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Abstract: In this paper, we present a new class of exact solutions satisfying Einstein’s field and modified TOV-equations.

The thermodynamic quantities of stellar matter like anisotropic pressures, baryon density, red-shift and velocity of sound

have been investigated using the embedding class I methodology with the Karmarkar condition. The solutions satisfy the

static stability criterion, energy conditions, stability factor, adiabatic index and causality condition. In addition to it, we

perform complete graphical analysis of neutron stars in Vela X � 1 and Her X � 1 in the setting of the Karmarkar space-

time.
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1. Introduction

Studies on relativistic stellar objects commenced in 1916,

with a productive insight of the Schwarzschild vacuum

solution of Einstein’s field equations (EFEs) with the

forecasting of the existence of a black hole. In the same

year, Schwarzschild [1] also gave a second solution of

Einstein’s field equations which describes a uniform den-

sity compact star. Initially, compact stars were believed to

be composed of isotropic perfect fluids only. Jeans [2]

foretold that under extreme intricacy prevailing inside

stellar objects, the difference of radial and tangential

pressures, i.e., the measure of anisotropy is accented for a

better realizing of the matter distribution.

The anisotropy is considered as one of the key features

of stellar configurations and plays a pivotal role in realistic

modeling of relativistic stellar systems. The concept of

anisotropy was proposed by Ruderman [3] and Canuto [4].

Bowers and Liang [5] were the first who reported the

presence of anisotropic spheres in the framework of gen-

eral relativity. Dev and Gleiser [6, 7] observed that the

component of pressure anisotropy can cause drastic chan-

ges in many fundamental properties of highly compact

spheres. Recent observations on anisotropic pressures

confirm the necessity of nonzero anisotropy in realistic

modeling of highly compact spheres. The presences of 3A

super-fluid [8], phase transitions [9], magnetic or strong

electromagnetic field [10, 11], slow rotational motion [12],

fluids of different types [13], pion condensation [14], etc.,

are some of the few reasons for the anisotropy in rela-

tivistic stellar systems. A systematic review regarding the

origins and effects of local anisotropy in astrophysical

objects can be found in [15, 16].

It is well known that EFEs describe gravity as geometry

of space-time due to the presence of the matter distribution.

Based on embedding problems, space-time can be cate-

gorized into various classes. Any spherically symmetric

space-time can be embedded in a 6-D pseudo-Euclidean

space, i.e., class II. Similarly, plane symmetric space-times

are believed to be of class III. Some famous solutions like

FLRW, Schwarzschild exterior, Schwarzschild interior and

the Kerr space-time are considered to be of classes I, II, I

and V, respectively. A number of classes are equivalent to

the extra dimension(s) to embed the space-time into

pseudo-Euclidean space.

In recent works, the technique of finding exact solutions

of Einstein’s field equations in embedding class I has

attracted a great interest among the researchers. In this

class, the two metric functions grr and gtt are linked via the

Karmarkar condition [17]. In fact, by assuming one of the*Corresponding author, E-mail: neeraj.pant@yahoo.com
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metric functions arbitrarily, the other one can be evaluated

easily. Several authors [18–42, 47] have studied various

physically realistic models under the Karmarkar condition

by choosing various general forms of metric potentials

which include polynomials, trigonometric and hyperbolic

functions having important physical applications to con-

struct plausible astrophysical models. Recently, some

researchers developed core-envelope models to the com-

pact stars where the core region equipped with linear

equation of state whereas the envelope region endowed

with quadratic equation of state [43–45].

In this work, we consider a new class of hyperbolic

metric potential and explore new interior anisotropic

models for astrophysical compact stars. Here, we have

studied two compact stars [46], i.e., the neutron star in Vela

X � 1 (mass M ¼ 1:77M�, radius R ¼ 9:57 km) and

intermediate-mass X-ray binary star Hercules X � 1 (Her

X � 1 (M ¼ 0:85M�, R ¼ 8:1 km).

