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Abstract: A Korteweg—de Vries (KdV) equation including the effect of linear Landau damping of electrons is derived to
study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized
plasma consisting of warm adiabatic ions and two species of electrons at different temperatures. It is found that the
coefficient of the nonlinear term of this KdV-like evolution equation vanishes along different family of curves in different
parameter planes. In this context, a modified KdV (MKdV) equation including the effect of linear Landau damping of
electrons describes the nonlinear behaviour of ion acoustic waves. Again, the coefficients of the nonlinear terms of the KdV
and MKdV-like evolution equations are simultaneously equal to zero along a family of curves in the parameter plane. In
this situation, we have derived a further modified KdV (FMKdV) equation including the effect of linear Landau damping of
electrons. The multiple time scale method has been applied to obtain the solitary wave solution of the evolution equations
having the nonlinear term (qﬁ(l))r%?, where qb(l) is the first-order perturbed electrostatic potential and r = 1,2,3. The

amplitude of the ion acoustic solitary wave decreases with time for all r = 1,2, 3.
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1. Introduction

The observations of electric field structures by the Freja
Satellite [1] in the auroral zone of the upper ionosphere, the
FAST [2-6] satellite and the Viking Satellite [7, 8] in the
auroral zone indicate the presence of cooler and hotter
electron species. The cooler electron species can be mod-
elled by the Maxwell-Boltzmann velocity distribution,
whereas the hotter electron species can be described by
considering Cairns [9] distributed nonthermal electrons.
The existence of different species of electrons at different
temperatures has already been reported by Dalui et al. [10].
In the present paper, we have considered the effect of linear
Landau damping of electrons on ion acoustic (IA) solitary
wave in a collisionless unmagnetized electron—ion plasma
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consisting of warm adiabatic ions, isothermal and non-
thermal electrons.

Several authors [10-29] investigated different linear and
nonlinear properties of IA waves in a plasma consisting of
one or two ion species and one or two electron species. In
the present paper, we have investigated the effect of linear
Landau damping of electrons of two different populations
at different temperatures on IA solitary waves. But, Yu and
Luo [30] reported that for phenomena on long-time scales,
one can consider electrons into two different species if the
electrons are physically separated in space/time domain of
interest. So, Maxwell-Boltzmann distributed electrons and
Cairns [9] distributed nonthermal electrons can be con-
sidered as two different electron species only when those
electron species are physically separated in the phase space
by external or self-consistent fields. On the basis of the
assumption that the two groups of electrons occupy dif-
ferent regions of phase space, several authors [16, 22, 27]
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considered two populations of electrons at different
temperatures.

Longitudinal electron plasma oscillations are damped
during the propagation through a collisionless plasma. In
particular, Vlasov [31] used the linearized Boltzmann
equation to investigate the small amplitude steady-state
longitudinal electron plasma oscillations. Shortly after-
wards, Landau [32] pointed out that these oscillations are
damped. This damping of longitudinal electron plasma
waves in a collisionless plasma is known as linear electron
Landau damping. For the first time, Ott and Sudan [33]
investigated the effect of linear Landau damping of elec-
trons on IA solitary waves in a collisionless plasma. Sev-
eral authors investigated the effect of Landau damping on
IA solitary waves in unmagnetized or magnetized plasmas
theoretically [34—41] and experimentally [42]. In particu-
lar, Tajiri and Nishihara [36] investigated the effect of
Landau damping on finite amplitude IA solitary waves in a
collisionless unmagnetized electron—ion plasma consisting
of cold ions and two distinct populations of isothermal
electrons at different temperatures by considering a KdV-
like evolution equation including the effect of Landau
damping. Bandyopadhyay and Das [37] derived a Korte-
weg—de Vries—Zakharov—Kuznetsov (KdV-ZK) and a
modified KdV-ZK equations including the effect of linear
Landau damping of electrons to investigate the nonlinear
behaviour of IA waves in a magnetized plasma consisting
of warm adiabatic ions and nonthermal electrons. Recently,
Ghai et al. [43] investigated the dust acoustic solitary and
shock structures under the influence of Landau damping in
a dusty plasma containing two different temperature ion
species.

To investigate the effect of linear Landau damping of
electrons on IA solitary waves in a collisionless unmag-
netized electron—ion plasma consisting of two distinct
populations of electrons at different temperatures, we have
considered coupled Vlasov—Poisson model for two differ-
ent electron species along with the fluid model for ions. So,
in the present plasma system, the kinetic effects of two
different species of electrons at different temperatures have
been investigated on IA solitary structures with special
emphasis on the following cases:

Case-1: Using the reductive perturbation method, an
evolution equation has been derived which describes the
nonlinear behaviour of IA waves along with a correction
due to the kinetic effects of two different species of elec-
trons. This evolution equation reduces to a well-known
Korteweg—de Vries (KdV) equation if electron-to-ion mass
ratio is neglected.

Case-2: It is found that a factor (B)) of the coefficient of
the nonlinear term of the evolution equation derived in
Case-1 vanishes along different family of curves in dif-
ferent parameter planes. In this situation, i.e. when B; = 0,

a modified evolution equation including the effect of linear
Landau damping of electrons describes the nonlinear
behaviour of IA waves and this modified evolution equa-
tion becomes a modified KdV (MKdV) equation having the

. 2000 . . ..
nonlinear term (') % if electron-to-ion mass ratio is

neglected, where (b“) is the perturbed electrostatic poten-
tial and ¢ is the stretched space variable.

Case-3: It has been observed that a factor (B;) of the
coefficient of the nonlinear term of the evolution equation
derived in Case-2 vanishes along a family of curves in the
parameter plane. In this context, a further modified evo-
lution equation including the effect of linear Landau
damping of electrons can describe the nonlinear behaviour
of IA waves when the conditions B; = 0 and B, = 0 hold
simultaneously and this further modified evolution equa-
tion reduces to a further modified KdV (FMKdV) equation

3 a(f)(l)

having nonlinear term ((]5(1)) oz if electron-to-ion mass

ratio is neglected. For the first time, we have derived a

FMKdV equation having nonlinear term (d)m)S%g)
including the effect of linear Landau damping of electrons.

Case-4: Using the multiple time scale analysis, we have
developed a general method to find the solitary wave
solution of the evolution equation having nonlinear term

((b(l))r%g) including the effect of linear Landau damping

of electrons.

Case-5: The amplitudes of the solitary wave solutions of
the different evolution equations including the effect of
linear Landau damping of electrons have been investigated
for r =1,2,3 and it is found that the amplitude of the
solitary wave solution decreases with time for all
r=1,2,3.

