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Abstract: In this paper, an analytical solution for a three-level semiconductor quantum dot has been presented. From this

solution, we have discussed the effects of the phenomenological damping parameters, the electromagnetic field amplitude

E0 of the excitation pulse EðxÞ, and the detuning parameters on the atomic occupation probabilities, the atomic population

inversion, the purity, and the information entropy HðrzÞ: A long-lived quantum coherence obviously has emerged in all

figures. Besides, a decay has appeared in all curves of the atomic occupation probability qggðtÞ; the atomic population

inversion, and the purity. Since there are not sufficient mathematical solutions for such systems, our study may add further

insight into many dynamic systems, and this in turn should open up a wide range of applications for semiconductor

quantum dot.
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1. Introduction

Nanoparticles are any material in the nanoscale, which are

used by the nanotechnology researchers to explore new

applications of elements in this tiny form.

The quantum dot [1–12] is a nanoparticle made of any

semiconducting material such as silicon, cadmium sulfide,

cadmium selenide, or indium arsenide [13]. The quantum

dots were discovered by Alexey I. Ekimov, in 1981 [14].

According to Alexey’s theory, the quantum dots are small

nanoparticles whose color varies by their size and that their

diameter ranges from 2 to 10 nm (nanometers) [1–6]. In

general, their properties [15] are determined by size, shape,

composition, and structure [16]. Because of their high

extinction coefficient, which describes how fast the light

passes through the material, the quantum dots have many

potential contributions for the optical applications. They

are particularly vital for the light-harvesting technologies,

such as solar cells and photovoltaics. Also, due to their

superior transport and optical properties, they have very

promising uses in amplifiers, diode lasers, and biological

sensors [17, 18].

Our study has focused on solving the master equation

for the density matrix q of a single semiconductor quantum

dot [1–6] excited by a pair of optical pulses. Although this

problem has been handled in physics theoretically and

experimentally [19–22], this vital area of research has not

been handled mathematically in adequate way. Therefore,

after reviewing previous studies, we believe the mathe-

matical solution of this system will integrate with the

physical treatments and represent a new perspective, from

which we can investigate many equations for semicon-

ductor quantum dot systems. Through our mathematical

study of this system, some important observations are

revealed. For example, long-lived quantum coherence in all

the curves and a decay, in some of the curves, have been

observed. They can be controlled over time through

parameters.

Therefore, the mathematical study of our system can

help a lot in laboratory experiments and in many applica-

tions in this field , such as LED lamps, medical imaging,

quantum computing, transistors [23, 24], biology, and

biochemistry.

Accordingly, as applications on the solution of this

system, we have calculated the atomic occupation proba-

bilities, qggðtÞ, qmmðtÞ and qeeðtÞ; the atomic population

inversion hSzi; the purity P(t), and the information entropy
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HðrzÞ: The atomic population inversion hSzi in the case of

a two-level system is defined as ‘‘the difference between

the probabilities of finding the atom in its excited state and

the probabilities of finding it in its ground state.’’ In the

case of a three-level system, it is defined as ‘‘the difference

between the probability of finding the atom in its excited

state and the probability of finding it in the lower states of

energy (the exciton and ground states). Or, it is defined as

‘‘the difference between the total probability of an atom at

the biexciton, exciton states and ground state.’’ In our

system, a three-level semiconductor quantum dot, we have

used the following formula for the atomic population

inversion hSzi [25, 26]:
hSzi ¼ qggðtÞ � qmmðtÞ � qeeðtÞ; ð1Þ

while the time evolution of the purity P(t) is defined as

follows [25]:

PðtÞ ¼ TrðAtomÞðq2AtomðtÞÞ

¼ q2gg þþq2mm þ q2ee þ 2
�
qgm

�� ��2þ qge

�� ��2þ qmej j2
�

ð2Þ

where qðAtomÞðtÞ is the reduced density matrix of the system

which is defined by qðAtomÞðtÞ ¼ TrðFieldÞ qðtÞ. The purity

P(t) is an indicator of the degree of effect of the field on the

atom.

The range of their values is between ð1� 1=fÞ and 0,

where ð1� 1=fÞ refers to a completely mixed state, 0 refers

to a completely pure state, (here, f is the dimension of the

density matrix) [25]. For example, we have f ¼ 2 in case

two-level atom, and f ¼ 3 in case three-level atom. On the

other hand, entropy is a measure that determines the

amount of lack of information about the system. It is also a

measure of the degree of chaos in the system, resulting

from the effect of the field or the surrounding environment

on the system [27–30, 30–32]. There are many types of

entropy, including differential entropy [33], approximate

entropy, sample entropy [34], permutation entropy [35, 36]

and multiscale entropy [37].

