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Abstract: The Cahn–Hilliard equation is a nonlinear partial differential equation which is used in digital image inpainting

to restore damaged or missing parts of degraded text and high contrast images. Due to the nonlocal property of the

fractional derivative, the fractional order Cahn–Hilliard equation can describe these physical processes in more flexible

way. In this paper, the effects of fractional order derivative on the solutions of time-fractional Cahn–Hilliard equation are

investigated using a new modification of the homotopy analysis method and a recently developed technique, namely

residual power series method. The numerical and graphical illustrations depict the accuracy and reliability of the obtained

results.
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1. Introduction

Image inpainting, or image interpolation, is the process of

filling in the missing parts of an image such that the result

looks like the original image. Its applications include

restoration of old paintings by museum artists, and

removing scratches from photographs. For a long time,

artists have been using manual inpainting to restore images.

They restored the damaged or missing parts of the images,

using the information from the structure of the surrounding

regions of missing parts. With the progress of digital pro-

cessing of images, the need for unsupervised restoration of

images was stimulated which lead to digital image

inpainting.

The nonlinear Cahn–Hilliard equation is a stiff parabolic

partial differential equation which is used in the digital

image inpainting for fast inpainting of degraded text, as

well as super resolution of high contrast images. The

smoothing property of Cahn–Hilliard equation provides a

natural connection of the contours across missing parts

[1, 2].

The Cahn–Hilliard equation was originally introduced

in the mathematical modeling of the spinodal decom-

position of a binary fluid. Spinodal decomposition under

shear flow is a problem of great industrial importance

and describes the process of phase separation by which

a quenched homogeneous mixture spontaneously sepa-

rates into distinct phases [3]. The investigation of the

solutions of partial differential equations is an important

field of research in mathematics and physics and the

behavior of the solution of Cahn–Hilliard equation has

been studied using various mathematical techniques

[4, 5, 25–28].

Recently, fractional order differential equations have

drawn increasing attention since fractional calculus has the

ability to describe different physical phenomena in a more

flexible way than the traditional integer-order calculus

[6–8, 19, 20]. This is due to the fact that fractional calculus

is, in fact, an extension of the traditional calculus to non-

integer (fractional) order such that the fractional order

system response ultimately converges to the integer-order

system response. The most important advantage of using

fractional order differential equation in mathematical

modeling is their nonlocal property. Due to the nonlocal

property, fractional operators give a perfect aid to charac-

terize the memory and hereditary properties of various
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processes and materials. The Cahn–Hilliard equation has

many applications in image processing and materials sci-

ence. Due to the nonlocal property of the fractional

derivative, the fractional order Cahn–Hilliard equation can

describe these physical processes in more flexible way. As

a result, and motivated by the increasingly important role

played by fractional calculus, fractional order Cahn–Hil-

liard has caught the attention of many researchers in recent

years [9–11].

In this paper, the time-fractional Cahn–Hilliard equation

is considered as

Db
t u � aux � 6uðuxÞ2 � ð3u2 � 1Þuxx þ uxxxx ¼ 0; ð1Þ

subject to the initial condition

uðx; 0Þ ¼ � g
ffiffiffi

2
p þ � g

ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ffiffiffi

2
p

"

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

x

2
þ C

 !#

;

ð2Þ

where g and C are arbitrary constants and the fractional

order time derivative is taken in the Caputo’s sense.

The exact solution of the integer-order Cahn–Hilliard

equation is obtained by Manafian et al. [12] as

uðx; tÞ ¼ � g
ffiffiffi

2
p þ � g

ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ffiffiffi

2
p

"

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ðx þ atÞ
2

þ C

 !#

:

ð3Þ

The purpose of this paper is to find new analytical

approximate solutions of time-fractional Cahn–Hilliard

equation. The approximate analytical solutions of time-

fractional Cahn–Hilliard equation are obtained using a new

modified homotopy analysis method and the residual power

series method. The main usefulness of analytic approxi-

mations lies in the fact that, being analytic expressions,

they reveal qualitative behavior (such as dependence of

parameters) in ways that numerical solutions cannot.