The article is machinated as follows: We begin with

Sect. 2 that consists of spherically symmetric interior

space-time and the Einstein field equations for anisotropic

matter distribution. Section 3 provides background of the

Karmarkar condition mentioning the non-vanishing com-

ponents for Riemannian tensor along with embedding class

I condition for spherically symmetric metric. In Sect. 4, we

obtain a new family of well-behaved solutions of the

Einstein field equations for anisotropic compact stars. The

matching of interior and exterior space-time over the

boundary is given in Sect. 5. Physical viable conditions for

anisotropic models are mentioned in Sect. 6. Discussion on

viable trends of physical features for our models is reported

in Sect. 7. In Sect. 8, stability analysis through Harrison–

Zeldovich–Novikov criterion, modified Tolman–Oppen-

himer–Volkoff equation equilibrium condition and Herrera

cracking concept are given. Results and Discussion are

provided in Sect. 9. The conclusion of our findings is

described in the last section.

2. Spherically symmetric line element and Einstein’s

field equations

The interior of an anisotropic fluid sphere in Sch-

warzschild’s canonical coordinates is described by the

spherically symmetric line element as

ds2 ¼ emðrÞdt2 � ekðrÞdr2 � r2ðdh2 þ sin2 hd/2Þ: ð1Þ

The energy-momentum tensor for anisotropic compact star

can be given as

Tjk ¼ ½ðpt þ qÞvjvk � ptgjk þ ðpr � ptÞvjvk�; ð2Þ

where symbols have their usual meaning. The energy

density (q) is measured by a comoving observer with the

fluid, the radial pressure (pr) is measured in the direction of

the spacelike vector, while the transverse pressures (pt) are

considered in the orthogonal direction to pr.

The system of Einstein field equations (assum-

ing G ¼ c ¼ 1Þ for the line element (1) and energy

momentum tensor are given by

q ¼
1 � e�k 1 � rk0ð Þ
� �

8pr2
; ð3Þ

pr ¼
e�kð1 þ rm0Þ � 1
� �

8pr2
; ð4Þ

pt ¼
e�k 2m00r þ m02r � m0k0r þ 2ðm0 � k0Þ
� �

32pr
ð5Þ

where ð0Þ and ð00Þ represent d=dr and d2=dr2, respectively.

Using (4) and (5), the measure of anisotropy can be

obtained as [47]

D ¼ pt � pr ¼
e�k 2r2m00 � rðk0 þ m0Þðrm0 þ 2Þ þ 4ðdk � 1Þ
� �

32pr2
:

ð6Þ

3. Karmarkar’s condition under embedding class I

The space Mlþ1 represents embedding class I (i.e., Mlþ1

can be embedded as a hypersurface of a pseudo-Euclidean

space Elþ2) if there exists a symmetric tensor blm which

satisfies the following Gauss–Codazzi equations [48, 49]

Rlmdg ¼ 2�bl½dbg�m;

bl½m;d� � Cg
½md�blg þ Cg

l½mbd�g ¼ 0:

Here, � takes the values þ1 or �1, whenever the normal to

the manifold is space-like or time-like, Rlmdg represents

curvature tensor, square brackets denote antisymmetriza-

tion, the symbol (; ) represents covariant derivatives and

blm are the coefficients of second differential form.

Eiesland [50] combined Gauss–Codazzi equations and

found a necessary and sufficient condition for the space-

time represented by the metric (1) in a more concise form

R1414R2323 ¼ R1212R3434 þ R1224R1334: ð7Þ

The condition (7) is called the Karmarkar condition in

which the labels (1, 2, 3, 4) represent coordinates

ðr; h;/; tÞ.
For the line element (1), the nonzero Riemann curvature

tensor components are
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R1414 ¼� em
m
00

2
þ m02

4
� k0m0

4

 !