2. Basic equations

In this paper, we have considered the effect of linear Landau
damping of electrons on the IA solitary waves. So, to describe
the nonlinear behaviour of IA waves including the effect of
linear Landau damping of electrons, we take the Vlasov—
Poisson model for two different electron species and the fluid
model for ions. In this section, we have shown that if we
neglect the electron-to-ion mass ratio or if we neglect the
inertia of electrons, i.e. if we neglect the effect of linear
Landau damping of electrons, then the system of equations
reduces to a system of hydrodynamic equations. These
hydrodynamic equations can describe the nonlinear behaviour
of IA waves and small amplitude IA solitary waves can be
described by usual KdV and different modified KdV equa-
tions. So, here Vlasov—Poisson model of electron species
depends on the inertia of electrons only, i.e. if we neglect the
inertia of electrons, then the system of equations reduces to a
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system of hydrodynamic equations. Therefore, to study the
effect of linear Landau damping of electrons on IA solitary
waves, we cannot neglect the inertia of electrons. In fact,
considering Vlasov—Poisson model for electrons and the fluid
model for ions, Ott and Sudan [33] derived a KdV equation
along with an extra term responsible for the effect of linear
Landau damping of electrons. In the present paper, we have
considered a fully ionized collisionless unmagnetized plasma
consisting of warm adiabatic ions, isothermal and nonthermal
[9] electrons. So, to describe the effect of linear Landau
damping of electrons on the nonlinear behaviour of IA waves
propagating along x-axis, we consider the Vlasov—Poisson
model for two different electron species and the fluid model
for ions. The Vlasov—Poisson model for two electron species
at different temperatures can be written in the following form:

me afce afce a¢ afce
—_ —_— = 1
V m ot aadl Ox + Ox 8vH ’ (1)
me afse afse a¢ afse
[ — —_— — — 2
Vo or "% Yoo @)
¢
hallh _ 3
o2 Nee + Nge — N, ( )
where

Nee = / fcedeynse = / fsedVH- (4)
—00 —00

The above equations along with the equation of continuity
of ions and the equation of motion for ion fluid form a
system of coupled equations. The continuity equation and
the momentum equation for ion fluid can be taken as

on  O(nu)

- - 5
ot Ox % ®)
u, Ou otp_ 09 (6)
ot Ox nox ox

In the momentum equation (6), the pressure term has been
included to get the effect of ion temperature. To make a
closed system of equations, we take the following adiabatic
pressure law:

p=n, (7)

where we have neglected the effects of viscosity, thermal
conductivity and energy transfer due to collisions.

In Egs. (1)=(7), fees fse» 1> 4, V||, p, ¢, x and ¢ are the
velocity distribution function of nonthermal electrons, the
velocity distribution function of isothermal electrons, the
ion number density, the ion fluid velocity, the velocity of
electrons in phase space, the ion pressure, the electrostatic
potential, the spatial variable and time, respectively, and
these quantities have been normalized by ny (unperturbed

Cs(: \/ KBTef/m),

ion number density), ngy, ng,

Vte(: \/ KBTCf/mC)’ noKgT;, KBTef/ea }vD(:
V KpTet/4mnge?) and o' (= \/m/4nnge?), where o =
T;/T. and (= 3) is the adiabatic index. Again, Kp is the
Boltzmann constant, m is the mass of an ion, m, is the mass
of an electron, —e is the charge of an electron, 7; is the
average ion temperature and T¢f is given by the following
equation [10]:

ncO+n50:@+@’ (8)

Tef Tce Tse
where ng, ny, Tce and Ty are, respectively, unperturbed
nonthermal electron number density, unperturbed isother-
mal electron number density, average temperature of
nonthermal electrons and average temperature of isother-
mal electrons.

On the basis of the above-mentioned normalization of
the independent and dependent variables, the unperturbed
velocity distribution functions of nonthermal Cairns [9]
distributed electrons and isothermal electrons can be writ-
ten in the following form:

1 + oea2vt o v?
_ g e c
Jo ﬂcﬂ/ﬁ(ﬁ) e l_Tl , ®)
(5
2
L
fﬂO =ny0 o exXp [ 2 ) (10)

where o (> 0) is the nonthermal parameter associated with

the Cairns model [9] for electron species and the

expressions of 71, 50, 0. and oy are given by

_ Heo _ Ny - Tet _ Ter

neo =—,N0 =—,0c = 7,05 = . (11)
no no T T

Using (11), Eq. (8) and the unperturbed charge neutrality
condition (n.g + ngg = np) can be written as

Nc00c + Nso0s = 1,710 + 10 = 1. (]2)

Following Dalui et al. [10] and using Eq. (12), we can
write the expressions of 7y, 759, 0. and oy in the following
form:

_ N 1
o= =L (13)
1+ ng 1+ ng
1 + nge 1 + ng
Os =——" ,0c=0sc " (14)
Osc + Ngc Osc + Nsc
where ny, = %; and o, = %

If we neglecct the electron-to-ion mass ratio, then (1) and
(2) assume the following form:

e | 0P fec
V” Ox 5@1)“ R (15)
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Ve 09
Moy " ox v,

=0. (16)

The solutions of (15) and (16) can be written as follows:
fCe = CO(Vﬁ - 2¢)a (17)
fse:so(vﬁ _2¢) (18)

Substituting (17) and (18) into the expressions n.e and nge
as given in the first and second equations of (4), we get the
following expressions for ne. and ng:

Nee :ﬁcO(l - [)’eO'c(b + 5#7?(152) exp[60¢]v (19)
Nge :ﬁs() CXP[05¢]~ (20)

The linearized dispersion relation of the IA wave obtained
from a set of Egs. (5), (6), (7) and the Poisson equation (3)
can be written as

o | M=) +igk
kN 2 —po) e

(1)

where o is the normalized wave frequency and k is the
normalized wave number and we have used Egs. (19) and
(20) to describe n¢. and ng in Eq. (3). The expression of M
is given by

1
Ms:\/70-+_ (22)

NgyOg + (1 - ﬁe)ﬁcoac.

Now, for long-wavelength plane wave perturbation, i.e. for
k — 0, from the linear dispersion relation (21), we have

[0} ow
fin e = Ms and. i = M- -
Therefore, for long-wavelength plane wave perturbation
(for small value of k), the phase of the wave can be written
as

M? — yo
kx — wt :k(x — Msl) + {STAZ

This equation suggests to choose the stretched space
coordinate and stretched time as

2
} Kr+ 0. (24

E=é(x— M)t = e, (25)

where k = € and consequently, e measures the weakness of
dispersion. Since, we have considered the weakly nonlinear
and weakly dispersive IA wave, then € also measures the
weakness of nonlinearity if we assume that the weakness of
nonlinearity is of the same order of weakness of dispersion.
Therefore, ¢ measures the weakness of dispersion as well as
the weakness of nonlinearity.