Homotopy analysis method (HAM) was first proposed

by Liao. Homotopy is a topological concept defining a

connection between different things in mathematics, which

contain same characteristics in some aspects. Homotopy

analysis method has useful characteristics which distin-

guish it from the other traditional analytical techniques. It

is independent of any small or large parameter at all,

provides an extremely large freedom to choose an auxiliary

linear operator and base functions, and a convenient way to

guarantee the convergence of the solution series. HAM has

great generality and logically contains the Adomian

decomposition method, Lyapunov’s small artificial

parameter method, the d-expansion method and the Euler

transform. These characteristics provide an easier way to

solve a wide range of nonlinear problems in science and

engineering [13]. The flexibility and generality of the

homotopy analysis method has motivated many researchers

to develop various useful applications and improved

methods [14, 23, 24, 29–37].

Residual power series method was proposed by Abu

Arqub [15] for the solution of fractional differential

equations. The residual power series method has small

computational requirements with high precision in less

time. It obtains Taylor’s expansion of the solution; hence

the exact solution is obtained when the solution is poly-

nomial. The solution and all its derivatives are applicable at

each point in the given interval. This method can be

applied directly to the given problem by choosing an

appropriate value for the initial approximation since it does

not require any modification while switching from the first

order to the higher order [38]. Residual power series

method has been successfully applied on a wide class of

linear and nonlinear fractional differential equation and is

proved to be an efficient tool for the approximate analytical

solutions of fractional differential equations.

2. Fundamentals of fractional calculus

There are many definitions of fractional derivatives and

integrals such as Caputo, Weyl, Riesz, Riemann–Liouville,

Grunwald–Letnikov etc. The Riemann–Liouville and

Caputo’s are commonly used definitions. But Caputo’s

approach is suitable for real-world physical problems

because it defines integer-order initial conditions for frac-

tional differential equations.

Definition The Caputo’s time-fractional derivative of

order a of y(x, t) is defined as

Da
t yðx; tÞ ¼

1
Cðm�aÞ

R t

s ðt � gÞm�a�1 omyðx;gÞ
ogm ; 0�m � 1\a\m; x 2 I;

omyðx;tÞ
otm ; a ¼ m 2 N:

8

<

:

ð4Þ

Definition The Riemann–Liouville time-fractional

integral of order a of y(x, t) is defined as

Iat yðx; tÞ ¼
1

CðaÞ
R t

s ðt � gÞa�1yðx; gÞdg; a[ 0; t [ g[ s� 0; x 2 I;

yðx; tÞ; a ¼ 0:

(

ð5Þ

3. Solution of time-fractional Cahn–Hilliard equation

using MHAM

In this section, the analytical approximate solution of the

time-fractional Cahn–Hilliard equation is obtained using a

modified homotopy analysis method (MHAM). The
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proposed modification simplifies the computations

involved in each iteration and hence is easier to implement

than the standard homotopy analysis method. The time-

fractional Cahn–Hilliard equation can be written as

Luðx; tÞ þ Nuðx; tÞ ¼ 0; ð6Þ

where L is a linear operator and N is a nonlinear operator.

Using the modified homotopy analysis method, the

nonlinear term in Eq. (6) can be simplified as

N½Uðx; t; pÞ� ¼
X

1

i¼0

Ni½U0ðx; t; pÞ;U1ðx; t; pÞ; . . .;Uiðx; t; pÞ�;

ð7Þ

which yields the modified higher order deformation

equations as

L½U1ðx; t; pÞ� ¼ �hHðL½U0ðx; t; pÞ� þ N0½U0ðx; t; pÞ�Þ; ð8Þ

and for k ¼ 1; 2; 3; :::

L½Ukþ1ðx; t; pÞ� ¼ L½Ukðx; t; pÞ� þ �hHðL½Ukðx; t; pÞ�
þ Nk½U0ðx; t; pÞ;U1ðx; t; pÞ; . . .;Ukðx; t; pÞ�Þ:

ð9Þ

Taking L ¼ ob

otb
, the deformation equations can be written

as

ob

otb
½U1ðx; t; pÞ� ¼ �hHðL½U0ðx; t; pÞ� þ N0½U0ðx; t; pÞ�Þ;

