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Abstract: The Cahn-Hilliard equation is a nonlinear partial differential equation which is used in digital image inpainting
to restore damaged or missing parts of degraded text and high contrast images. Due to the nonlocal property of the
fractional derivative, the fractional order Cahn—Hilliard equation can describe these physical processes in more flexible
way. In this paper, the effects of fractional order derivative on the solutions of time-fractional Cahn—Hilliard equation are
investigated using a new modification of the homotopy analysis method and a recently developed technique, namely
residual power series method. The numerical and graphical illustrations depict the accuracy and reliability of the obtained
results.
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1. Introduction

Image inpainting, or image interpolation, is the process of
filling in the missing parts of an image such that the result
looks like the original image. Its applications include
restoration of old paintings by museum artists, and
removing scratches from photographs. For a long time,
artists have been using manual inpainting to restore images.
They restored the damaged or missing parts of the images,
using the information from the structure of the surrounding
regions of missing parts. With the progress of digital pro-
cessing of images, the need for unsupervised restoration of
images was stimulated which lead to digital image
inpainting.

The nonlinear Cahn—Hilliard equation is a stiff parabolic
partial differential equation which is used in the digital
image inpainting for fast inpainting of degraded text, as
well as super resolution of high contrast images. The
smoothing property of Cahn—Hilliard equation provides a
natural connection of the contours across missing parts
[1, 2].

*Corresponding author, E-mail: toghazala2003 @yahoo.com

The Cahn-Hilliard equation was originally introduced
in the mathematical modeling of the spinodal decom-
position of a binary fluid. Spinodal decomposition under
shear flow is a problem of great industrial importance
and describes the process of phase separation by which
a quenched homogeneous mixture spontaneously sepa-
rates into distinct phases [3]. The investigation of the
solutions of partial differential equations is an important
field of research in mathematics and physics and the
behavior of the solution of Cahn-Hilliard equation has
been studied using various mathematical techniques
[4, 5, 25-28].

Recently, fractional order differential equations have
drawn increasing attention since fractional calculus has the
ability to describe different physical phenomena in a more
flexible way than the traditional integer-order calculus
[6-8, 19, 20]. This is due to the fact that fractional calculus
is, in fact, an extension of the traditional calculus to non-
integer (fractional) order such that the fractional order
system response ultimately converges to the integer-order
system response. The most important advantage of using
fractional order differential equation in mathematical
modeling is their nonlocal property. Due to the nonlocal
property, fractional operators give a perfect aid to charac-
terize the memory and hereditary properties of various
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processes and materials. The Cahn-Hilliard equation has
many applications in image processing and materials sci-
ence. Due to the nonlocal property of the fractional
derivative, the fractional order Cahn—Hilliard equation can
describe these physical processes in more flexible way. As
a result, and motivated by the increasingly important role
played by fractional calculus, fractional order Cahn—Hil-
liard has caught the attention of many researchers in recent
years [9-11].

In this paper, the time-fractional Cahn—Hilliard equation
is considered as

D,ﬁu—aux—éu(ux)2 — (3u2 — Dty + thyey = 0, (1)
subject to the initial condition

2 2_19
u(x,0) =+ L ¢ |51 " ¥ —2)

N RV ARV

2 2_9
xtanh(W—l—C)

where 1 and C are arbitrary constants and the fractional
order time derivative is taken in the Caputo’s sense.

The exact solution of the integer-order Cahn—Hilliard
equation is obtained by Manafian et al. [12] as

(2)
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The purpose of this paper is to find new analytical
approximate solutions of time-fractional Cahn-Hilliard
equation. The approximate analytical solutions of time-
fractional Cahn—Hilliard equation are obtained using a new
modified homotopy analysis method and the residual power
series method. The main usefulness of analytic approxi-
mations lies in the fact that, being analytic expressions,
they reveal qualitative behavior (such as dependence of
parameters) in ways that numerical solutions cannot.
Homotopy analysis method (HAM) was first proposed
by Liao. Homotopy is a topological concept defining a
connection between different things in mathematics, which
contain same characteristics in some aspects. Homotopy
analysis method has useful characteristics which distin-
guish it from the other traditional analytical techniques. It
is independent of any small or large parameter at all,
provides an extremely large freedom to choose an auxiliary
linear operator and base functions, and a convenient way to
guarantee the convergence of the solution series. HAM has
great generality and logically contains the Adomian
decomposition method, Lyapunov’s small artificial
parameter method, the J-expansion method and the Euler

(3)

transform. These characteristics provide an easier way to
solve a wide range of nonlinear problems in science and
engineering [13]. The flexibility and generality of the
homotopy analysis method has motivated many researchers
to develop various useful applications and improved
methods [14, 23, 24, 29-37].