; ð8Þ

R2323 ¼� e�kr2 sin2 hðek � 1Þ; ð9Þ

R1212 ¼ 1

2
rk0; ð10Þ

R3434 ¼� 1

2
r sin2 hm0em�k: ð11Þ

Using the above Riemann tensor components in (7) yields

the following differential equation (in the static case):

2m
00

m0
þ m0 ¼ k0ek

ek � 1
: ð12Þ

Such class of solutions of the Einstein field equations are

also termed as embedding class I solutions provided it

satisfies Pandey and Sharma condition [51], i.e., R2323 6¼ 0.

Integrating (12), we get the following relation between m
and k:

em ¼
�

S þ T

Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ek � 1

p
dr
�2

; ð13Þ

where S and T are integration constants.

In view of (6), measure of anisotropy D can be

expressed as [47]

D ¼ m0

4ek

h 2

r
� k0

ek � 1

ih m0em

2rB2
� 1
i
: ð14Þ

In the case of isotropic static fluid sphere, i.e., putting D ¼
0 in the above equation, we get either an interior Sch-

warzschild’s uniform density model or a Kohler–Chao

solution with boundary at infinity. Both the solutions are

not physically relevant from astrophysical points of view as

one leads to constant density model while the later provides

infinite boundary model.

4. Generating a new family of embedding class

I solutions for anisotropic stellar model

In this paper, we consider a new family of hyperbolic

trigonometric metric potential given as

ekðrÞ ¼ 1 þ ar2hnðrÞ; ð15Þ

where

hnðrÞ ¼ csch nðbr2 þ cÞ;

where aðkmÞ�1
, bðkmÞ�1

and c are positive constants and n

is any even integer. We select the metric potential ekðrÞ in

such away that it should be nonnegative, regular, mono-

tonically increasing function throughout interior of the star

and takes the value one at center which emphasizes that at

the center, the tangent 3 space is flat and EFEs can be

integrated, resulting a realistic solution for star modeling.

Substituting the value of ekðrÞ from (15) in (13), we get

emðrÞ as

emðrÞ ¼ S � a1ðrÞa2ðrÞT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ahnðrÞ

p

4b

 !2

; ð16Þ

where S and T are integrating constants.

Using (15) and (16), the expressions of q, pr, D and pt

can be written as

q ¼ ahnðrÞ r2 ahnðrÞ � 2bn coth br2 þ cð Þð Þ þ 3ð Þ
ar2hnðrÞ þ 1ð Þ2

; ð17Þ

pr ¼
2a3ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ahnðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� sinh2 br2 þ cð Þ

q

a4ðrÞ ar2hnðrÞ þ 1ð Þ ; ð18Þ

D ¼ a5 � a6ð Þr2 ahn þ bn coth br2 þ cð Þð Þ
a7 � a8ð Þ ar2hn þ 1ð Þ2

; ð19Þ

pt ¼pr þ D; ð20Þ

where

a1ðrÞ ¼ 2F1

1

2
;
n þ 2

4
;
3

2
; cosh2 br2 þ c

� �� �
;

a2ðrÞ ¼ sinh 2 br2 þ c
� �� �

� sinh2 br2 þ c
� �� �n�2

4 ;

a3ðrÞ ¼aa1Thnþ1 cosh br2 þ c
� �

� sinh2 br2 þ c
� �� �nþ2

4

þ 2bS
ffiffiffiffiffiffiffi
ahn

p
� 4bT;

a4ðrÞ ¼a1T
ffiffiffiffiffiffiffi
ahn

p
sinh 2 br2 þ c

� �� �
� sinh2 br2 þ c

� �� �n=4

� 4bS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� sinh2 br2 þ cð Þ

q
;

a5ðrÞ ¼4b sinh br2 þ c
� �

T
ffiffiffiffiffiffiffi
ahn

p
� aShn

� �
;

a6ðrÞ ¼a1T ahnð Þ3=2 sinh 2 br2 þ c
� �� �

� sinh2 br2 þ c
� �� �n=4

;

a7ðrÞ ¼4bS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� sinh2 br2 þ cð Þ

q
;

a8ðrÞ ¼a1T
ffiffiffiffiffiffiffi
ahn

p
sinh 2 br2 þ c

� �� �
� sinh2 br2 þ c

� �� �n=4
:

The mass function m(r), gravitational red-shift z(r) and

compactification factor u(r) at the surface and within the

interior of the stellar system are given by

mðrÞ ¼ ar3cschn br2 þ cð Þ
2 ar2cschn br2 þ cð Þ þ 1ð Þ ;

ð21Þ

zðrÞ ¼ 4b

4bS � a1ðrÞa2ðrÞT
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ahnðrÞ

p � 1; ð22Þ

uðrÞ ¼ ar3cschn br2 þ cð Þ
2 ar2cschn br2 þ cð Þ þ 1ð Þ :

ð23Þ

Relativistic anisotropic models of ultra dense stellar objects 2265



5. Matching of interior and exterior space-time

over the boundary

To find constants a, b, c, S and T in the above class of

solutions, the interior metric should be matched over the

boundary

ds2 ¼
�

1 � 2M

r

�
dt2 �

�
1 � 2M

r

��1

dr2 � r2ðdh2 þ sin2 hd/2Þ:

ð24Þ

(24) is known as the Schwarzschild exterior metric. By

comparing (1) with (24) at the boundary r ¼ R (Darmois–

Israel conditions), we obtain

emb ¼1 � 2M

R
S � a1ðRÞa2ðRÞT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahnðRÞ

p

4b

 !
2; ð25Þ

e�kðrÞb ¼1 � 2M

R
¼ 1

1 þ aR2hnðRÞ
; ð26Þ

prðRÞ ¼0: ð27Þ

The above boundary conditions (25–27) yield

a ¼� 2Mcsch�n bR2 þ cð Þ
R2ð2M � RÞ ; ð28Þ

T ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2M

R

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acschn bR2 þ cð Þ

p
: ð30Þ

Here, M and R are mass and radius of a particular compact

stars, while b and c are free parameters.

6. Physical viable conditions for anisotropic models

The following conditions should be satisfied by the solu-

tions of anisotropic models in order to achieve physical

feasible configuration:

1. The metric potentials ek and em should be positive and

non-singular inside the stellar interior and at the center

em ¼ constant and e�k ¼ 1.

2. The density q, radial pressure pr and transverse

pressure pt should be nonnegative inside the stellar

objects and monotonically decreasing outward.

3. In a stable fluid sphere, the equation of state param-

eters xr ¼ pr=q;xt ¼ pt=q should be positive and

satisfy Zeldovich’s condition [52] at the center, i.e.,

0\xr;xt � 1.

4. For a physically stable static model, the energy

conditions, i.e., q[ 0, qþ pr � 0; qþ pt � 0 and

qþ pr þ 2pt � 0, should be satisfied throughout the

interior of the stellar object.

5. The model should satisfy Harrison–Zeldovich–Novi-

kov stability condition, i.e.,
dMðq0Þ

dq0

[ 0 [52, 53].

6. For stable model, the adiabatic index C ¼ qþpr

pr

dpr

dq
� 4

3

(Bondi condition) [54].

7. The sound speeds should be less than that of light

throughout the stellar object, i.e., 0\v2
r ¼

dpr

dq � 1; 0\v2
t ¼ dpt

dq
� 1 (causality condition).

8. The solutions of anisotropic stellar objects should

satisfy Hererra cracking stability condition, i.e.,

�1� v2
t � v2

t � 0 [56, 57].

9. The gravitational, hydrostatic and anisotropic forces in

the interior of stellar objects should satisfy the

modified Tolman–Oppenheimer–Volkoff condition

[58].