Also, there are three types of quantum interactions,

which are atom–atom, field–field and atom–field interac-

tions. These interactions have been studied in a huge

number of works; see, for example, Refs. [38–54]. Each of

these interactions interprets a certain type of physical

phenomena [55–60]. In our current study, we have focused

on calculating information entropy HðrzÞ of the type of

atom–field interaction.

The information entropy of the atomic operator rz is

defined as: [27–29]

HðrzÞ ¼ �
Xn

r¼1
PrðrzÞ lnPrðrzÞ; ð3Þ

where the probability distribution PrðrzÞ for n possible

outcomes of measurements for an arbitrary quantum state

of an atomic operator rz is

PrðrzÞ ¼ Wzrh jq Wzrj i; ð4Þ

q is the density operator of the total system, and Wzrj i is
eigenvector of the atomic operator rb:

rz Wzrj i ¼ �zr Wzrj i; r ¼ 1; 2; . . .; n; ð5Þ

where �zr is the eigenvalue of the atomic operator rz shown
in Eq. (5).

For a two-level system, n ¼ 2, and in case of a three-

level system, n ¼ 3, and so on. Here, we have calculated

the information entropy HðrzÞ whose formula is as

follows:

HðrzÞ ¼ �
�
qggðtÞ lnðqggðtÞ þ qmmðtÞ lnðqmmðtÞ

þ qeeðtÞ lnðqeeðtÞ
�
:

ð6Þ

This paper has been organized as follows: in Sect. (2), we

have obtained the analytical solution of a three-level

semiconductor quantum dot. In Sect. (3), we have dis-

cussed the effects of the phenomenological damping

parameters, the electromagnetic field amplitude E0 of the

excitation pulse EðxÞ, and the detuning parameters on the

atomic occupation probabilities, qggðtÞ, qmmðtÞ, and qeeðtÞ;
the atomic population inversion hSzi; the purity P(t), and

the information entropy HðrzÞ. Finally, in Sect. (4), the

conclusions and recommendations for further research have

been presented.

2. The model

Here, We study a single semiconductor quantum dot (three-

level atom) excited by a pair of optical pulses. The exci-

tation of a single semiconductor quantum dot is in two

stages.

The first stage (the first pulse) is done by populating the

biexciton level ej i by absorbing two photons, while the

second stage (the second pulse) generates population in the

exciton level mj i via de-excitation from the biexciton level.

The equation of motion for the density operator q repre-

senting our system is as follows:

dq
dt
¼ � i

h� HT ; q½ � � i

h� Hr; q½ �: ð7Þ

where
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HT ¼ H0 þ HI ; ð8Þ

the unperturbed Hamiltonian H0 for this system is defined

as:

H0 ¼
h�xg 0 0

0 h�xm 0

0 0 h�xe

0

B@

1

CA; ð9Þ

where h�xg; h�xm, and h�xe are the energy of the ground,

exciton, and biexciton states, respectively. The transitions

that are allowed are ej i ! mj i and mj i ! gj i, while the

transitions ej i ! gj i are prohibited.

The interaction Hamiltonian HI is defined as:

HI ¼
0 �E0 cgm 0

�E�0 cmg 0 �E�0cme

0 �E0 cem 0

0

B@

1

CA; ð10Þ

where cgm; cmg; cem, and cme are the elements of the tran-

sition dipole moment matrix operator, and E0 is the elec-

tromagnetic field amplitude of the excitation pulse EðxÞ.
We take here E0 ¼ E�0; where E0 is the eigenvalue of

Hermitian operator.

The relaxation Hamiltonian Hr is given by:

Hr ¼
gg 0 0

0 gm 0

0 0 ge

0

B@

1

CA; ð11Þ

where gg; gm, and ge are the phenomenological damping

parameters in the energy states gj i, mj i, and ej i;
respectively.