ð10Þ

and for k ¼ 1; 2; 3; . . .:

ob

otb
½Ukþ1ðx; t; pÞ� ¼ ob

otb
½Ukðx; t; pÞ� þ �hHðL½Ukðx; t; pÞ�

þ Nk½U0ðx; t; pÞ;U1ðx; t; pÞ; . . .;Ukðx; t; pÞ�Þ:
ð11Þ

Solving the zeroth-, first- and second-order deformation

equations and taking the values of the arbitrary constants as

g ¼
ffiffiffi

2
p

and C ¼ 0, the second-order approximate solution

can be calculated as

u2	 ðx; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞ þ u2ðx; tÞ; ð12Þ

where

u0ðx; tÞ ¼ � g
ffiffiffi

2
p þ � g

ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ffiffiffi

2
p

"

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

x

2
þ C

 !#

;

ð13Þ

u1ðx; tÞ ¼�h
tb

Cðbþ 1Þ � a
ffiffiffi

2
p cosh

x
ffiffiffi

2
p

� ��2

� cosh
x
ffiffiffi

2
p

� ��2
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x
ffiffiffi

2
p

 

þ cosh
x
ffiffiffi

2
p

� ��4

tanh
x
ffiffiffi

2
p þ cosh

x
ffiffiffi

2
p

� ��2

tanh
x
ffiffiffi

2
p

� �3
!

ð14Þ

and

u2ðx; tÞ ¼ �h
tb

Cðbþ 1Þ � a
ffiffiffi

2
p cosh

x
ffiffiffi

2
p

� ��2

� cosh
x
ffiffiffi

2
p

� ��2
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x
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p
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p

� ��2
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ffiffiffi

2
p
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!

þ �h2 tb
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ffiffiffi
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x
ffiffiffi
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p

� ��2
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x
ffiffiffi

2
p

� ��2
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x
ffiffiffi
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p

 

þ cosh
x
ffiffiffi
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p

� ��4

tanh
x
ffiffiffi

2
p þ cosh

x
ffiffiffi

2
p

� ��2
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x
ffiffiffi

2
p

� �3
!

þ �h2 t2b

ðCðbþ 1ÞÞ2

ffiffiffi
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p

a cosh
x
ffiffiffi

2
p

� ��4

�
ffiffiffi

2
p

a cosh
x
ffiffiffi

2
p

� ��6
 

�a2 cosh
x
ffiffiffi

2
p

� ��2

tanh
x
ffiffiffi

2
p þ 4 cosh

x
ffiffiffi

2
p

� ��4
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x
ffiffiffi

2
p

�29 cosh
x
ffiffiffi
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p

� ��6
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x
ffiffiffi
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p þ 25 cosh

x
ffiffiffi
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� ��8
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ffiffiffi
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p

�2
ffiffiffi
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p

a cosh
x
ffiffiffi
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� ��2

tanh
x
ffiffiffi
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� �2

þ
ffiffiffi

2
p

a cosh
x
ffiffiffi
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p

� ��4

tanh
x
ffiffiffi
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� �2

�2 cosh
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ffiffiffi
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� ��2
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ffiffiffi
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� �3
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ffiffiffi
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� �3
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ffiffiffi
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p

� ��6
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x
ffiffiffi
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p

� �3

þ2
ffiffiffi
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p

a cosh
x
ffiffiffi
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p

� ��2
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ffiffiffi
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� �4

þ4 cosh
x
ffiffiffi
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� ��2

tanh
x
ffiffiffi
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� �5
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� ��4
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p
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�2 cosh
x
ffiffiffi
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� ��2
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ffiffiffi
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!

:

ð15Þ
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4. Preliminaries for RPSM

In this section, some preliminaries for the residual power

series method are given [16].

Definition A fractional power series about t ¼ t0 is

defined as

X

1

j¼0

rjðt � t0Þjb ¼ r0 þ r1ðt � t0Þb þ r2ðt � t0Þ2b

þ :::; 0� k � 1\b� k; t � t0:

ð16Þ

Theorem If the fractional power series representation of

g about t ¼ t0 has the form

gðtÞ ¼
X

1

j¼0

rjðt � t0Þjb; 0� k � 1\b� k; t0 � t\t0 þR

ð17Þ

and fractional order derivatives DjbgðtÞ are continuous on

�t0; t0 þR½ for j ¼ 0; 1; 2; . . ., then the values of the

coefficients rjs can be calculated as

rj ¼
Djbgðt0Þ
Cðjbþ 1Þ ;

where R is the radius of convergence of the fractional

power series.