Residual power series method was proposed by Abu
Arqub [15] for the solution of fractional differential
equations. The residual power series method has small
computational requirements with high precision in less
time. It obtains Taylor’s expansion of the solution; hence
the exact solution is obtained when the solution is poly-
nomial. The solution and all its derivatives are applicable at
each point in the given interval. This method can be
applied directly to the given problem by choosing an
appropriate value for the initial approximation since it does
not require any modification while switching from the first
order to the higher order [38]. Residual power series
method has been successfully applied on a wide class of
linear and nonlinear fractional differential equation and is
proved to be an efficient tool for the approximate analytical
solutions of fractional differential equations.

2. Fundamentals of fractional calculus

There are many definitions of fractional derivatives and
integrals such as Caputo, Weyl, Riesz, Riemann-Liouville,
Grunwald-Letnikov efc. The Riemann-Liouville and
Caputo’s are commonly used definitions. But Caputo’s
approach is suitable for real-world physical problems
because it defines integer-order initial conditions for frac-
tional differential equations.

Definition The Caputo’s time-fractional derivative of
order o of y(x, 7) is defined as

1
Diy(x,1) = { [
' af—(“) a=méeEN.

or" ’

t m—o—13"y(x,n)
[i(t—mn) CX 0<m—1<a<m,x €1,

o

(4)

Definition The Riemann—Liouville time-fractional

integral of order o of y(x, f) is defined as
1 t o—1
Py, ) = =)y n)dn,a>0,t>n>s>0,x€l,
y(x> l): oa=0.
(5)

3. Solution of time-fractional Cahn-Hilliard equation
using MHAM

In this section, the analytical approximate solution of the
time-fractional Cahn-Hilliard equation is obtained using a
modified homotopy analysis method (MHAM). The
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proposed modification simplifies the computations ” " ¥ —2)
involved in each iteration and hence is easier to implement  uo(x, ) = £ 7 +|F G F A
than the standard homotopy analysis method. The time- (13)

fractional Cahn-Hilliard equation can be written as
Lu(x,t) + Nu(x,t) = 0, (6)
where L is a linear operator and N is a nonlinear operator.

Using the modified homotopy analysis method, the
nonlinear term in Eq. (6) can be simplified as

- ZNi[UO('xa t;p)v Ul (x7 t;p)a RS
i=0

N[U(x,t;p)]

(7)

which yields the modified higher order deformation
equations as

L[Uy(x,t;p)] = hH(L[Uo(x, ;)] + No[Uo(x, £;p)]),  (8)
and for k =1,2,3, ...
L[Uks1(x,t;p)] = L[Uk(x, £;p)] + RH (L[Uk(x, t; p)]

+ Ne[Uo(x, ), Ur(x, 1), -, Uk(x, £ p))).
©)
Taking £ = aﬁ the deformation equations can be written
as
of
a7 (U1 (& )] = hH(L{Uo(x, 1; p)] + No[Uo (%, 7; p))),
(10)
and for k =1,2,3,....
oF oF
3,7 (U1 (3, 15p)] = 3 5 [Un(x, ;)] + RH (L{Uk (x, 7, p)]
+ Ne[Uo(x, £5p), Ur(x,£;p), - -, Ui (%, )))-
(11)

Solving the zeroth-, first- and second-order deformation
equations and taking the values of the arbitrary constants as

7 = /2 and C = 0, the second-order approximate solution
can be calculated as

up-(x,1) = uo(x, 1) + uy (x, 1) + up (x, 1), (12)

where

Ui(x, t;p)],

?

2 2_ 9
xtanh<w+c)

h
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(o) e (o) (o))
(14)

and
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4. Preliminaries for RPSM

In this section, some preliminaries for the residual power
series method are given [16].

Definition A fractional power series about t=t; is
defined as

> it — 1) =00+ 01(t — 1) + 02t — 10)*
=0 (16)

+.,0<k—1<pf<k,t>1.

Theorem If the fractional power series representation of
g about t = ty has the form

g() =Y ot —10)" 0<k—1<p<kty<t<t+R
J=0

(17)

and fractional order derivatives DPg(t) are continuous on
lto,t0 + R| for j=0,1,2,..., then the values of the
coefficients a;s can be calculated as

Dg(1o)

rGp+1)’°

where R is the radius of convergence of the fractional
power series.

O'j:

Definition A multiple fractional power series about t =
to 1s defined as

00

D @) — 16 = vo(x) + v (x)(t — 10)”

=0
F () -0 4,
t>10,0<k— 1< <k,

where v;’s are functions of x.