We define the density matrix as the following:

q ¼
qgg qgm qge

qmg qmm qme

qeg qem qee

0

B@

1

CA: ð12Þ

In order to solve our system we follow the following

procedures. By substituting from Eqs. (8), (9), (10), and

(11) in Eq. (7), we can write the equation of motion (7) as

the following:

i
dq
dt
¼ Uq; ð13Þ

where q is a column matrix defined as:

q ¼ ðqgg qgm qge qmg qmm qme qeg qem qeeÞT ; ð14Þ

and

U¼

0 k 0 �k
k ðd1� i!�1Þ l 0

0 l ðd1þd2� i!�1Þ 0

�k 0 0 �ðd1þ i!�1Þ
0 �k 0 k

0 0 �k 0

0 0 0 �l
0 0 0 0

0 0 0 0

0

BBBBBBBBBBBBBBBB@

0 0 0 0 0

�k 0 0 0 0

0 �k 0 0 0

k 0 �l 0 0

0 l 0 �l 0

l 0 0 0 �l
0 0 �ðd1þd2þ i!�1Þ k 0

�l 0 k �ðd2þ i!�1Þ l

0 �l 0 l 0

1

CCCCCCCCCCCCCCCCA

ð15Þ

where

d1 ¼ x� xgm; d2 ¼ x� xme; ð16Þ

xgm ¼ xm � xg; xme ¼ xe � xm;

k ¼
cgmE0

2h� ; l ¼ cmeE0

2h� ;

!�1� gg� gm� ge;

cij

�� �� ¼ cji

�� �� ¼ cij:

As shown in Eqs. (13), (14), and (15), it is necessary to

solve a system of nine differential equations, where we see

the matrix of coefficients consisting of 9� 9 dimensions. It

is difficult to solve this system of differential equations

except by approximate methods, so the coefficients matrix

must be reduced in order to get an analytical solution. The

matrix of coefficients was previously reduced to 8� 8 by

using the concept of pseudospin. But, here, we reduce the

coefficients matrix to 6� 6 by the following procedure:

We define new elements by writing combinations of

density matrix elements as follows [61, 62]:

M1 ¼ qgm þ qmg; M2 ¼ �iðqgm � qmgÞ; M3 ¼ qgg � qmm;

M4 ¼ qme þ qem; M5 ¼ �iðqme � qemÞ; M6 ¼ qmm � qee:

ð17Þ

Hence, the equation of motion of the density matrix (13) is

as follows:
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i
dM

dt
¼ WM; ð18Þ

where

W ¼

�!�1 d1 0 0 0 0

�d1 �!�1 �2k 0 0 0

0 2k 0 0 �l 0

0 0 0 �!�1 d2 0

0 0 0 �d2 �!�1 �2l
0 �k 0 0 2l 0

0

BBBBBBBB@

1

CCCCCCCCA

:

ð19Þ

Hence, we can solve the equation of motion (19) by using

the Laplace transform. After long calculations, we get the

following:

M1 ¼ �kd1
X6

k¼1

2Lk

�k

 !

;

M2 ¼ �2k
X6

k¼1

Lkð!þ SkÞ
�k

 !

;

M3 ¼
X6

k¼1

Lkðd22 þ ð!þ SkÞ2Þ
�k

;

M4 ¼ �4k2ld2
X6

k¼1

etSkð!þ SkÞ
�k

 !

;

M5 ¼ �4k2l
X6

k¼1

etSkð!þ SkÞ2

�k

 !

;

M6 ¼ 2k2
X6

k¼1

etSkð!þ SkÞðd22 þ ð!þ SkÞ2Þ
�k

;

�k ¼
Y6

r ¼ 1

r 6¼ k

Sk � Srð Þ:

ð20Þ

Since the calculations are so huge and complex, we write

the remaining variables in case k ¼ l and d1 ¼ d2 as

follows:

Lk ¼ etSk
�
4k2!þ Skð4k2 þ d21 þ ð!þ SkÞ2

�
; ð21Þ

S1 ¼
�18k2 � 3d21 þ

�
!� ðAþ 3

ffiffiffi
3
p

GÞ
1
3
�2

3ðAþ BÞ
1
3

;

S2 ¼
1

12
�8!þ 2ð1þ i

ffiffiffi
3
p
ÞR

ðAþ BÞ
1
3

þ 2iðiþ
ffiffiffi
3
p
ÞðAþ BÞ

1
3

 !

;

S3 ¼
1

12
�8!þ 2ð1� i

ffiffiffi
3
p
ÞR

ðAþ BÞ
1
3

� 2iðiþ
ffiffiffi
3
p
ÞðAþ BÞ

1
3

 !

;

S4 ¼
�6k2 � 3d21 þ ð!� ðF þ 3

ffiffiffi
3
p

JÞ
1
3Þ2

3ðPþ QÞ
1
3

;

S5 ¼
1

12
�8!þ 2ð1þ i

ffiffiffi
3
p
ÞF

ðPþ QÞ
1
3

þ 2iðiþ
ffiffiffi
3
p
ÞðPþ QÞ

1
3

 !