7. Discussion on viable trends of physical features

for our model

7.1. Trends of Geometrical and Physical parameters

(1) The metric potentials (geometrical parameters) for

neutron stars in Vela X � 1 and Her X � 1 at the

center ðr ¼ 0Þ give the values emjr¼0 ¼ positive con-

stant and e�kðrÞjr¼0 ¼ 1 for the range of n mentioned

in Table 1. This shows that the metric potentials are

regular and free from geometric singularities inside

the stars. Also, both metric potentials emðrÞ and e�kðrÞ

are monotonically increasing and decreasing,

respectively, with r (Fig. 1).

(2) The matter density q, radial pressure pr and transverse

pressure pt for the stars Vela X � 1 and Her X � 1 are

S ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2M

R

q
aa1ðRÞ cosh bR2 þ cð Þ � sinh2 bR2 þ cð Þ

� �nþ2
4 cschnþ1 bR2 þ cð Þ � 4b

� �

4b
;

ð29Þ
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Table 1 Variation in physical parameters, i.e., central adiabatic index, central density, central red-shift, surface red-shift and compactness factor

for different models of (1) Vela X � 1 with mass M ¼ 1:77M� and radius R ¼ 9:57 km for parameters n ¼ �32;�24;�16 for the values of

b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1 with mass M ¼ 0:85M� and radius R ¼ 8:1 km for parameters n ¼ � 34;� 26;� 18 for the values of

b ¼ 0:00006=km2, c ¼ 3:5, G ¼ 6:67 � 10�11m3kg�1s�2, M� ¼ 2 � 1030 kg and C ¼ 3 � 108m s�1

The moment of inertia of (1) Vela X � 1 is 1:43293 � 1045 g cm2, (2) Her X � 1 is 0:493 � 1045 g cm2

Vela X � 1 Her X � 1

n ¼ �32 n ¼ �24 n ¼ �16 n ¼ �34 n ¼ �26 n ¼ �18

Central adiabatic index (Cc) 6.02368 3.69708 2.75089 7.52787 5.40382 4.3034

Central density (qc g/cm3 � 1014) 3.64406 4.06453 4.53956 3.21085 3.37401 3.54664

Central radial pressure (Prc
) (dyne/cm2 � 1034) 7.87444 7.36607 6.77689 2.44044 2.21376 1.97492

Central red-shift (zc) 0.458935 0.463126 0.467444 0.202217 0.202865 0.203519

Surface red-shift (zb) 0.259788 0.259788 0.259788 0.125 0.125 0.125

Compactness factor GM
C2R

0.27414 0.27414 0.27414 0.155542 0.155542 0.155542

Fig. 1 Variation of e�kðrÞ, emðrÞ with r for (1) Vela X � 1 with mass

M ¼ 1:77M� and radius R ¼ 9:57 km for parameters values of n ¼
�32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her

X � 1 with mass M ¼ 0:85M� and radius R ¼ 8:1 km for parameters

values of n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2,

c ¼ 3:5

Fig. 2 Variation of q with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1 of

the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5
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nonnegative inside the stars and monotonically

decreasing from center to surface of the stars for

the n values given in Table 1 (see, Figs. 2, 3). The

profiles of pressure-to-density ratios (equation of state

parameter pr=q; pt=q) with r are shown in Fig. 4 for

both the stars for the same values of n mentioned in

Table 1.

(3) The mass function m(r) and gravitational red-shift z(r)

function of two stars are increasing and decreasing,

respectively, with r. The variation of m(r) and z(r) is

Fig. 3 Variation of pr , pt with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1

of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 4 Variation of pr=q and pt=q with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2)

Her X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 5 Variation of mass (m(r)) with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her

X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2; c ¼ 3:5
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shown in Figs. 5 and 6 for both the stars Vela X � 1

and Her X � 1 for the same range of n mentioned in

Table 1. Also, compactification factor u(r) for both

the stars is increasing functions with r, shown in

Fig. 7, and lies within the Buchdahl limit [59].