Definition A multiple fractional power series about t ¼
t0 is defined as

X

1

j¼0

mjðxÞðt � t0Þjb ¼ m0ðxÞ þ m1ðxÞðt � t0Þb

þ m2ðxÞðt � t0Þ2b þ 
 
 
 ;
t� t0; 0� k � 1\b� k;

ð18Þ

where mj’s are functions of x.

5. Solution of time-fractional Cahn–Hilliard equation

using RPSM

The time-fractional Cahn–Hilliard equation is considered,

subject to the initial condition

uðx; 0Þ ¼ wðxÞ; ð19Þ

where

wðxÞ ¼ � g
ffiffiffi

2
p þ � g

ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ffiffiffi

2
p

"

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

x

2
þ C

 !#

:

ð20Þ

The fractional power series expansion of u(x, t) about the

initial point t ¼ 0 is considered as

uðx; tÞ ¼
X

1

j¼0

mjðxÞ
tjb

Cðjbþ 1Þ ; 0\b� 1; x 2 I; 0� t\R

ð21Þ

and the residual function Res(x, t) is defined as

Resðx; tÞ ¼Db
t u � aux � 6uðuxÞ2 þ uxx � 3u2uxx þ uxxxx;

ð22Þ

then k-th residual function can be written in the form

Reskðx; tÞ ¼
obukðx; tÞ

otb
� a

oukðx; tÞ
ox

� 6ukðx; tÞ oukðx; tÞ
ox

� �2

þ o2ukðx; tÞ
ox2

� 3ðukðx; tÞÞ2 o
2ukðx; tÞ
ox2

þ o4ukðx; tÞ
ox4

; k ¼ 1; 2; 3; ::::

ð23Þ

From the results available in literature [17–22], it is evident

that Resðx; tÞ ¼ 0 and limk!1 Reskðx; tÞ ¼ Resðx; tÞ 8x 2 I,

t� 0. Moreover, Djb
t Resðx; 0Þ ¼ Djb

t Reskðx; 0Þ for

j ¼ 0; 1; 2; :::; k.

Substituting the k-th truncated series of u(x, t) into

Eq. (23) and calculating the fractional derivative D
ðk�1Þb
t of

Reskðx; tÞ; k ¼ 1; 2; 3; ::: at t ¼ 0 yields a system of equa-

tion as

D
ðk�1Þb
t Reskðx; 0Þ ¼ 0; k ¼ 1; 2; 3; :::; 0\b� 1: ð24Þ

The coefficients mjðxÞ can be calculated by solving the

system of equations (24).

For k ¼ 0, the zeroth residual power series solution can

be calculated using the initial condition as
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u0ðx; tÞ ¼ � g
ffiffiffi

2
p þ � g

ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

ffiffiffi

2
p

"

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � ðg2 � 2Þ
p

x

2
þ C

 !#

:

ð25Þ

For k ¼ 1, the first residual power series solution can be

expressed as

u1ðx; tÞ ¼ m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ :
ð26Þ

Using Eq. (26), the first residual function can be written as

Res1ðx; tÞ ¼ m1ðxÞ � a
om0ðxÞ
ox

þ om1ðxÞ
ox

tb

Cðbþ 1Þ

� �

� 6 m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ

� �

om0ðxÞ
ox

þ om1ðxÞ
ox

tb

Cðbþ 1Þ

� �2

� 3 m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ

� �2

o2m0ðxÞ
ox2

þ o2m1ðxÞ
ox2

tb

Cðbþ 1Þ

� �

þ o2m0ðxÞ
ox2

þ o2m1ðxÞ
ox2

tb

Cðbþ 1Þ

� �

þ o4m0ðxÞ
ox4

þ o4m1ðxÞ
ox4

tb

Cðbþ 1Þ

� �

:

ð27Þ

Since Eqs. (24) and (27) imply

m1ðxÞ ¼a
om0ðxÞ
ox

þ 6m0ðxÞ
om0ðxÞ
ox

� �2

þ 3ðm0ðxÞÞ2 o
2m0ðxÞ
ox2

� o2m0ðxÞ
ox2

� o4m0ðxÞ
ox4

;

