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Abstract: In this article, we show that a number of well-known time-dependent, spherically symmetric solutions of the

Einstein’s field equations sourced by a stiff, perfect fluid with a cosmological constant can be generalised into a solution

with arbitrary metric functions. This metric can be applied to construct stiff, perfect fluid metrics with (or without) a

cosmological constant. We also explore the possibility that this metric may allow us to generate a singularity-free,

spherically symmetric cosmological model.
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1. Introduction

The study of spherically symmetric solutions is an impor-

tant sub-field of the general theory of relativity. We note

that although it is commonly believed that a large number

of spherically symmetric solutions of the Einstein’s field

equations are known, the actual situation is quite the

opposite. In fact, as stated in [1], ‘‘Most known solutions

are static or shearfree, and only very few of them satisfy

the physical demands of having a plausible equation of

state or being free from singularities’’. There are a number

of time-dependent, stiff fluid, spherically symmetric solu-

tions in the literature. In this article, our aim is to write

down a metric for time-dependent perfect fluid solutions,

with a stiff equation of state and a cosmological constant,

which generalises some of these solutions and other solu-

tions which are slight variations of some other solutions of

this type. Here, the metric functions are products of arbi-

trary functions of the radial coordinate and time. Substi-

tuting appropriate known functions allows us to reproduce

a number of well-known metrics. We also show that the

spacetime is sourced by a stiff fluid that has non-zero

expansion, shear and acceleration. The metric is alge-

braically special belonging to the type D in the Petrov

classification scheme. Finally, we use this general metric to

show that it could be possible to generate a spherically

symmetric, singularity-free cosmological model sourced by

a stiff perfect fluid.

A perfect fluid has the energy-momentum tensor of the

form

Tlm ¼ qþ pð Þulum þ pglm ð1Þ

where q is the energy density, p, the isotropic pressure and

ul its four velocity. For fluids with a linear equation of

state, the relation between pressure and energy density is

usually written as

p ¼ c� 1ð Þq ð2Þ

where 1\c\2 is a constant. The case c ¼ 2, which cor-

responds to p ¼ q, is known as a stiff fluid. A physical

characteristic of such a fluid is that the speed of sound

equals that of light in the medium.

There have been several prior attempts to generalise

perfect fluid solutions. Two notable papers in this con-

nection are the ones by Lake [2] and by Maharaj et al. [3].

In [2], the functions l, m and k in the spherically symmetric

metric (in comoving coordinates), namely

ds2 ¼ �emðr;tÞdt2 þ ekðr;tÞdr2 þ elðr;tÞdX2 ð3Þ

(where dX2 is the metric of the 2-sphere

dX2 ¼ dh2 þ sin2 h d/2), are taken to be separable func-

tions of r and t. In addition to the further assumptions of the

vanishing of heat flux and the coefficient of shear viscosity,

l and k were constrained by _l ¼ A _k where A is a constant.

It was found that under these assumptions, there exist two
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classes of solutions: with A ¼ 1, the metric reduces to the

Robertson–Walker metric and with A ¼ 0, a set of four

solutions with non-vanishing shear, acceleration and

expansion are found. All the A ¼ 0 solutions are singular at

the origin or degenerate into spaces of constant curvature.

In [3], the authors start with the simplifying assumptions

that _m ¼ 0 ¼ _k. Taking l to be separable, they reduce (3) to

the form

ds2 ¼ �emðrÞdt2 þ ekðrÞdr2 þ r2T2ðtÞdX2 ð4Þ

By adopting the above line-element, a number of previ-

ously found metrics were shown to be special cases of it.

The earlier work of Hajj-Boutros [7] was also extended by

them.

The plan of the paper is as follows: in the next section,

we begin with an ansatz for the spherically symmetric

metric and impose certain relations amongst the metric

functions to obtain a stiff fluid model. Section 3 consists of

a discussion on the properties of the metric including local

geometry and global properties. In Sect. 4, we discuss a

few well-known metrics and show that the metric written in

Sect. 2 is a general form for them. The last section, which

is the concluding one, also contains a discussion on sin-

gularity-free models and future work on the possibility of

generating such a model from the metric discussed in this

paper.