;

S6 ¼
1

12
�8!þ 2ð1� i

ffiffiffi
3
p
ÞF

ðPþ QÞ
1
3

� 2iðiþ
ffiffiffi
3
p
ÞðPþ QÞ

1
3

 !

:

ð22Þ

And

A ¼ �27k2!�1 þ 9d21!
�1 þ ð!�1Þ3

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð18k2 þ 3d21 � ð!�1Þ

2Þ3 þ ð!�1Þ2ð�27k2 þ 9d21 þ ð!�1Þ
2Þ2

q

R ¼ 18k2 þ 3d21 � ð!�1Þ
2

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6k2 þ 3d21 � ð!

�1Þ2Þ3 þ ð!�1Þ2ð�9k2 þ 9d21 þ ð!
�1Þ2Þ2

q

P ¼ �9k2!�1 þ 9d21!
�1 þ ð!�1Þ3

F ¼ 6k2 þ 3d21 � ð!�1Þ
2

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216k6 þ 9k4ð12d21 � ð!�1Þ

2Þ þ d21ðd21 þ ð!�1Þ
2Þ2 þ 6k2ð3d41 � 5d21ð!�1Þ

2Þ
q

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k6 þ k4ð12d21 � ð!�1Þ

2Þ þ d21ðd21 þ ð!�1Þ
2Þ2 þ 2k2ð3d41 � 5d21ð!�1Þ

2Þ
q

:

ð23Þ

So from Eqs. (17) and (20), we can get the density matrix

elements, which satisfy the equation of motion (13), as

follows:

qgg ¼
1

3
ð1þ 2M3 þM6Þ

qmm ¼
1

3
ð1�M3 þM6Þ

qee ¼
1

3
ð1�M3 � 2M6Þ

qgm ¼
1

2
ðM1 þ iM2Þ

qmg ¼ �qgm (the complex conjugate of qgmÞ

qme ¼
1

2
ðM4 þ iM5Þ

qem ¼ �qme (the complex conjugate of qqme
Þ

qge ¼ qeg ¼ 0:

ð24Þ
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As can be seen from the results in Eq. (25), that

qge ¼ qeg ¼ 0. This is consistent with what we said earlier,

that there is no transitions between the ground state gj i and
biexciton state ej i; mj i= ej i. That is, the solution is con-

sistent with the nature of the system under study.

As applications on the previous solution of our system,

we discuss the atomic occupation probabilities, qggðtÞ,
qmmðtÞ, and qeeðtÞ; the atomic population inversion hSzi;
the purity P(t), and the information entropy HðrzÞ of the
single semiconductor quantum dot.

3. Results and discussion

Based on the analytical solution of a three-level semicon-

ductor quantum dot in the previous section, we investigate

the evolution in time of the atomic occupation probabili-

ties, qggðtÞ, qmmðtÞ, and qeeðtÞ; the atomic population

inversion, hSzi; the purity P(t), and the information entropy

HðrzÞ:
In the numerical results, we consider the initial state

qeeð0Þ ¼ 1; qijð0Þ ¼ 0 for every i 6¼ e; j 6¼ e, (this means

that initially our system will be in the excited state). In all

figures, we can observe obviously the emergence of long-

lived quantum coherence. This means that, the curve after a

certain period time becomes fixed at a certain value,

wherein the effect of the parameters fades away. In other

words, the curve after some oscillations becomes fixed,

without any effect of time. Now, We are going to analyze

and study all figures in a simplified way, so that we can

know the effect of different parameters on the behavior of

our system.

In Figs. 1 and 2, we investigate the effects of the phe-

nomenological damping parameters (we take

!�1� gg� gm� geÞ on the atomic occupation probabili-

ties, qggðtÞ, qmmðtÞ, and qeeðtÞ; the atomic population

inversion hSzi; the purity P(t), and the information entropy

HðrzÞ in case of the detuning parameters d1 ¼ d2 ¼ 0:5

and the parameters k ¼ l ¼ 0:3 at !�1 ¼ gg ¼ gm ¼ ge ¼
1; 5, and 10. The curves of the atomic occupation proba-

bility qggðtÞ, the atomic population inversion hSzi, and the

purity P(t) start from their maximum value at qggðtÞ ¼
hSzi ¼ PðtÞ ¼ 1 (the case of completely pure state), while