In the present paper, our main aim is to consider the
effect of linear Landau damping of electrons on IA solitary
waves. Now, if we neglect the electron-to-ion mass ratio,
then the nonlinear behaviour of the IA wave can be
expressed by a set hydrodynamic equations (5), (6), (7) and
(3) along with equations (19) and (20). From these
hydrodynamic equations, one can analyse the nonlinear
behaviour of the small amplitude IA wave with the help of
usual KdV or modified KdV equations. So, to include the
kinetic effect of electrons or to study the effect of linear
Landau damping of electrons on IA solitary wave, we
cannot neglect electron-to-ion mass ratio. But we have
assumed that the effect of electron Landau damping on the
nonlinear behaviour of IA wave is small and the effect of
linear Landau damping of electrons on the nonlinear
behaviour of IA wave is of the same order of nonlinearity,
i.e. dispersion, nonlinearity and the effect of linear Landau
damping of electrons are small but of the same order of
magnitude. Therefore, following Ott and Sudan [33], we
replace m by ex; in Egs. (1) and (2), and conse-
quently these two equations can be written in the following
form:

e Of 0P

M TV Toxow (26)
Oe | e 0P

“% V% Taxoy (27)

Now using (7), the momentum equation (6) can be written
as

ou Ou ,_pOn 0¢

— — ) e = —— 28

o 'mE T m T T ™ (28)

Again, using (4), the Poisson equation (3) can be written as

62 o9 oo

a—f = / fcedVH —‘r/ fsede —n. (29)
X —00 —00

Therefore, Eqgs. (26), (27), (29), (5) and (28) are the basic
equations to derive Korteweg—de Vries (KdV) equation and
different modified Korteweg—de Vries equations including
the effect of linear Landau damping of electrons. Finally,
we have solved the different macroscopic nonlinear evo-
lution equations including the kinetic effect of electrons on
IA waves by considering appropriate initial and boundary
conditions.

3. Derivation of different evolution equations

To derive different nonlinear evolution equations including
the kinetic effect of electrons on IA waves propagating
along x-axis, we consider the following stretching of the
space coordinate and time:
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E=é(x—Vi),1=ét, (30)

where V is a constant and e is a small parameter.

3.1. KdV equation including the effect Landau
damping

To derive the KdV equation including the effect of linear
Landau damping of electrons, we take the following per-
turbation expansions of the dependent variables:

A=A 13 A ), (31)
i=1

where A =n, u, ¢, fr and fie with (0@ u©®, $©, O

£ = (1,0,0, feo, fro).

Substituting (30) and (31) into Egs. (26), (27), (29), (5)
and (28) and collecting the terms of different powers of €
on both sides of each equation, we get a sequence of
equations and from this sequence of equations, we get the
following nonlinear evolution equation:

oM O 1 B
¢ g0 1, &%
RE oc 27 as

1 <o) d&
+§AEQ1P[X aé/ é_é,—O,

where we have used the same procedure of Bandyopadhyay
and Das [37] to derive Eq. (32).
The coefficients A, By, E are given by

+ AB ¢!

(32)

1
A== (V' —ay), (33)
1%
1|13V2P+ay(y—2) ,_ _
B =3 W — (ncoag + nsoo*z) , (34)
Vv 3
E :\/—2_75 |:n0002/2 (1 - Zﬁe) + n5002/2:| . (35)
The constant V is given by
(V2 = oy)(1 = fieogcfe) = 1, (36)
where f, = %@e&e and the physically admissible range of f3,

is 0<p. < %. The physically admissible range of f, is
pointed out by Verheest and Pillay [44]. The calculation
regarding the physically admissible range of fi. has been
given by Debnath et al. [45], although, mathematically, f3,
is restricted by the inequality: 0 < f, < ‘3—‘.

If we neglect electron-to-ion mass ratio, i.e. if we set
o; = 0, then the nonlinear evolution equation (32) simply
reduces to the well-known KdV equation.

Equation (32) describes the propagation of weakly
nonlinear and weakly dispersive TA solitary waves in a
multi-species collisionless unmagnetized plasma consisting

of nonthermal and isothermal electrons including the effect
of linear Landau damping of electrons.

From Eq. (32), we see that the nonlinearity of the IA
wave is only due to the second term of (32), i.e. AB; is
responsible for the nonlinearity of the system. When
AB; =0, i.e. By =0 (as A # 0 for any set of physically
admissible values of the parameters of the system), it is not
possible to discuss the nonlinear behaviour of IA waves
with the help of the evolution equation (32).

In Fig. 1, B, is plotted against g5 for y = 3, ¢ = 0.001
and for (a) ne, = 0.05, (b) ng. = 0.2, (c) ny = 0.3 and (d)
nge = 0.5. Here, red, black, green and blue curves of each
figure correspond to f, =0, f, =0.2, f. =04 and S, =
0.57 respectively. From Fig. 1(a), (b) and (c), we see that

there exists a value ai? of g, such that By = 0 at 6. = o§§>,

and more specifically, B; <0 for g <a§§) and B; > 0 for

oo > o). Again, from Fig. 1(d), we see that B; > 0 for all
values of ff,. From Fig. 1, it is evident that there exists a
region R; = {(ng, 0, fe) : Bi(nsc, 05, Bo) # 0} such that
each point of R; satisfies the condition B (ng, o, fs) # 0.
On the other hand, there must exist a collection of points from
the entire parameter space such that every point of the col-
lection must satisfy equation B (n, 0y, f.) = 0 and conse-
quently for these values of the parameters ng., g5 and ff, we
cannot use the KdV-like evolution equation to investigate the
effect of linear Landau damping of electrons on IA solitary
waves. To confirm the existence of a region Ry =

b
11 1 ( )
0
T
@ n_=0.05
SC
-3
0 0.2388 0.5

(d)

0 o - 05 0 c_— 0.5

Sc Sc

Fig. 1 B; is plotted against gy for y =3, ¢ = 0.001 and for (a)
ng = 0.05, (b) ngc = 0.2, (¢) ngc = 0.3 and (d) nsc = 0.5. Red, black,
green and blue curves of each figure correspond to i, =0, ., = 0.2,
o = 0.4 and B, = 0.57 respectively. (a)—(c) show the existence of
points aﬁﬁ) such that B; = 0 for some values of . whereas (d) shows
that B; > 0 for all values of f3, and for all g lying within the interval

(0, 0.5). In particular, for n, = 0.05, f, = 0.4, the value of a§§> is
0.2388 (approx.) (colour figure online)
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{(nse; Oscs fe) : Bi(hge, 0, fo) = 0} in the entire parameter
space, we consider the following figures in different param-
eter planes.

Now, it is simple to check that B is a function of n, gy
and f, for any prescribed value of ¢ and 7y, ie.
By = B (ny, 0, f.). Throughout this paper, we take y = 3
and o = 0.001, then all the coefficients A, By, E can be
regarded as functions of ng, o4 and f3,. Therefore, B is a
function of gy and ny for any given value of f3., and con-
sequently, By = 0 gives a functional relationship between
g and ny. This functional relationship between oy, and ng
is plotted in Fig. 2 when B (ny, 04, f.) = 0 for different
values of f§,. Here, red, black, green and blue curves corre-
spond to 5, =0, f, = 0.4, f. = 0.5 and 5, = 0.57 respec-
tively. From this figure, we see that the interval of existence
of o4 increases with increasing f§, when By (g, 0, ff.) = 0.

Again, from the equation Bj(ng, 0y, f.) =0, we get a
functional relationship between ns. and f, for any given
value of oy. In Fig. 3, ny is plotted against i, when
B (ng, 05, f.) =0 for (a) o = 0.05, (b) g, =0.1, (c)
s = 0.2 and (d) g, = 0.4. From this figure, we see that
the interval of existence of f§, decreases with increasing o
when Bj (ng, 05, f.) = 0.