ð28Þ

therefore, the first-order approximate solution is obtained

as

u1ðx; tÞ ¼wðxÞ þ tb

Cðbþ 1Þ a
owðxÞ
ox

þ 6wðxÞ owðxÞ
ox

� �2
 

þ3ðwðxÞÞ2 o
2wðxÞ
ox2

� o2wðxÞ
ox2

� o4wðxÞ
ox4

�

:

ð29Þ

For k ¼ 2, the 2-nd residual power series solution can be

expressed as

u2ðx; tÞ ¼ m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ þ m2ðxÞ
t2b

Cð2bþ 1Þ :

ð30Þ

Using Eq. (30), the second residual function can be

written as

Res2ðx; tÞ ¼m1ðxÞ þ m2ðxÞ
tb

Cðbþ 1Þ

� a
om0ðxÞ
ox

þ om1ðxÞ
ox

tb

Cðbþ 1Þ þ
om2ðxÞ
ox

t2b

Cð2bþ 1Þ

� �

� 6 m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ þ m2ðxÞ
t2b

Cð2bþ 1Þ

� �

� om0ðxÞ
ox

þ om1ðxÞ
ox

tb

Cðbþ 1Þ þ
om2ðxÞ
ox

t2b

Cð2bþ 1Þ

� �2

� 3 m0ðxÞ þ m1ðxÞ
tb

Cðbþ 1Þ þ m2ðxÞ
t2b

Cð2bþ 1Þ

� �2

� o2m0ðxÞ
ox2

þ o2m1ðxÞ
ox2

tb

Cðbþ 1Þ þ
o2m2ðxÞ
ox2

t2b

Cð2bþ 1Þ

� �

þ o2m0ðxÞ
ox2

þ o2m1ðxÞ
ox2

tb

Cðbþ 1Þ þ
o2m2ðxÞ
ox2

t2b

Cð2bþ 1Þ

� �

þ o4m0ðxÞ
ox4

þ o4m1ðxÞ
ox4

tb

Cðbþ 1Þ þ
o4m2ðxÞ
ox4

t2b

Cð2bþ 1Þ

� �

:

ð31Þ

Since Eq. (24) and Eq. (31) imply

m2ðxÞ ¼a
om1ðxÞ
ox

þ 6m1ðxÞ
om0ðxÞ
ox

� �2

þ 12m0ðxÞ
om0ðxÞ
ox

om1ðxÞ
ox

þ 6m0ðxÞm1ðxÞ
o2m0ðxÞ
ox2

þ 3ðm0ðxÞÞ2 o
2m1ðxÞ
ox2

� o2m1ðxÞ
ox2

� o4m1ðxÞ
ox4

ð32Þ

therefore, the second-order approximate solution is

obtained as

Effects of fractional order derivative on the solution of time-fractional 895



u2ðx; tÞ ¼ wðxÞ þ tb

Cðbþ 1Þ a
owðxÞ
ox

þ 6wðxÞ owðxÞ
ox

� �2
 

þ3ðwðxÞÞ2 o
2wðxÞ
ox2

� o2wðxÞ
ox2

� o4wðxÞ
ox4

�

þ t2bþ1

Cð2bþ 1Þ a
o

ox

�

a
owðxÞ
ox

þ 6wðxÞ owðxÞ
ox

� �2
 

þ3ðwðxÞÞ2 o
2wðxÞ
ox2

� o2wðxÞ
ox2

� o4wðxÞ
ox4

�

þ 6 a
owðxÞ
ox

þ 6wðxÞ owðxÞ
ox

� �2
 

þ3ðwðxÞÞ2 o
2wðxÞ
ox2

� o2wðxÞ
ox2

� o4wðxÞ
ox4

�

owðxÞ
ox
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6. Results and discussion

The appropriate value of the auxiliary parameter �h for

MHAM is to be chosen to guarantee the convergence of the

solution series. This is done by plotting �h-curves corre-

sponding to different values of time t. Figures 1 and 2 show

that for convergent solution series, the value of �h must be

chosen between �0:9 and �1. It is clear from the �h-curves

that the convergence of the solution series is highly sen-

sitive to the value of �h.

To confirm the accuracy of the obtained results using

MHAM, the absolute errors in the second-order approxi-

mate solution are calculated for b ¼ 1 corresponding to

different values of independent variables x and t. The time-

fractional Cahn–Hilliard equation is considered for a ¼ 2.