(4) In Fig. 8, the radial pressures (pr) coincide with

tangential pressures (pt) at the center of neutron stars

Vela X � 1 and Her X � 1 for the range n mentioned

in Table 1, i.e., pressure anisotropies vanish at the

center, Dð0Þ ¼ 0 and are increasing outward.

Fig. 6 Variation of red-shift with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her

X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 7 Variation of the compactification factor u(r) with r (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2,

c ¼ 3:5; (2) Her X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 8 Variation of anistropy DðrÞ with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2)

Her X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5
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8. Stability analysis

8.1. Zeldovich’s condition for equation of state

parameters

The values of pr, pt and q at the center of the stars are given

by

8pprc ¼8pptc

¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acschnðcÞ

p
�2

ffiffiffi
a

p
Sb þ aa1Tð�1Þ

n�2
4 coshðcÞ þ 4bT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhnðcÞ

p� �

2Sb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cschnðcÞ

p
�

ffiffiffi
a

p
a1Tð�1Þ

n�2
4 coshðcÞ

[ 0;

ð31Þ

and

8pqc ¼ 3a csch nðcÞ[ 0if a[ 0: ð32Þ

Using Zeldovich’s condition [52], i.e., xrc
¼ prc=qc � 1,

we get

�2
ffiffiffi
a

p
Sb þ ab1Tð�1Þ

n�2
4 coshðcÞ þ 4bT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhnðcÞ

p

6
ffiffiffi
a

p
Sb � 3ab1Tð�1Þ

n�2
4 coshðcÞ

� 1:

For n ¼ 4k þ 2 form (k being any integer), the last

equation becomes

�2
ffiffiffi
a

p
Sb þ ab1T coshðcÞ þ 4bT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhnðcÞ

p

6
ffiffiffi
a

p
Sb � 3ab1T coshðcÞ � 1: ð33Þ

In view of (31, 32) and (33), we get the following

inequality

2b
ffiffiffi
a

p

4b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinhðcÞÞn

p
þ a coshðcÞb1

� T

S

� 2b
ffiffiffi
a

p

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsinhðcÞ1Þn

p
þ a coshðcÞb1

;

ð34Þ

where

b1 ¼ 2F1

1

2
;
n þ 2

4
;
3

2
; cos2ðcÞ

� �
:

8.1.1. Hererra cracking stability and causality condition

of anisotropic fluid sphere

The Hererra cracking method [56] is used to analyze the

stability of anisotropic stars under radial perturbations.

Using the concept of cracking, Abreu et al. [57] gave the

idea that the region of an anisotropic fluid sphere is

potentially stable when it satisfies the condition �1\v2
t �

v2
r � 0: For a physically feasible model of anisotropic fluid

sphere, the radial and transverse velocities of sound should

be less than 1, which are known as causality conditions.

The profiles of v2
r and v2

t of neutron stars in Vela X � 1 and

Her X � 1 for the same even integer range of n given in

Table 1 (see, Fig. 9) show that 0\v2
r � 1 and 0\v2

t � 1

everywhere within the stellar configuration. Therefore,

both the speeds satisfy the causality conditions and

monotonically decreasing nature. Here, we use the Herrera

cracking method for analyzing the stability of anisotropic

stars under the radial perturbations. Figure 10 clearly

depicts that our model is potentially stable inside the both

neutron stars in Vela X � 1 and Her X � 1 for the same

range of n mentioned in Table 1.

8.1.2. Bondi stability condition for adiabatic index

For a relativistic anisotropic sphere, the stability counts on

the adiabatic index Cr, the ratio of two specific heats,

defined in [60],

Cr ¼ qþpr

pr

opr

oq .