Similarly, when B (ng, 0y, f.) = 0, we get a functional
relationship between gy and f5, for any fixed value of n.
When Bj(ng, 0, ) =0, then the functional relation
between g and f3, is plotted in Fig. 4 for different values
of ng. with ¢ = 0.001. Red, black, green and blue curves
correspond to ng. = 0.1, nge = 0.2, ngc = 0.3 and n,, = 0.4
respectively. From this figure, we see that the interval of
existence of f§, increases with increasing ny whereas o
decreases with increasing ny. for any fixed f..

So, Figs. 1, 2, 3 and 4 confirm the existence of a region
Ry = {(ng, 0sc, Pe) : Bi(nse, 0sc, Po) = 0} in the parameter
space such that each point of Rj satisfies the equation
B (ng, 65, f.) = 0. Therefore, for B (ns, oy, ) =0 or
for (ng, o5, B.) € Ry, it is necessary to modify the KdV-

v=3,0=0.001

0.5 T

SC

0.1 . .
0 . — 0.5

Sc

Fig. 2 ny is plotted against o, when B} = O for different values of
p.. For every value of f3,, we have a curve in the g, — ns. parameter
plane and at every point on this curve we get a value of gy as well as
a value of ng, and finally for these values of f3,, os and ng, the
equation B; =0 holds good. Red, black, green and blue curves
correspond to ., =0, ., = 0.4, f, = 0.5 and 5, = 0.57 respectively
(colour figure online)

b
0.44 0.38 ( )
c_=0.1
sC
T
&
<
0.34 0.27
0 0.57 0.28 0.57
c d
0.3 ( ) 0.23 ( )
c_=0.2 c =04
scC SC
&
<
0.14 0
04 Be - 0.57 0.42 Be - 0.57

Fig. 3 n is plotted against . when B; = 0 for ¢ = 0.001 and for
different values of gy.. For every value of gy, we have a curve in the
f. — nsc parameter plane and at every point on this curve we get a
value of f§, as well as a value of n, and finally for these values of g,
p. and n, the equation B; = 0 holds good (colour figure online)

=3, 6=0.001
0.33

0.57

Fig. 4 o, is plotted against . when By = 0 for different values of
ng.. For a fixed value of ny, we have a curve in the f, — o parameter
plane and at every point on this curve we get a value of f§, as well as a
value of oy, and finally for these values of ny, f, and oy, the
equation B; =0 holds good. Red, black, green and blue curves
correspond to ng. = 0.1, ng. = 0.2, ng = 0.3 and ny, = 0.4 respec-
tively (colour figure online)

like evolution equation to investigate the effect of linear
Landau damping of electrons on IA solitary waves.

3.2. MKdV equation including the Landau damping
effect

When B; = 0, we take the following perturbation expan-
sions of the dependent variables:

A=A+ 3" A0 ),
i=1
where A =n, u, ¢, f.. and fi with n© 40, ¢(0), c(‘?),

) = (1,0, 0, fu, fro):
Substituting (30) and (37) into Egs. (26), (27), (29), (5)
and (28) and collecting the terms of different powers of e,

(37)
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we get a sequence of equations and from this sequence of
equations, following Bandyopadhyay and Das [37], we get
the following nonlinear evolution equation:
6(;')(1) 5 a¢(1) 1 a3¢(1) 1
—— + AB; [ ~A ~AE
5 +AB¢Y] e Tt s T P
oo a¢(l) dgvl
/ﬂo oc ¢-¢
Here, it is important to mention that the condition By = 0
AV )
o¢

(38)

has been used to eliminate the term AB; from the

final form of (38). The expressions of A, E, V are given by
(33), (35), (36), respectively, and the expression of B, can
be written as

Be = L[t = (mac(1 4 38, + o)), (9)

where
Hy = —— < [15V* + ap(y* + 13y — 18)V?
(V2 —ay)’ ! (40)

+0y*(y — 2)(2y - 3)].

If «; = 0, then the nonlinear evolution equation (38) sim-
ply reduces to the well-known MKdV equation.

From Eq. (38), we see that the nonlinearity of the TA
wave is only due to the second term of (38). So, Eq. (38)
describes the nonlinear dynamics of IA waves when B; = 0
and B, # 0.

Now, in Fig. 5, B, is plotted against . when B; = 0 for
y =3 and ¢ = 0.001, and for different values of ng. In
fact, for given values of 7y, g and n, B is a function of gy
and f, only and consequently if we solve the equation
B; = 0 with respect to the unknown oy, we get g, as a
function of f3,. If we put all the values of y, g, ny. and g in
the expression of B,, we get B, as a function of f,. This B,

y=3,(5:0.001,B1 =0

0.2847 0.3525

0.1647

B, —

Fig. 5 B, is plotted against . when B; = 0 for different values of
Ny, 1.€. the solution of the equation B; = 0 for the unknown o gives
o as a function of ff, and consequently one can express B, as a
function of f., this B, is plotted against f,. Red, black and blue
curves correspond to ng = 0.02, ny. = 0.05 and ny,. = 0.08 respec-
tively. This figure shows the existence of a point ,Bgc) of . where

B, = 0. In particular, for n, = 0.05, the value of ,BE“) is approxi-
mately 0.2847 (colour figure online)

is plotted against f, in Fig. 5. Here, red, black and blue
curves correspond to ng. = 0.02, ng. = 0.05 and ng. = 0.08
respectively. This figure clearly shows that there exists a

value Bé") of f, such that B, =0 at 5, = B and more

specifically, B, <0 for , <), B, > 0 for f, > p') and
B, =0atp, = ﬁff). In particular, for ng, = 0.05, the value

of ﬂgc) is approximately equal to 0.2847. Therefore, there
exist points (ngc, 0y, f.) in the parameter space such that
By = B, = 0. So, now it is necessary to divide the region
Ry into two regions R\ and R such that R\ =
{(nsc, 0sc, Pe) : By = 0 and B, # 0} and
RV = {(n, e, o) : By = By = 0}.

We see that Eq. (38) is free from any nonlinear effect
when By = B, =0, i.e. if (ng, 0, f.) € R%’). To explain
the existence of the region RZ’), we consider Fig. 6. Now, it
is simple to check that B; and B, are the functions of n,
osc and f3, for any prescribed value of ¢ and 7y, i.e. B] =
Bi(ng, 04, f.) and B, = By(ng, 0, ) for any given
value of ¢ and y. We have mentioned earlier that
throughout this paper we take y = 3 and ¢ = 0.001. Now,
for given values of . and oy, Bi(ngc, s, f.) = 0 gives an
equation for the unknown ny and consequently, B; =0
gives a real solution for ng. Let ng = ng(f., 0s.) be the
physically admissible real solution of the equation
B (ng, 05, f.) =0, i.e. the physically admissible real
solution ng. of the equation Bj(ng,0s,f.) =0 can be
considered as a function of f§, and g. If we put this value
of ng(f., ds) in the expression of B (ng, oy, f.) then the
function B, is reduced to a function of 8, and g only, i.e.
By = By(f.,0s.). Again, By = By(f.,05) =0 gives a
functional relationship between oy, and f3.. This functional
relationship between g, and f, is plotted in Fig. 6, for
fixed values of the other parameters, i.e. in Fig. 6, gy is
plotted against the nonthermal parameter ;. when B; = 0
and B, = 0. Figure 6 shows a variation of ¢y against the