2. Spacetime for stiff perfect fluid with a cosmological

constant

We choose the metric functions such that (3) acquires the

form

ds2 ¼ �sðtÞ f 2ðrÞ dt2 þ gðrÞ dr2 þ qðtÞ f 2ðrÞ dX2 ð5Þ

The line element (5) is such that the resulting Einstein

tensor is diagonal. The following constraints are imposed

on the metric functions g(r) and s(t) (where primes denote

differentiation with respect to the argument),

gðrÞ ¼ ½f 0ðrÞ�2

1 þ bf 2ðrÞ
ð6Þ

and

sðtÞ ¼ ½q0ðtÞ�2

a� 4 qðtÞ þ 4 q2ðtÞ
ð7Þ

Substituting (6) and (7) in (5) yields the line element

ds2 ¼ � ½q0ðtÞ�2

a� 4 qðtÞ þ 4 q2ðtÞ f
2ðrÞ

dt2 þ ½f 0ðrÞ�2

1 þ bf 2ðrÞ dr2 þ qðtÞ f 2ðrÞ dX2

ð8Þ

where a and b are constants.

The metric (8) is an exact solution of Einstein’s field

equations with a cosmological constant, namely

Glm þ Kglm ¼ Tlm or Rlm �
1

2
Rþ Kglm ¼ Tlm ð9Þ

where K is the cosmological constant. In (9), the units are

chosen such that c ¼ 1 and 8pG ¼ 1. The field equations

are solved by a diagonal energy-momentum tensor with

components

Tr
r ¼ Th

h ¼ T/
/ ¼ pþ 3 b ð10Þ

and

Tt
t ¼ �qþ 3 b ð11Þ

where p is the isotropic pressure of the fluid and q its

density. The explicit form of the pressure and density are

p ¼ q ¼ a
4 f 2ðrÞ q2ðtÞ ð12Þ

The above result is obtained from calculating the mixed

form of the Einstein tensor which yields the components

Gr
r ¼ Gh

h ¼ G/
/ ¼ a

4 f 2ðrÞ q2ðtÞ ð13Þ

and

Gt
t ¼ � a

4 f 2ðrÞ q2ðtÞ ð14Þ

Comparing (10), (11), (13) and (14) with the field Eq. (9),

we find 3 b ¼ K, the cosmological constant. We also note

that Eqs. (6) and (7) are, in fact, equivalent to the

requirement of a stiff fluid with a cosmological constant

3b, so that they are uniquely the stiff matter solutions of the

ansatz (5).

3. Properties of the spacetime

The energy-momentum tensor of this spacetime represents

a perfect fluid with velocity vector

u ¼ 1

f ðrÞ
ffiffiffiffiffiffiffi

sðtÞ
p ot ð15Þ

where s(t) is given by (6) with an equation of state

p ¼ qþ 6 b ð16Þ

where p and q represent the pressure and energy density of

the fluid, respectively. We may interpret the matter as a

stiff, perfect fluid with a cosmological constant. In order to

ensure that a� 4 qðtÞ þ 4 q2ðtÞ remains positive, we

impose on a the condition a� 1. We also point out that

1918 B B Hazarika



setting b ¼ 0 reduces (8) to a spacetime with stiff, perfect

fluid as the matter content. On the other hand, if we choose

a ¼ 0 and b 6¼ 0, we obtain a spherically symmetric form

of the anti-de Sitter (or the de Sitter) metric.

From a calculation of the Weyl scalars based on the

natural null tetrad for the metric (8) with (6) and (7), we

find that the only non-zero one is

W2 ¼ a
12 f 2ðrÞ q2ðtÞ ð17Þ

Thus, the spacetime in (8) is of type D in the Petrov

classification scheme. This is appropriate as all spherically

symmetric metrics are either of type D or conformally flat.

Using the natural null tetrad of the line-element to write

the components of the kinematic tensors associated with

the fluid velocity vector u, we obtain the expansion as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� 4 qðtÞ þ 4 q2ðtÞ
p

f ðrÞ qðtÞ
ð18Þ

and the non-zero components of the shear tensor are

r11 ¼ f 02ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� 4 qðtÞ þ 4 q2ðtÞ
p

3 f ðrÞ qðtÞ 1 þ b f 2ðrÞð Þ ; ð19Þ

r22 ¼ f ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� 4 qðtÞ þ 4 q2ðtÞ
p

6
ð20Þ

and

r33 ¼ sin2 h r22: ð21Þ

The vorticity of u~ vanishes, and its acceleration is

a~¼ 1 þ b f 2ðrÞ
f ðrÞ f 0ðrÞ or ð22Þ

The spacetime is Lorentzian with determinant of the metric

tensor gl m given by

det g ¼ � f 6ðrÞ q2ðtÞ½f 0ðrÞ�2 ½q0ðtÞ�2 sin2 h
1 þ b f 2ðrÞ½ � a� 4 qðtÞ þ 4 q2ðtÞ½ �

