of the tumor growth by using the finite

element method [3]. Similarly, Albano et al. simulated the

effects of a time-dependent therapy for a parathyroid

tumor, based on the Ornstein–Uhlenbeck process [10].

These works confirm our results well.

5. Conclusion

In this work, we proposed a new and powerful approach

to solve FPE, known as the Nikiforov–Uvarov mathe-

matical method, for a given pair of drift and diffusion

coefficients. By using this formalism, the probability

distribution was found analytically for three examples,

and their time-evolution were studied at different times.

In the first two cases, we solved FPE for exponential form

drift forces with constant diffusions, that led to the

associated Laguerre (22) and the generalized Jacobi (33)

polynomials. These functions correspond to Morse and

Hulthen potentials, respectively, based on a formal anal-

ogy between FPE and the Schrodinger equation. In the

third case, it was shown that a logarithmic force with the

quadratic diffusion model provided the Hermit-polyno-

mial, that was used to investigate the effects of time-

dependent therapy of tumor growth based on the Gom-

pertz law of growth [10, 24]. The comparison between the

three studied cases indicates that they display different

behaviors. Specifically, in the Morse potential, the prob-

ability distribution exhibits almost a Gaussian form,

without spreading, and its values decrease with increasing

time. While, in Hulthen potential, the distribution propa-

gates to the right, and as time increases, it reduces before

x � 180, and then rises gradually. In logarithmic force,

the probability grows sharply at the beginning, and then

drops to small values, and eventually disappears. By

increasing the time, it shifts to the right side. Our results

in these examples, were well consistent with the usual

drift-diffusion dynamics in stochastic phenomena, and in

good agreement with other reports. Finally, we demon-

strated that the NU method is an efficient mathematical

approach to obtain analytical solutions of FPE as well as

the corresponding eigenvalues. Actually, the efficiency of

this method depends on finding an appropriate coordinate

transformation, which transforms FPE to the differential

equation of type (3). However, further investigation is

needed to develop a systematic way to obtain such

transformation for a general type of FPE.

0 5 10 15 20 25 30 35 40
x

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p(
x)

 t = 0.1
 t = 0.4
 t = 0.9

Fig. 3 Variation of the

probability distribution

P(x, t) for FðxÞ ¼ ax� bxLnx
and DðxÞ ¼ r2x2 in terms of

x for a ¼ 8, b ¼ 2:5, and

r ¼ 1:8
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