¥=3,6=0.001,B,=B,=0

0.035

0 B — 0.41

e

Fig. 6 o is plotted against f§, when B; = B, = 0. Here, B, and B,
both are the functions of ny, gy and f,. Therefore, solving the
equation B; = 0 for the unknown ny., we get ny as a function of oy
and f3.. If we put this solution for n in the expression of B,, we get
B, as a function of oy and f,. Finally, the equation B, = 0 gives oy
as a function of .. We plot this solution gy, against f§, and along this
curve, we have By =B, =0
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nonthermal parameter f3, in f.-05 parameter plane when
By = B, = 0. This figure shows the existence of a curve in
the f.-0, parameter plane along which B; = 0 and B, = 0.
Different values of ¢ will give different curves in the f,-g
parameter plane along which By =0 and B, = 0. There-
fore, the existence of region R%’) in the parameter space is
confirmed, and consequently, in this region of parameter
space, it is not possible to describe the nonlinear dynamics
of TA waves either by the KdV-like Eq. (32) or by the
MKdV-like Eq. (38). Therefore, for By = B, = 0, a further
modification of the evolution equation (38) is necessary to
study the effect of linear Landau damping of electrons on
IA solitary waves. In the next subsection, we have derived
a new evolution equation when the conditions B; = 0 and
B; = 0 hold simultaneously.

3.3. FMKdV equation including the Landau damping
effect

To derive the FMKdV equation including the effect of
linear Landau damping of electrons when the conditions
By =0 and B, = 0 hold simultaneously, we take the fol-
lowing perturbation expansions of the dependent variables:

A=A +3 SN (E ), (41)
i=1

where A =n, u, ¢, fo and fie with (1@ u©, $©, fc(g),

fi) = (1,0, 0. fio. fro):

Substituting (30) and (41) into Egs. (26), (27), (29), (5)
and (28) and collecting the terms of different powers of ¢
on both sides of each equation, we get a sequence of
equations.

3.3.1. Equations for ion fluid at the order €/°

At the order €/°, solving the equation of continuity and the
equation of motion of ion fluid for the unknowns n(!) and
ul, we get
1
CV2Z—gy

1%

(1)
" V2 —gy

q’>(1)7u(1> — (]5(1). (42)

3.3.2. Viasov-Boltzmann equation at the order ¢>/°

The Vlasov-Boltzmann equation of nonthermal electrons
at the order ¢7/° is

o oV ot
—_— — = U. 43
75 o8 vy (43)

The above equation does not have a unique solution and
consequently to get the unique solution of Eq. (43), we follow
the method of Ott and Sudan [33]. This method suggests to

. . . )
add an extra higher-order time derivative term e!7/®0; %

with the Vlasov-Boltzmann equation at the order /6, So,
Eq. (43) can be written in the following form:

o) ol Mo
ot 66 6g aV”

+

o€

where fc(e1 ) is replaced by fc(ele) and one can get fc(el ) from the
solution of the above equation by considering the following
relation for j = 1.

=t =125, )

To solve (44), we have assumed that the time dependence
of any perturbed quantity is of the form exp(iwt) and we
can write Eq. (44) as

et 3V _ (46)
66 65 aVH '

iOC](,l)Ezfcgf) +V)
Now, taking the Fourier transform of this equation with
respect to £, we get

o %0 I g

B 6vﬁ sV|| + o e (47)

cee

where the Fourier transform of g with respect to & is
defined as

~ 1 * —is¢
= / (e (48)

Again, using the Landau prescription to resolve the
singularities involved, Eq. (47) can be written as

= 9o . . ~

(1) — _pJe 2 )
Soel Zévﬁ {SVHPWH T + imsv) 6 (sv)| + e )}qﬁ .

(49)

Taking limit € — 0, we get
- o, 1 -

(1) — _pJe0 P4 S (1)
Je' = 72500 {”' oy () p 6 (s0)

where we have used the relation (45) for j = 1.
Now, using the relations xP(1/x) =1 and xd(x) =0,
Eq. (50) can be simplified as

O Yeo

Taking Fourier inversion of the above equation, we get

00
(1) — e
Jee 6vﬁ

o). (52)

Similarly, considering the Vlasov-Boltzmann equation of

5/6

isothermal electrons at the order €/°, we get
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o
(I — _ m
fe 2 o7 . (53)

3.3.3. Poisson equation at the order &

From the Poisson equation at the order &, we get
W= / i dv +/ & dv. (54)
—00 —00

Using (52) and (53), the above equation can be written in
the following form:

nV = (1 = fgoef) . (55)

Using this equation and the first equation of (42), we get

Eq. (36). Therefore, the Poisson equation at the order &
gives the dispersion relation (36) which determines the
constant V.

3.3.4. Equations for ion fluid at the order €'/°

At the order €’/°, solving the continuity equation and the
momentum equation of ion fluid for the unknowns n® and

u?, we get
@ 3V2 4 ayp(y -2

n(Z) _ 2¢ . ))(y ; )[¢(1)]27 (56)

(V2 —ay) 2(VZ —agy)
V¢(2) V(V? + ay?)
2 — (172

u = + . 57

Ty a4 (57)

3.3.5. Vlasov—Boltzmann equation at the order €'/°

At the order ¢/, the Vlasov—Boltzmann equation for
nonthermal and isothermal electrons are

v aﬁ(3>+a¢<2>% a¢<'>aﬂ<;>_0 (58)
1o e oy T g vy

(2)+ %9 6f‘“o+ 2" (1)—0 (59)
e T oE vy T o v

Following exactly the same analysis as given in Sect. 3.3.2,
the solutions of (58) and (59) can be written as follows:

afc() agc() 2
= ¢ avﬁ @, (60)
ast 2 080 ,
A =" %% ¢~ 2 Ve, (61)
where
e s
l//(z) = —(45(1)) 8co0 = a%,gso = g‘%} (62)

3.3.6. Poisson equation at the order &

It is simple to check that the Poisson equation at the order

& is identically satisfied due to the dispersion relation (36)
and the condition B; = 0.

3.3.7. Equations for ion fluid at the order ¢/°

Again, at the order €”/°, solving the continuity equation of
ions and the momentum equation of ions for the unknowns

n® and u®®, we obtain the following equations:
() 2
@__¢ WV +a(r-2) 1,0, 1 (173
vt V(V+ap)
() = MW@ 1+ G113
u ‘/2 —ay (V2 _ O_y)3 (l’) d) + Z[d) ] )
(64)
where
V3V + a0y (p + T)VE + 0% (2y — 1
G, =V 7 +7) 5/(/ )| (65)
6 (V2 —ay)

3.3.8. Vlasov-Boltzmann equation at the order €/°

Following exactly the same analysis as given in Sect. 3.3.2,
the solutions of the Vlasov-Boltzmann equations of non-

thermal and isothermal electrons at the order €/® can be
written as follows:
af ag(, ah(,
fQ=-225 ¢ 20 Y g x<3>, (66)
6 6
af 0 ag 0 @h
3) — s SUNAC) ) (3)
where
b = 2pM @ 0 22wy O8O0
’ 3 e avﬁ e avﬁ
(68)

3.3.9. Poisson equation at the order €

It is simple to check that the Poisson equation at the order e
is also identically satisfied due to the dispersion relation
(36) and the conditions B; = 0 and B, = 0.