Bondi [54] suggested that for a stable Newtonian sphere,

C value should be greater than 4
3
. For an anisotropic rela-

tivistic sphere, the stability condition is

C[ 4
3
þ
	 4ðpt0�pr0Þ

3jp0
r0
jr þ q0pr0

2jp0
r0
j r


,

where pr0; pt0 and q0 represent the initial radial pressure,

tangential pressure and energy density, respectively, in

static equilibrium [55]. The first and last terms inside the

square brackets represent the anisotropic and relativistic

corrections, respectively. Moreover, both the quantities are

positive and increase the unstable range of C.

The present class of solutions satisfies Bondi condition

for the neutron stars in Vela X � 1 and Her X � 1 in the

same range of n mentioned in Table 1.

8.1.3. Energy conditions

For a physically stable static configuration of a stellar

object, it is essential to verify the following energy con-

ditions [61]:

(i) Null energy condition (NEC): qþ pr � 0

(ii) Strong energy condition (SEC): qþ pr þ 2pt � 0

(iii) Weak energy condition (WECr): qþ pr � 0, q� 0

and weak energy condition (WECt): qþ pt � 0,

q� 0.

The profiles of energy conditions, i.e., NEC, WECr, WECt

and SEC, are displayed in Fig. 12. Our models satisfy all

the energy conditions for both the neutron stars in Vela

X � 1 and Her X � 1 for the same range of n mentioned in

Table 1.

8.2. Modified Tolman–Oppenheimer–Volkoff

condition for equilibrium under three forces

The modified Tolman–Oppenheimer–Volkoff (TOV)

equation [58] for anisotropic fluid matter distribution is

given as
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�MgðrÞðqþ prÞ
r2

eðkðrÞ�mðrÞÞ=2 � dpr

dr
þ 2DðrÞ

r
¼ 0; ð37Þ

where Fg, Fh, Fa are gravitational, hydrostatic and

anisotropic forces, respectively, and MgðrÞ is the

gravitational mass can be calculated by the Tolman–

Whittaker formula

MgðrÞ ¼
1

2
r2m0ðrÞeðmðrÞ�kðrÞÞ=2: ð38Þ

The modified TOV Eq. (37) can be expressed in the

following balanced force equation

Fg þ Fh þ Fa ¼ 0: ð39Þ

In an equilibrium state, all the three forces Fg, Fh and Fa

satisfy the modified TOV equation. The profiles of the

three forces of neutron stars Vela X � 1 and Her X � 1 for

the same range of n mentioned in Table 1 are displayed in

Fig. 13. In Fig. 13, Fg overshadows the other two forces Fh

and Fa in such a way that the system remains in static

equilibrium.

8.3. Harrison–Zeldovich–Novikov static stability

criterion

The Harrison–Zeldovich–Novikov static stability criteria

for non-rotating spherically symmetric equilibrium stellar

models suggest that the mass of compact stars must be an

increasing function of its central density under small radial

pulsation, i.e.,

oM

oqc

[ 0: ð40Þ

The above criterion ensures that the model is static and

stable. It was proposed by Harrison et al. [53] and

Zeldovich–Novikov [52] independently for stable stellar

models. With the help of Eq. (32) and total mass,

M ¼ mðRÞ ¼ 1

2
R 1 � 1

aR2cschn bR2 þ cð Þ þ 1

� �
; ð41Þ

the expression of the mass in terms of the central density is

given by

Fig. 9 Variation of v2
r , v2

t with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1

of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 10 Variation of vt
2 � vr

2 with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her

X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5
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MðqcÞ ¼
1

2
R 1 � 3cschnðcÞ

qR2cschn bR2 þ cð Þ þ 3cschnðcÞ

� �
:

Also,

3R3cschnðcÞcschn bR2 þ cð Þ
2 qR2cschn bR2 þ cð Þ þ 3cschnðcÞð Þ2

[ 0;

satisfies (Fig. 14) the static stability criterion (40).