The value of �h is taken as �0:95, as suggested by the �h-

curves. The results are summarized in Table 1.

Fig. 1 Plots of �h-curves taking u(0.1, 0.1) at b ¼ 0:75 (dashed line)

and b ¼ 1 (solid line)

Fig. 2 Plots of �h-curves taking u0ð0:1; 0:1Þ at b ¼ 1
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The effect of fractional order b on the solution is

graphically illustrated in Fig. 3 by plotting u2	 ðx; tÞ corre-

sponding to different values of b at t ¼ 0:05.

To confirm the accuracy of the obtained results using

RPSM, the absolute errors in the second-order RPS

approximate solution are calculated for b ¼ 1 corre-

sponding to different values of independent variables x and

t. The time-fractional Cahn–Hilliard equation is considered

for a ¼ 2. The values of arbitrary constants are taken as

m ¼
ffiffiffi

2
p

and C ¼ 0. The results are summarized in Table 2.

The effects of fractional order b on the solution are

graphically illustrated in Fig. 4 by plotting u2ðx; tÞ corre-

sponding to different values of b at t ¼ 0:05.

The graphical illustrations of the obtained results exhibit

kink solitary wave solutions. The graphical demonstration

and comparison of analytical approximate solutions

obtained using MHAM and RPSM are shown in Figs. 5, 6

and 7. All our derived solutions are novel and have not

been formulated before in literature to the best of our

knowledge.

7. Conclusion

The Cahn–Hilliard equation is used in binary image

inpainting. In this paper, the analytical approximate solu-

tions of time-fractional Cahn–Hilliard equation are

obtained using a modified homotopy analysis method and

the residual power series method. The effects of fractional

order b on the solution of the equation are graphically

illustrated in Figs. 3 and 4. To check the accuracy of the

results, the second-order analytical approximate solutions,

Table 2 Absolute errors for time-fractional Cahn–Hilliard equation at b ¼ 1 using RPSM

x/t 0.02 0.04 0.06 0.08 0.10

�1:0 4:585 � 10�7 3:060 � 10�6 8:218 � 10�6 1:434 � 10�5 1:770 � 10�5

�0:5 4:471 � 10�6 3:660 � 10�5 1:263 � 10�4 3:059 � 10�4 6:098 � 10�4

0 7:540 � 10�6 6:026 � 10�5 2:031 � 10�4 4:803 � 10�4 9:353 � 10�4

0.5 4:259 � 10�6 3:321 � 10�5 1:092 � 10�4 2:519 � 10�4 4:784 � 10�4

1 6:036 � 10�7 5:382 � 10�6 1:997 � 10�5 5:146 � 10�5 1:083 � 10�4

Table 1 Absolute errors for time-fractional Cahn–Hilliard equation at b ¼ 1 using MHAM

x/t 0.02 0.04 0.06 0.08 0.10

�1:0 2:018 � 10�4 8:949 � 10�4 2:079 � 10�3 3:756 � 10�3 5:929 � 10�3

�0:5 1:354 � 10�4 6:853 � 10�4 1:680 � 10�3 3:151 � 10�3 5:133 � 10�3

0 6:317 � 10�5 8:116 � 10�5 9:070 � 10�6 1:974 � 10�4 5:818 � 10�4

0.5 2:517 � 10�4 8:657 � 10�4 1:820 � 10�3 3:094 � 10�3 4:671 � 10�3

1 2:918 � 10�4 1:081 � 10�3 2:374 � 10�3 4:177 � 10�3 6:499 � 10�3

Fig. 3 Effect of b on u(x, t) using MHAM (b ¼ 0:8 ! solid line,

b ¼ 0:9 ! dot-dashed line, b ¼ 1:0 ! dotted line)

Fig. 4 Effect of b on u(x, t) using RPSM (b ¼ 0:8 ! solid line,

b ¼ 0:9 ! dot-dashed line, b ¼ 1:0 ! dotted line)
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corresponding to different values of x and t, are calculated

for b ¼ 1 and the results are summarized in Tables 1 and 2.

The exact solution and the analytical approximate solutions

are graphically expressed for b ¼ 1 in Figs. 5, 6 and 7. The

numerical results and graphical illustrations show that the

approximate solutions are in good agreement with the exact

solutions.
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