5. Solution of time-fractional Cahn-Hilliard equation
using RPSM

The time-fractional Cahn—Hilliard equation is considered,
subject to the initial condition

u(xa O) = lp()C), (19)

where

n " n”Fm—2)
=4+ —+4 -z 7
LTRTTT

2 2_>
xtanh(W—i—C)

The fractional power series expansion of u(x, f) about the
initial point t = 0 is considered as

o0
EE:‘V
Jj=

¥ (x)

(20)

,0<p<1,xel,0<t<R
rw n0<F

(21)
and the residual function Res(x, ¢t) is defined as

Res(x,1) :Dfu —au, — 6u(ux)2 + Uy — 3Pty + Uprers
(22)

then k-th residual function can be written in the form

o 3
Resy (1) =0t) Qo)
du(x, 1)\ * | D%u(x, 1)
— 6uk(x, t) ( ax ) + axz
O up(x,1)  u(x,1)
2 k\Asy k\Asy _
— 3(ug(x,1)) e + o Jk=1,2,3, ...
(23)

From the results available in literature [17-22], it is evident
that Res(x,7) = 0 and limy_ Resi(x,t) = Res(x,t) Vx € I,

t>0. Moreover, D}’Res(x,0) = DIRes;(x,0)  for
j=0,1,2, ... k.
Substituting the k-th truncated series of u(x, f) into

Eq. (23) and calculating the fractional derivative D;kil)ﬁ of

Resi(x, 1),k =1,2,3,... at t = 0 yields a system of equa-
tion as

DY VP Resi(x,0) = 0,k = 1,2,3,..,0<f< 1. (24)

The coefficients v;(x) can be calculated by solving the
system of equations (24).

For k = 0, the zeroth residual power series solution can
be calculated using the initial condition as
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5 5 For k = 2, the 2-nd residual power series solution can be
L n 7 F (* —2)
up(x,1) = ﬁ + :Fﬁ + T expressed as
5 5 (25) # 28
-2 1) = — e
xmm( GEAT >x+c>. w2(x0) = 90(9) 10 ey + 20 Fp

(30)
For k = 1, the first residual power series solution can be

Using Eq. (30), the second residual function can be
expressed as

written as
B
u (x, 1) = vo(x) + v1(x) m (26) Res,(x,1) =vi(x) + vz(x)l_(/;—/:_])
Using Eq. (26), the first residual function can be written as —a <6v§)(cx) + ava'ix) T(l;i— 0 avé)(cx) l"(z,t;/:- 1))
) ) i p 2
Resy(x,t) = vi(x) — a( Vg)(cx) + vé)(cx) T+ 1)> — 6<v0(x) +vi(x) m + va(x) m)
i ovo(x)  Ov(x) k) 2\
- 6<Vo(X) +vi(x) TG+1) 1)> X ( > | ox TR+ ox TR+ 1))
dvo(x)  ovi(x) ¢ ? i i ’
5 ) (62v0(x) N *vi(x) i vy (x tzﬁ
t 2 2 2
_3 + (27) ox o2 T(B+1) o2 T(2p+1)
(VO(X) e (g + 1)> Pvo(x)  Pvi(x) o Puy(x) P
Pro(x) | Pui(x) o *(zw TTee T ae zmu)
ox2 * a2 T(B+1) N (84v0(x) N ot (x) P N ty(x) 2P )
62\)0()6) aZVI(x) t/} ox4 oxt F(ﬁ+1) ox4 F 2ﬁ+1) ’
+ ( e a2 TR+ 1)) 31)
n *vo(x) n ovix) Since Eq. (24) and Eq. (31) imply
Ox* ot T(p+1))
v ( )_ 6v1(x)+6 ( ) 6v0( )
Since Egs. (24) and (27) imply 2 =AW Ty
2 Ovo(x) Ovy(x v (x
(%) :aavg_)(c)c)+ 6vo () <a"§_)(cx)> o + 12vp(x) g)(c ) é;(c )+ 6vo (x) v (x) 622 )
2 2 4 LM (x) OPvi(x)  tvi(x)
I 3(v0(x))26 gigx) 0 E\;;)ng) 0 ;iix)’ + 3(v(x)) T
(32)
therefore, the first-order approximate solution is obtained
as therefore, the second-order approximate solution is
2 obtained as
_ t” 0y (x) 0y (x)
mww—wm+rw+n<aa +oue (M)

+3(¥(x))

2 Y (x) ﬁwm_#ww>
Ox2 ox2 ot )
(29)
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Fig. 1 Plots of A-curves taking (0.1, 0.1) at § = 0.75 (dashed line)
and f# =1 (solid line)

u(0.1,0.1)
150

" Il f " " " Il " " " " Il " " " " Il " " " " [ " " " h
- / -15 ~1.0 ~0.5 |
Fig. 2 Plots of Z-curves taking #'(0.1,0.1) at f =1

6. Results and discussion

The appropriate value of the auxiliary parameter 7 for
MHAM is to be chosen to guarantee the convergence of the
solution series. This is done by plotting /-curves corre-
sponding to different values of time 7. Figures 1 and 2 show
that for convergent solution series, the value of # must be
chosen between —0.9 and —1. It is clear from the %-curves
that the convergence of the solution series is highly sen-
sitive to the value of 7.