ð23Þ

A few of the scalar curvature invariants are

R ¼ Rl
l ¼ �12b� a

f 2ðrÞq2ðtÞ ð24Þ

RlmRlm ¼ 36b2 þ a aþ 12bf 2ðrÞq2ðtÞ½ �
4f 4ðrÞq4ðtÞ

ð25Þ

and the Kretschmann scalar

RlmqrRlmqr ¼ 24 b2 þ a 3 aþ 8 b f 2ðrÞ q2ðtÞð Þ
4 f 4ðrÞ q4ðtÞ

ð26Þ

We note that there appears to be a singularity in the metric

function grr at
ffiffiffiffiffiffiffiffiffiffiffiffi

�1=b
p

. However, the curvature invariants

as well as the pressure and density are regular there. This

blow-up of the metric function is an artefact of the

coordinate system and can be removed by a coordinate

transformation.

4. Generating known solutions

The metric written in Sect. 2 can be used to generate a

number of known solutions by substitution of the appro-

priate functions for f(r) and q(t). In what follows, we obtain

a number of well-known solutions with, as well as without,

a cosmological constant.

Case 1

Choosing sðtÞ ¼ 1, and then solving (7) for q(t) yields

qðtÞ ¼ aþ ð1 � aÞC1 e
�2t þ 1

16C1

e2t ð27Þ

Setting f ðrÞ ¼ r and redefining the constants as a ¼ �=2,

� ¼ 1, ð1 � aÞC1 ¼ A and 1=16C1 ¼ B, we obtain the

following metric from (8)

ds2 ¼ �r2 dt2 þ 1

1 þ b r2
dr2 þ r2 �

2
þ Ae�2t þ Be2t

h i

dX2

ð28Þ

which is one of the metrics in equation (16.66) of [1] found

by Leibovitz [4] and in [5] with an equation of state

p ¼ qþ 6 b.

If b ¼ �k, f ðrÞ ¼ r and 2 qðtÞ ¼ 1 þ a1 e
2 t þ a2 e

�2 tð Þ,
where a1 ¼ 1

8C1
and a2 ¼ 2 ð1 � aÞC1, then from (8), we

get the metric

ds2 ¼ �r2 dt2 þ 1

1 � k r2
dr2 þ 1

2
r2 1 þ a1 e

2 t þ a2 e
�2 t

� �

dX2

ð29Þ

which is the well-known form of the metrics found by Lake

[2] with the equation of state p ¼ q� 6 k ¼ �3 k

þ a r�2 1 þ a1 e
2 t þ a2 e

�2 tð Þ�2
.

If b ¼ 0, f ðrÞ ¼ r and 2 qðtÞ ¼ 1 þ a1 e
2 t þ a2 e

�2 tð Þ,
then the metric (8) becomes

ds2 ¼ �r2 dt2 þ dr2 þ 1

2
r2 1 þ a1 e

2 t þ a2 e
�2 t

� �

dX2

ð30Þ

where a1 ¼ 1
8C1

and a2 ¼ 2 ð1 � aÞC1. The metric (30) was

found by Gutman and Bespal’ko [6] with the equation of

state p ¼ q ¼ a r�2 1 þ a1 e
2 t þ a2 e

�2 tð Þ�2
. Note that, the

metric (30) can also be obtained directly from (28) by

substituting b ¼ 0 and redefining the constants.

Case 2 If a ¼ 0 and b 6¼ 0, then the spacetime (8)

reduces to de Sitter (or anti-de Sitter) space. Setting f ðrÞ ¼
r and qðtÞ ¼ �

2
þ Ae�2t þ Be2t, we obtain the metric
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ds2 ¼ �r2 dt2 þ 1

�þ b r2
dr2 þ r2 �

2
þ Ae�2t þ Be2t

h i

dX2

ð31Þ

where A ¼ C1 and B ¼ 1
16C2

.

Case 3 Let a ¼ 1 and b 6¼ 0. Setting f ðrÞ ¼ r and q(t)

defined as below

qðtÞ ¼ 1

2
1 þ t2

2 � c t þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b t2 � c t þ 1
p

� �2

" #

; ð32Þ

we get the metric

ds2 ¼ � r2

t2 b t2 � c t þ 1ð Þ dt2 þ 1

1 þ b r2
dr2 þ r2 qðtÞdX2

ð33Þ

which is similar to the metric given in [8] (equation (16.67)

of [1]) except for q(t) in (32). The equation of state is

p ¼ qþ 6 b.