the curves of the atomic occupation probabilities qmmðtÞ,
qeeðtÞ, and the information entropy HðrzÞ start from their

minimum value at qmmðtÞ ¼ qeeðtÞ ¼ HðrzÞ ¼ 0. There-

after, the atomic occupation probability qggðtÞ, the atomic

population inversion hSzi, and the purity P(t) gradually

decay until they become fixed at a certain value after a

period time (long-lived quantum coherence). As the

damping parameter !�1 increases, the curves of qggðtÞ;

hSzi and P(t) reach stability faster than before (the case of

mixed state). The curves of the atomic occupation proba-

bilities qmmðtÞ, qeeðtÞ, and HðrzÞ are increased suddenly

until they reach their maximum value and settle at a certain

value after a period time at a constant value (long-lived

quantum coherence). Reaching the steady state becomes

faster when the damping parameter increases, because the

increase in the curves of qmmðtÞ, qeeðtÞ, and HðrzÞ resists
the increase in the damping parameter. This, in turn, makes

the curves of qmmðtÞ, qeeðtÞ, and HðrzÞ decay.
We can observe that the behavior of qeeðtÞ is opposite to

the behavior of qggðtÞ because they are different in phase.

In Figs. 3 and 4, we investigate the effects of the param-

eters k and l on the atomic occupation probabilities, qggðtÞ,
qmmðtÞ, and qeeðtÞ; the atomic population inversion hSzi;
the purity P(t), and the information entropy HðrzÞ in case

of the detuning parameters d1 ¼ d2 ¼ 0:5 and the phe-

nomenological damping parameters !�1 ¼ gg ¼ gm ¼
ge ¼ 1 at k ¼ l ¼ 1; 0.5, and 0.3. We take k ¼ l ¼ cE0

2h�:
This means that the elements of the transition dipole

moment matrix operator are equal, cgm ¼ cme ¼ c. Since
the Dirac constant h� is a fixed value, if we stabilize the

value of c, the effect here will be for the electromagnetic

field amplitude E0 of the excitation pulse EðxÞ only. The
curves of the atomic occupation probability qggðtÞ and the

atomic population inversion hSzi start from their maximum

value at qggðtÞ ¼ hSzi ¼ 1. At k ¼ l ¼ 1, the curves qggðtÞ
and hSzi decrease significantly, and then increase until they

become fixed at a certain value (long-lived quantum

coherence). When the electromagnetic field amplitude E0

decreases, the curves qggðtÞ and hSzi decrease without

increasing again, until they become fixed after a specified

period time. The curves of the atomic occupation proba-

bilities qmmðtÞ and qeeðtÞ begin with their minimum value

at qmmðtÞ ¼ qeeðtÞ ¼ 0. At k ¼ l ¼ 1; 0.5, the curve of

qmmðtÞ shows an ups and downs behavior making a simple

oscillation until it becomes fixed at a certain value. But at

k ¼ l ¼ 0:3, the curve of qmmðtÞ increases steadily until it

reaches a steady state after a period time. As for the curve

of the atomic occupation probability qeeðtÞ, at k ¼ l ¼ 1,

the curve of qeeðtÞ increases and then decreases to become

fixed. At k ¼ l ¼ 0:5; 0.3, the curve of qeeðtÞ increases
until it reaches its constant value. The purity curve P(t)

starts from its maximum value at PðtÞ ¼ 1 (the case of

completely pure state), and decreases until it reaches its

minimum value (the case of mixed state), which then

becomes fixed. We note that the lower the value of the

electromagnetic field amplitude E0 becomes, the higher the

value of the curve of P(t) increases. So, we find that the

pureness of the system decreases with the increase in E0

because there is a significant impact from the field on the
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system. On the other hand, the information entropy HðrzÞ
starts from its minimum value at HðrzÞ ¼ 0.

When E0 decreases the information entropy HðrzÞ
increases until it reaches a constant value after a specified

period time (long-lived quantum coherence). But when E0

decreases, the information entropy HðrzÞ reaches stability
faster, meaning that our information and knowledge of the

system remain unchanged after a certain period time. In

Figs. 5 and 6, we investigate the effects of the detuning

parameters (we take d1 ¼ d2Þ on the atomic occupation

probabilities, qggðtÞ, qmmðtÞ, and qeeðtÞ; the atomic popu-

lation inversion hSzi; the purity P(t), and the information

entropy HðrzÞ in case of the phenomenological damping

parameters !�1 ¼ gg ¼ gm ¼ ge ¼ 0:5 and the parameters

k ¼ l ¼ 0:5 at d1 ¼ d2 ¼ 0:1; 0.5, and 1.