To confirm the accuracy of the obtained results using
MHAM, the absolute errors in the second-order approxi-
mate solution are calculated for f =1 corresponding to
different values of independent variables x and ¢. The time-
fractional Cahn-Hilliard equation is considered for a = 2.
The value of 7 is taken as —0.95, as suggested by the 7-
curves. The results are summarized in Table 1.
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Table 1 Absolute errors for time-fractional Cahn—Hilliard equation at § = 1 using MHAM

x/t 0.02 0.04 0.06 0.08 0.10

-1.0 2.018 x 1074 8.949 x 10~* 2.079 x 1073 3.756 x 1073 5.929 x 1073
-0.5 1.354 x 1074 6.853 x 107* 1.680 x 1073 3.151 x 1073 5.133 x 1073
0 6.317 x 107 8.116 x 103 9.070 x 1076 1.974 x 107* 5.818 x 1074
0.5 2.517 x 1074 8.657 x 10~* 1.820 x 103 3.094 x 1073 4.671 x 1073
1 2918 x 1074 1.081 x 1073 2.374 x 1073 4177 x 1073 6.499 x 1073

The effect of fractional order f on the solution is
graphically illustrated in Fig. 3 by plotting u,«(x, t) corre-
sponding to different values of f§ at t = 0.05.

To confirm the accuracy of the obtained results using
RPSM, the absolute errors in the second-order RPS
approximate solution are calculated for f =1 corre-
sponding to different values of independent variables x and
t. The time-fractional Cahn-Hilliard equation is considered
for a = 2. The values of arbitrary constants are taken as
v = /2 and C = 0. The results are summarized in Table 2.

The effects of fractional order f§ on the solution are
graphically illustrated in Fig. 4 by plotting u,(x, ) corre-
sponding to different values of f§ at t = 0.05.

The graphical illustrations of the obtained results exhibit
kink solitary wave solutions. The graphical demonstration
and comparison of analytical approximate solutions

obtained using MHAM and RPSM are shown in Figs. 5, 6
and 7. All our derived solutions are novel and have not
been formulated before in literature to the best of our
knowledge.

7. Conclusion

The Cahn-Hilliard equation is used in binary image
inpainting. In this paper, the analytical approximate solu-
tions of time-fractional Cahn-Hilliard equation are
obtained using a modified homotopy analysis method and
the residual power series method. The effects of fractional
order i on the solution of the equation are graphically
illustrated in Figs. 3 and 4. To check the accuracy of the
results, the second-order analytical approximate solutions,

ko]

Fig. 3 Effect of f on u(x, f) using MHAM (ff = 0.8 — solid line,
f = 0.9 — dot-dashed line, f = 1.0 — dotted line)

Fig. 4 Effect of  on u(x, 1) using RPSM (f = 0.8 — solid line,
f = 0.9 — dot-dashed line, f = 1.0 — dotted line)

Table 2 Absolute errors for time-fractional Cahn—Hilliard equation at f = 1 using RPSM

X/t 0.02 0.04 0.06 0.08 0.10

-1.0 4.585 x 1077 3.060 x 107° 8.218 x 107° 1.434 x 1073 1.770 x 1073
—0.5 4471 x 1076 3.660 x 1072 1.263 x 107* 3.059 x 10~* 6.098 x 104
0 7.540 x 107° 6.026 x 1073 2.031 x 1074 4.803 x 1074 9.353 x 1074
0.5 4.259 x 107° 3.321 x 1073 1.092 x 10~* 2.519 x 10~* 4.784 x 1074
1 6.036 x 1077 5.382 x 1076 1.997 x 1073 5.146 x 1073 1.083 x 107*
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ulx )

nlx, 1)

Fig. 7 Exact solution

corresponding to different values of x and ¢, are calculated
for § = 1 and the results are summarized in Tables 1 and 2.
The exact solution and the analytical approximate solutions
are graphically expressed for § = 1 in Figs. 5, 6 and 7. The
numerical results and graphical illustrations show that the
approximate solutions are in good agreement with the exact
solutions.
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