3.3.10. Equations for ion fluid at the order "'/

At the order €'/, solving the continuity equation and the
a,,( )

momentum equation of ions, and ag 5 can be expressed
as functions of d)m, (b(z), qb and (/5 along with their
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different derivatives with respect to ¢ and 7. In particular,

ag = can be written as
on® 1 W 2V gl

o (ViP-oy) 88  (V2—gy)? Ot
3V2+ap(y—2) 0

(1) (2)\2 69
V2 o) [¢ ¢? (¢> )7l (69)
H ot
2265 (G262 + 260 2,
where
1
Hy=——_[105V° 4+ 69(3° + 21y + 161y — 174)V*
D gy [ y(y Y Y )
+0°9%(8y° 4 537% — 162y + 108)V?
+077° (7 = 2)(2y — 3)(3y — 4)].
(70)
11/6

3.3.11. Vlasov-Boltzmann equation at the order €

At the order €''/®, the Vlasov—Boltzmann equation of
nonthermal electrons is

e 09W ok 09 og | 0x) Oheo

17ae " ag vy T ¢ oy af v o)
K Bkeo o Yoo o9 _
T

where we have used Eqs. (52), (60) and (66) to get Eq. (71)
and in this equation, we have used the following notations:

!//(4) — ,2¢(1)¢(3) _ (¢(2))2’ 1(4) — 2((1)(1))2(15(2)7

1 Oheo (72)

@ Lyt o
K 3(¢ )v c0 aVﬁ

Including an extra higher-order time derivative term

*/00, agc: Eq. (71) can be written as
Lol el 09W ok 0 Oge
o T TeE T ae by T aE oy
61(‘”% k™ k.o 73)
65 aVH 65 aV”
Ufeo 09"
+20€1Vav2 66 =0,

where fé: ) is replaced by fc(:2 and fc<: ) can be obtained from
the unique solution of Eq. (73) by considering the relation
(45) for j = 4.

Now, assuming the t dependence of the perturbed
quantities is of the form exp(iwt) and taking the Fourier
transform with respect to &, we get the following equation
from Eq. (73):

= 6f 07 agco ahco (4 akco

@ _ c )

lfcee v 2 d) aVZ l//f a\)ﬁ Xg + aV
% SVH _ zalvafco 1 ~(V1)7

sV|| + o we? 6v|2| sV + o we?

(74)

Where ¢§ b lpf ’ Xf )7 ~§
Fourier transform of ¢> 1//é4>, x?), K(;) and q’)é”.
Now, making € — 0 and wusing the relations

xP(1/x) =1, x6(x) =0 and sé(sv|) = sgn (s)d(v)), we

get the following expression of f;(é‘)

[afco

and q?bél) are, respectively, the

6g 0 7

isF4) —
is 6\/2

L

i ath S Okeo %24)]

avﬁ e avﬁ

—2051‘/2{?0 [ <;> +in sgn (s)é(m)] 521).

(75)
Integrating (75) over the velocity space, we get

+oo - - _ ~
iS/ fc(:>dv|\ =-2 |:F00¢‘(§4) + GcO‘//‘(;) +HCOX(§4) + KCOK(;)]
—00

— 2imoy VZy sgn (s)%”,

<

(76)

where F, Geo, Heo, Keos Zeo are given in Appendix 1.
Taking Fourier inversion of (76), we get

a +0oo
a¢ (/ fc(é‘)dvo = —2[Fagl! + GcOl/’?) + Hoorl? + KoY |
d&

+ 20(1VZCOP/ af, — vl ’

(77)

where we have used the convolution theorem of Fourier
transform to find the inverse Fourier transform of

sgn (s )(i)( ). Here, aéb/
Similarly, considering the Vlasov—Boltzmann equation
11/6

is the value of 6%)6 at £ =&,

of the isothermal electrons at the order €''/°, we get

a +o0
& (/ ﬂ(:)d\}“) = — 2|:F50¢§4) + GsOl//?) + HSOX?) + KSOK?)]

+ 2d1VZsop/ —V,,
hE-¢
(78)

where Fyy, Gy, Hy, K0, Zso are given in Appendix 2.

3.3.12. Poisson equation at the order €'/

From the Poisson equation at the order &, we get
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/ fdvy + / S dvy - aqé (79)

Differentiating this equation with respect to &, using

equations (77) and (78) in the resulting equation, we get the

@
ag = as follows:

following expression of

n@ g , g
ai __TE—’_ (1 _nc()acﬁe)w
+ (007 + 115007) é[qﬁ 9% + (</>(2)) ]

1
+2hwau+sm>+mwﬂagwmf¢%

1 R
+gh@dﬂ+8&%wméﬂﬁw3§§
P | e

(80)
Now, eliminating ag?
ag!" apoe 1 'V 1
o AR T e P

~op) g
[waaé—f‘Q

where we have used the dispersion relation (36), conditions
B,=0 and B, =0 %?,
AB EZ (¢ +1(6?)*] and AB, Z[(¢"")?¢?)] respec-
tively, to simplify Eq. (81).
Here, Bj is given by
1

B=% [# -

where H; is given by Eq. (70).

to eliminate the terms

(0ot (1 + 8B.) + 71007 ) ], (82)

Therefore, the Poisson equation at the order & gives a
FMKdV equation including the effect of Landau damping
which describes the nonlinear behaviour of IA waves when
B 20,32:ObutB37é0.

4. Solitary wave solution

In more compact form, we can write the KdV equation,
MKdV equation and FMKdV equation as

0 g o'V
07 amlp 2 1A T8

*©0¢ dg” B
[mafé—f_a

where r =1,2,3.

+ L ABP
2
(83)

If we put «; = 0 in Eq. (83), then Eq. (83) reduces to a
KdV equation for r = 1, an MKdV equation for r = 2 and
a FMKdV equation for r = 3.