The curves of the atomic occupation probability qggðtÞ
and the atomic population inversion hSzi (the atomic occu-

pation probabilities qmmðtÞ and qeeðtÞ) start from their

maximum value (their minimum value) at qggðtÞ ¼ hSzi ¼ 1

(at qmmðtÞ ¼ qeeðtÞ ¼ 0Þ, then the curves qggðtÞ and hSzi
(qmmðtÞ and qeeðtÞ) decrease (increase) significantly, then

increase (decrease) until they reach their fixed state (long-

lived quantum coherence). Also note that the curves qmmðtÞ
make oscillations in the beginning, but with the passing of

time these oscillations gradually weaken until they become

stable. We note that before the stability state, when the

0 50 100 150 200
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detuning parameter d1 ¼ d2 increases, the values of the

curve qggðtÞ increase, while the values of the curve qmmðtÞ
and qeeðtÞ decrease. On the other hand, the curves of the

purity P(t) (the information entropy HðrzÞ) start from their

maximum value (minimum value) at PðtÞ ¼ 1 (Hðrz ¼ 0),

and then decreases (increases) until they reach their mini-

mum values (maximum values) and then to the fixed state

(long-lived quantum coherence). However, it should be

noted that the effect of the detuning parameter don the curves
of the purityP(t), and the information entropyHðrzÞ is weak,
as the curves are almost stacked on each other.

4. Conclusion

In this paper, we have analytically solved the system of a

three-level semiconductor quantum dot. We have discussed

the effects of the phenomenological damping parameters,

the electromagnetic field amplitude E0 of the excitation

pulse EðxÞ, and the detuning parameters on the atomic

occupation probabilities, qggðtÞ, qmmðtÞ, and qeeðtÞ; the

atomic population inversion hSzi; the purity P(t), and the

information entropy HðrzÞ: It has been observed that the

curves of the atomic occupation probability qggðtÞ; the
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atomic population inversion hSzi, and the purity P(t) have a

decay over the passing of time. They are also decayed

when the phenomenological damping parameters and the

detuning parameters increase, and when the electromag-

netic field amplitude E0 of the excitation pulse EðxÞ
decreases. Besides, when the phenomenological damping

parameters increase, the curves of the atomic occupation

probabilities qmmðtÞ, qeeðtÞ, and the information entropy

HðrzÞ quickly reach a stable state.

Since the increase in the curves resists the decay

resulting from the damping parameters, so they settle at the

fixed state. On the other hand, the effect of the detuning

parameters on the curves of the purity P(t) and the infor-

mation entropy HðrzÞ is very weak, So the curves have

appeared as if they are stacked on each other without a

significant change.

The purity P(t) of the atom is affected by the increase

and decrease in the field, because of the effect from the

field on the atom. The results have supported this fact, as

the purity decreases when the field increases and vice

versa. In addition, clearly in all figures, we can observe that

the curve after a certain period time becomes fixed at a

certain value, wherein the effect of the parameters van-

ishes. In other words, the curve after some oscillations
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becomes fixed, without any effect of time. This pinpoints

the emergence of long-lived quantum coherence.

According to our results, the predictability of the long-

lived quantum coherence has a significant importance.

Since, by predicting the emergence of this phenomenon,

we can identify the period time in which the field’s impact

on the system remains constant and our information about

the system can thereby be long-lasting [63].

Thus, our problem paves the way toward a versatile

paradigm which potentiates many applications in, for

example, quantum information processing and matter wave

circuits for quantum sensing. Specifically speaking, the

formalism presented in our problem can be materialized in

the compound of gallium arsenide which has versatile

applications. Our findings, therefore, could acquire more

importance because they help us predict the period time in

which our information about this highly sensitive system

becomes stable. Accordingly, this should maintain the sta-

bility and enhance the controllability of the numerous

applications in which GaAs is used as integral part, such as

high-performance transistors [23, 24], microwave frequency

integrated circuits , laser diodes, and solar cells. Finally, such

kind of problems which tackle a semiconductor quantum dot

is of crucial importance, as it is clearly shown in the rele-

vance of the subject of semiconductor quantum dot to many

sciences and interdisciplinary applications related to many

fields, such as biology, medicine, industry, and others.

Therefore, we recommend further research and mathe-

matical study along with experimental investigation of

more complex problems of atoms with higher energy

levels, in order to widen the scope of vision and unfold

more ideas concerning this vital topic of research.
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