Case 4 Let a ¼ 1 and b 6¼ 0. Setting f ðrÞ ¼ r and

qðtÞ ¼ aþ c e�t, where a ¼ 1
2
, we find that the metric (8)

becomes

ds2 ¼ � r2

4
dt2 þ 1

1 þ b r2
dr2 þ r2 aþ c e�tð ÞdX2 ð34Þ

which is similar to the metric of equation (16.66) of [1] and

has the equation of state p ¼ qþ 6 b.

If b ¼ 0, then we get

ds2 ¼ � r2

4
dt2 þ dr2 þ 1

2
r2 k þ a2 e

�tð ÞdX2; ð35Þ

a sub-case to the metric of equation (37.57) of [1] with the

equation of state p ¼ q ¼ r�2 k þ a2 e
�tð Þ�2

, where k ¼ 1

and a2 ¼ 2 c.

Case 5 If qðtÞ ¼ t2 and f ðrÞ ¼ r, we get from (8)

ds2 ¼ � 4 t2 r2

a� 4 t2 þ 4 t4ð Þ dt2 þ 1

1 þ b r2
dr2 þ r2 t2dX2

ð36Þ

which is very similar to the metric found by Collins and

Lang [9] (equation (15.75) of [1]) with equation of state

p ¼ q.

5. Conclusion and outlook

In this paper, we have attempted to write down a gener-

alised metric admitting a stiff perfect fluid as its matter

source. The fluid has non-zero acceleration, shear and

expansion. We have shown that the metric can be used to

obtain various known spacetimes by choosing the arbitrary

functions f(r) and q(t). It is possible that the stiff fluid

metric (5) (with (6) and (7)) can be employed to generate a

cosmological model which is singularity-free. The study of

singularity-free cosmological models was initiated by

Senovilla in his seminal paper [10] where he constructed

such a model with q ¼ 3p[ 0 which was followed by a

number of metrics having the same property [11–13].

However, all these models are cylindrically symmetric

rather than spherically symmetric except the one in [13]

representing a spherically symmetric singularity-free uni-

verse filled with a non-adiabatic fluid with anisotropic

pressure accompanied with heat flux along the radial

direction. We choose b ¼ 0 and the metric functions as

f ðrÞ ¼ eb r, with b real and positive, and qðtÞ ¼ cosh t so

that the metric (8) acquires the form

ds2 ¼ �e2 b r sinh2 t

a� 4 cosh t þ 4 cosh2 t
� �

dt2 þ b2 e2 b rdr2 þ cosh t e2 b rdX2

ð37Þ

Metric (37) describes a universe with matter having energy

density and pressure

q ¼ a
4
e�2 b r sech2t ð38Þ

p ¼ a
4
e�2 b r sech2t ð39Þ

which means a stiff perfect fluid the energy density and

pressure of which is non-singular in the full range of the

coordinates r and t, i.e., 0� r\1 and �1\t\1.

Calculating the kinematic parameters, we find for the

expansion the expression

H ¼ e�b r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a sech2t � 4 sech t þ 4
p

ð40Þ

The condition a� 1 ensures that the expansion remains

real. The acceleration vector is

a ¼ 1

b
e�2 b ror ð41Þ

while the shear is found to be

r2 ¼ e�2 b r

12
a sech2t � 4 sech t þ 4
� �

: ð42Þ

The scalar curvature invariants calculated in Sect. 3,

acquire the explicit form

Rl
l ¼ � 1

2
a e�2 b r sech2t ð43Þ

RlmRlm ¼
1

4
a2 e�4 b r sech4t ð44Þ

and
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RlmqrRlmqr ¼ 3

4
a2 e�4 b r sech4t ð45Þ

It is evident that all the parameters obtained above are free

from singularities in the full range of the coordinates. Both

the non-zero Weyl scalar for this metric W2, obtained for

the general case in Eq. (17), as well as the scalar curvature

invariants are regular and singularity-free.

Singularity-free models are required to be free from

closed timelike curves, that is, they must be casually

stable which is inferred from the existence of a time-

function. In this case, it can be shown that the coordinate t

itself is a time function for a� 1. However, the singularity-

free nature manifest here may be an artefact of the coor-

dinate system. That a spacetime is free from singularities

can only be ensured by the completeness of geodesics. We

aim to show this in a future work.
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