For a solitary wave solution of (83) with o; =0, we
consider the following transformation of the independent
variables:

X=¢(-Untd =1 (84)

Under the above transformation of independent variables,
Eq. (83) with a; = 0 assumes the following form:

a¢(1) B a¢ a¢(1) a3¢(1)

|
Iy 1
e ox AT S A

=0,
(85)

where we drop the prime on the independent variable 7 to
simplify the notation.
For the travelling wave solution of (85), we take

¢ = do(X). (86)

Substituting (86) into (85), we get the following ordinary
differential equation of ¢:
doy rdoy 4’ ¢

—U—F +AB (] —+§A 3 =0 (87)

To get the solitary wave solution of (87), we use the

boundary conditions: ¢y, %qf? — 0 as [X]| — oo forn =1,
2, 3, ... and using these conditions, the solitary wave

solution of (87) can be written as
¢y = a sech %[WX}, (88)
where the amplitude (a) and width (%) are given by

1)(r+2 2
gt He+2u s U

. 89
2AB, 2A (89)

Now, using (89), Eq. (88) can be written as

¢p=a sech *

r2a’B, 2AB,a"t
(r+1)(r+ 2){5 Cr+ D+ 2)}

(90)

Again, multiplying Eq. (83) by ¢" and then integrating
the resulting equation with respect to ¢ within the interval
(—o00, 00), and finally, using the boundary conditions:

RS a"a(éi” —0as |{]| > oo for n=1,2,3,..., we get the
following equation:
ot / dﬁ = —AEO(l/ ¢
91
—0 65/ 5— gl
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If we neglect the electron-to-ion mass ratio, then Eq. (91)
reduces to the following equation: 2 [* (¢!V)’d¢ = 0.
This equation shows that the wave energy is conserved. On
the other hand, if «; # 0 and if the initial perturbation is of
the form (90), then the integral appearing in the right-hand
side of (91) is positive for r =1,2,3 and consequently

2
from (91), we have the inequality : ar e (d)(l)) d& <0 for

any values of the parameters of the system, because A, E,
oy are all strictly positive. This inequality shows that the
initial perturbation of the form (90) will decay to zero. This
phenomenon suggests that the amplitude of the solitary
wave solution of the form (90) is not a constant but
decreases slowly with time.

Now for o) # 0, to get a solitary wave solution of

Eq. (83), we shall follow the method of Ott and
Sudan [33]. So, using the prescription of Ott and
Sudan [33], we have introduced the following space

coordinate:

r’a’B,

2AB,
(r+1)(r+2) [é i+

N0r+2) /of"r‘”} ’

where the amplitude (a) is a slowly varying function of

(92)

time. Therefore, considering (j)(l) as a function of X and 7,

ie. oV = ¢V (X, 1), Eq. (83) can be written as
o 24BaW rX da] o¢!
ot (r+1(r+2) 2a0t] X
ra¢<1) 1 a3¢(1)
AB Q) —AW3 (93)
W (60) T+ AW
1 * o9V ax’
+ 2AEWac173/ X% 0,
AR
where ad)x’ = "5 at X = X',

To find the sohtary wave solution, we follow the pro-
cedure of Ott and Sudan [33] and considering two time
scales with respect to o as 79 = 1, T} = o7, We take the
solution of (93) as

pV (X, 1) = (X, 10,11) + gV (X, 10, 71) + O(a]).
(94)
Substituting (94) into (93) and equating the coefficients of

order unity [(o; )0] and order oy [ (o )1] on each side of the
resulting equation, we get the following equations:

09¢© X da ¢ 0q

ket 2| = 95
|:a‘E() + 2a 6‘50 [9).4 :| +L|: 0X :| 07 ( )
g rX da 9¢"V]  O[Lg")] )
[aro 2a0n ox | TTax —PMaT (56)

2 2r+ )(r+2)
TAWT T ax? r2ar
_6q(0) rX da 0q\°) 1

T 9t 2a0r aX

Lo

(")

) ¢
P/ X X—x

(98)

Now, in view of initial and boundary conditions:
PV (X,0) =ap sech X and ¢V (o0, 1) =0, it is
simple to check that ¢(® =a sech 7[X] is the soliton
solution of (95) if and only if a% = 0 and consequently the
solution of (95) can be written in the following form:
g% = a(t;) sech %[X], where a(t;) is an arbitrary function
of 71 except for the initial condition a(0) = ay. Therefore,
Eq. (96) can be written as

oq' , 3 gV = pMq"”
. 99
o ax \La 1= pMq (99)

Now, for the existence of the solution of (99), we have the
following consistency condition:

o0
/ sech *[X]MqVdX = 0. (100)

The above equation states that the right-hand side of (99) is
2 [L] and

sech 7[X], which satisfies the boundary

perpendicular to the kernel of adjoint operator of
this kernel is

conditions at X = 400, i.e. sech ;[X] —0as X — too.
Eq. (100) gives the following differential equation for
the solitary wave amplitude a:

a %+1
w2 () ew (o) o (on
611 ao ap
where qg is the value of a when 7 = 0 and
M, :/ [ sech X]*(1 — X tanh X)dX, (102)
1 r2a’B
W, =-LAE|——%" 103
2 (r+1)(r+2) (103)
+oo 400 h X’] dXdX’
[ sec
I, = h X . 104
=P / / sec XX (104)
Now, it is simple to check that M, =1, M, =1,

M5 =~ 0.6468. In Appendix 3, we have generalized the
method of Weiland et al. [46] to find /,. Using this method
and MATHEMATICA [47], we get the following numer-
ical values of I, for r =1,2,3 : I} = 2.9231, I, ~ 2.7726,
I3 =~ 2.6649.

For r = 1,2, 3 the solution of (101) can be written as
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_2
\ "
[l:(lo(l +Tr) , (105)
where T, is given by the following equation:
-1
2a'B
T, = LAEocl _ %br . (106)
4M, r+1)(r+2)

Eq. (105) shows that the amplitude of solitary wave solu-

_2
tion is proportional to (1 + Ti> "forr=1,2,3.

Therefore, the first-order solitary wave solution of the
evolution Eq. (83) can be written in the following form :

c],'>(1> —a sech %X for r =1, 2 and 3, where the amplitude
(a) of the solitary wave is not a constant but it is a function
of time 7 and its functional form is given by Eq. (105).
From Eq. (105), we see that the amplitude of the solitary
wave decreases slowly with time .

5. Conclusions

We have considered a collisionless unmagnetized electron—
ion plasma consisting of warm adiabatic ions and two
distinct populations of electrons at different tempera-
tures—a cooler one is isothermally distributed and follows
Maxwell-Boltzmann distribution, whereas the hotter one is
nonthermally distributed and obeys the distribution func-
tion of Cairns et al. [9].

Considering the Vlasov—Poisson model for two different
electron species and the fluid model for ions, we have
derived a KdV-like evolution equation including the effect
of linear Landau damping of electrons. We have studied
the propagation of weakly nonlinear and weakly dispersive
IA waves using this KdV-like evolution equation.

We have seen that the coefficient of the nonlinear term
of the KdV-like evolution equation vanishes along differ-
ent family of curves in different parameter planes, viz.,
Osc — Nges Pe — Oser Po — Nse- In this situation, to describe
the nonlinear behaviour of IA waves, we have derived an
MKdV-like evolution equation including the effect of lin-
ear Landau damping of electrons having nonlinear term

2
(qb(l)) a(g? but the term responsible for the effect of linear

Landau damping of electrons remains the same in both
KdV and MKdV-like evolution equations.

Again, we have seen that the coefficients of the non-
linear terms of both KdV and MKdV-like evolution
equations simultaneously vanish along a family of curves
for different values of ¢. In this situation, for the first time,
we have derived a FMKdV-like evolution equation
including the effect of linear Landau damping of electrons
and this equation efficiently describes the nonlinear

behaviour of IA waves. We have found that the nonlinear
term of FMKdV-like evolution equation is of the form

3
(qﬁ(l)) %(5]) but the term responsible for the effect of linear

Landau damping of electrons remains same in all KdV,
MKdV and FMKdV-like evolution equations.