Fig. 11 Variation of CðrÞ with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1

of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 12 Variation of energy conditions (WEC, SEC, DEC) with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of

b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5

Fig. 13 Variation of balancing forces Fa;Fg;Fa;Fa þ Fg þ Fh with r for (1) Vela X � 1 of the models n ¼ �32;�24;�16 for the values of

b ¼ 0:0001=km2, c ¼ 3:5; (2) Her X � 1 of the models n ¼ � 34;� 26;� 18 for the values of b ¼ 0:00006=km2, c ¼ 3:5
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The present class of solutions holds Harrison–Sel-

dovich–Novikov condition for neutron stars in Vela X � 1

and Her X � 1 for the same range of n mentioned in

Table 1.

9. Results and discussion

A new parametric class of non-singular solutions of the

Einstein field equations for compact stars under embedding

class I spacetime is presented. Graphical analysis of

respective neutron stars in Vela X � 1 and Her X � 1 is

performed for the parameter values n ¼ �32;�24;�16,

b ¼ 0:0001=km2, c ¼ 3:5 and n ¼ � 34;� 26;� 18,

b ¼ 0:00006=km2, c ¼ 3:5. Geometrical parameters e�kðrÞ

and emðrÞ are decreasing and increasing, respectively,

throughout the interior of both the stars and both the

respective curves meet at their boundaries (Fig. 1). The

physical parameters, like density, radial and tangential

pressures, pressures-to-density ratios, red-shift and veloci-

ties in the above-defined range of n, are nonnegative at the

center and monotonically decreasing from the center to the

surface of both the stars (Figs. 2, 3, 4, 6, 9). However, the

physical parameters mass, compactification factor, aniso-

tropy and adiabatic index are increasing outward (Figs. 5,

7, 8, 11).

The present models for the above range of n satisfy all

the stability conditions for both the neutron stars, i.e.,

Herrera cracking condition (�1\v2
t � v2

r\0,

0\v2
r ; v2

t \1), Bondi condition (C[ 4=3), Zeldovich’s

condition (0\ pr

q ;
pr

q \1) and Harrison–Zeldovich–Novikov

criterion (oM
oqc

[ 0) (see Figs. 10, 11, 14) besides satisfying

all the energy conditions (q[ 0, qþ pr [ 0, qþ pt [ 0,

qþ pr þ 2pt [ 0) (Fig. 12). Moreover, our models repre-

sent a static anisotropic stellar fluid in equilibrium

configuration as the forces Fg, Fh and Fa counterbalance

each other through the modified TOV equation in the

interior of stellar objects (Fig. 13).

The physical parameters values of C, q, pr, z(r) at the

center and compactification factor (uðrÞ ¼ GM
cR2), z(r) at the

surface are given in Table 1. From Table 1, we conclude

that for higher even values of n, the profiles of Cc and prc

show decreasing nature, whereas the profiles of qc and

zcðrÞ show increasing nature. Other physical parameters,

i.e., u(r) and z(r) at the boundary, remain the same for any

even n values in that range.

10. Conclusions

In this paper, we have explored a new parametric class of

solutions for anisotropic matter distribution to model the

neutron star in vela X � 1 and Her X � 1 in the setting of

the Karmarkar space-time by assuming one of metric

potential ekðrÞ ¼ 1 þ ar2 csch ðbr2 þ cÞn
. The thermody-

namic quantities of stellar matter like anisotropic pressures,

baryon density, red-shift and velocity of sound have been

investigated extensively using the embedding class I

methodology with the Karmarkar condition. The solution

profiles satisfy static stability criterion, energy conditions,

stability factor, adiabatic index and causality condition for

the following values of the parameters; neutron star in Vela

X � 1 with mass M ¼ 1:77M� and radius R ¼ 9:57 km for

n ¼ �32;�24;�16, b ¼ 0:0001=km2 and c ¼ 3:5; Her

X � 1 with mass M ¼ 0:85M� and radius R ¼ 8:1 km for

n ¼ � 34;� 26;� 18 b ¼ 0:00006=km2 and c ¼ 3:5. The

solutions are well-behaved for both the stars corresponding

to the above-defined range of even negative values of n.
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