The evolution equations can be written in a more
compact form by considering the nonlinear term of the

form (qb('))r%? for r =1,2,3. For r = 1,2 and 3, we,

respectively, get KdV, MKdV and FMKdV-like evolution
equations. Using the multiple time scale analysis with
respect to the small parameter o, we have generalized the
method of Ott and Sudan [33] to solve evolution equation
(83).

The solitary wave solution of the evolution equation (83)
can be simplified as (j)(l) =a sech 'X , where the amplitude
a of the solitary wave solution of (83) is a decreasing function
of time and its functional form is given by Eq. (105).

For the first time, we have found the solitary wave
solution of FMKdV-like evolution equation and we have
seen that the amplitude of solitary wave solution of
FMKdV-like evolution equation is proportional to

2
(1 +Ti3> 3, where T3 is given by Eq. (106) for r = 3.

For r = 1, the amplitude a of the KdV soliton is plotted
against 7 in Fig. 7 for y =3, ¢ = 0.001, g, = 0.25 and
ns. = 0.3 and for different values of f.. Here, red, black
and blue curves correspond to f, =0, f. = 0.4 and 8, =
0.57 respectively. From this figure, we see that the
amplitude a of the KdV soliton increases with increasing f3,
for any fixed t. This figure also shows that the amplitude
decreases with time.

For r =2, the amplitude a of the MKdV soliton is
plotted against t in Fig. 8 when B; =0 for y =3, 0 =
0.001 and g4 = 0.25, and for different values of f5,. Here,

v=3, 6=0.001, c_ =0.25,n_ =0.3
05 sc sc

a—

0
0 T 100

Fig. 7 The amplitude (a) of the KdV soliton is plotted against 7 for
different values of f.. Red, black and blue curves correspond to
e =0, . = 0.4 and f, = 0.57 respectively. This figure shows that
the amplitude of the KdV soliton decreases with increasing time t for
any fixed value of f§, whereas for any fixed value of 7, the amplitude
of the KdV soliton increases with the increasing nonthermal
parameter f3, (colour figure online)
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v=3, 6=0.001, c_ =0.25, B,=0
sC 1

0.5

0
0 T 100

Fig. 8 The amplitude (a) of the MKdV soliton is plotted against t for
different values of f, when B; = 0. Red, black and blue curves
correspond to . =0, i, =0.45 and S, = 0.57 respectively. This
figure shows that the amplitude of the MKdV soliton decreases with
increasing time t for any fixed value of . (colour figure online)

v=3, 6=0.001, B1=BZ=O

0.5

a—

0

0 T 100

Fig. 9 The amplitude (a) of the FMKdV soliton is plotted against ©
for different values of fi, when B; = B, = 0. Red, black and blue
curves correspond to f, = 0, i, = 0.352 and f§, = 0.42 respectively.
This figure shows that the amplitude of the FMKdV soliton decreases
with increasing time 7 for any fixed value of f3, (colour figure online)

red, black and blue curves correspond to , = 0, ., = 0.45
and f, = 0.57 respectively. This figure shows that the
amplitude decreases with time.

For r = 3, the amplitude a of the FMKdV soliton is
plotted against 7 in Fig. 9 when B; = B, = 0 for y = 3 and
o = 0.001, and for different values of f,. Red, black and
blue curves correspond to ff, =0, f, = 0.352 and f, =
0.42 respectively. This figure shows that the amplitude
decreases with time.

Therefore, from Figs. 7, 8 and 9, we can conclude that
the amplitude of the IA soliton decreases with time 7 for all
r=1,2,3 if the effect of linear Landau damping of elec-
trons is taken into account.

Finally, it is important to note that if we neglect the effect of
linear Landau damping of electrons, then Eqgs. (1)—(7) reduce
to a full set of hydrodynamic equations and simultaneously the
nonlinear evolution equation (83) reduces to KdV and dif-
ferent modified KdV equation for different values of r = 1,2
and 3. These equations can describe the small amplitude
solitary wave solutions under different circumstances of the
present plasma system, viz., the nonlinear evolution equation

is a KdV-like equation if By # 0 or a modified KdV-like
equation if B; = 0 but B, # 0 or a further modified KdV-like
equation if By = B, = 0 but B3 # 0. In fact, here Vlasov—
Poisson model of electron species depends on the inertia of
electrons, i.e. if we neglect the inertia of electrons, then the
system of equations reduces to a system of hydrodynamic
equations and all the usual nonlinear evolution equations can
be obtained from Eq. (83) by neglecting the effect of linear
Landau damping of electrons. Therefore, one can assume that
the treatment made in this paper is physically consistent when
we are going to consider the effect of linear Landau damping
of electrons on IA solitary waves. In fact, VanDam and
Taniuti [34] clearly stated that Ott and Sudan [33] considered
the electron Landau damping only, being based on an
approximation in powers of mass ratio, related to the small-
ness of electron inertia. Hence, it cannot be applied to treat ion
Landau damping. Furthermore, Meiss and Morrison [35]
considered nonlinear electron Landau damping on IA solitons.
They reported that the theory of Ott and Sudan [33] is valid for
time much less than the electron bounce time, i.e. nonlinear
effects are important for time greater than electron bounce
time. It is also important to note that the last terms of left-hand
side of Egs. (32), (38) and (81) are all equal as these terms are
responsible for the effect of linear Landau damping of elec-
trons. But, of course, the more realistic physical situation is to
consider nonlinear wave modulation along with nonlinear
Landau damping.

Acknowledgements The authors are grateful to all reviewers for
their constructive comments, without which this paper could not have
been written in its present form. The authors are grateful to Prof.
Basudev Ghosh, Department of Physics, Jadavpur University, for his
helpful suggestions.

Appendix 1

Coefficients of Eq. (76):

+00 oj 0
Jeo :/ ﬁdv\\a Zo = Jeo

2 a2 ) (107)
o OV 0jj |y o

where J = F, G, H, K for j = f, g, h, k, respectively.

Appendix 2

Coefficients of Eq. (78):

+ooa- d
JSOZ/ ﬂdVH, Zy = o

Gvﬁ gﬁ ) (108)
%) V=

where J = F, G, H, K for j = f, g, h, k, respectively.
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Appendix 3

Method of finding I, associated with Egs. (103) and (104):

+oo  +0o0

20[ sech X’] dxdx’
I, = h X 109
P / / sec N XX (109)
Now I, can be written as
> 9] sech 7]/
I = _/ Osechaf) (110)
o 0z
where X =7/, X’ = z and
2
e (111)
z—7
Using the following known result
o 1
/ s = 78(z — ) — iP (112)
o z—7"’
form Eq. (112), we get
1 1 [ o
= [ gy, (113)
z=7 2i) sl
Using (113), Eq. (111) can be written as
1 [*®s ,
I, =— —F(s)e"ds, 114
o | e e
where
F(s) = / [ sech e dz. (115)
Therefore, Eq. (110) can be written as
I = / s[F(s))%ds. (116)
0
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