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Abstract: A Korteweg–de Vries (KdV) equation including the effect of linear Landau damping of electrons is derived to

study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized

plasma consisting of warm adiabatic ions and two species of electrons at different temperatures. It is found that the

coefficient of the nonlinear term of this KdV-like evolution equation vanishes along different family of curves in different

parameter planes. In this context, a modified KdV (MKdV) equation including the effect of linear Landau damping of

electrons describes the nonlinear behaviour of ion acoustic waves. Again, the coefficients of the nonlinear terms of the KdV

and MKdV-like evolution equations are simultaneously equal to zero along a family of curves in the parameter plane. In

this situation, we have derived a further modified KdV (FMKdV) equation including the effect of linear Landau damping of

electrons. The multiple time scale method has been applied to obtain the solitary wave solution of the evolution equations

having the nonlinear term /ð1Þ
� �r

o/ð1Þ

on , where /ð1Þ is the first-order perturbed electrostatic potential and r ¼ 1; 2; 3. The

amplitude of the ion acoustic solitary wave decreases with time for all r ¼ 1; 2; 3.

Keywords: Nonthermal electrons; Ion acoustic wave; Landau damping; Modified Korteweg–de Vries equation; Solitary

wave solution
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1. Introduction

The observations of electric field structures by the Freja

Satellite [1] in the auroral zone of the upper ionosphere, the

FAST [2–6] satellite and the Viking Satellite [7, 8] in the

auroral zone indicate the presence of cooler and hotter

electron species. The cooler electron species can be mod-

elled by the Maxwell–Boltzmann velocity distribution,

whereas the hotter electron species can be described by

considering Cairns [9] distributed nonthermal electrons.

The existence of different species of electrons at different

temperatures has already been reported by Dalui et al. [10].

In the present paper, we have considered the effect of linear

Landau damping of electrons on ion acoustic (IA) solitary

wave in a collisionless unmagnetized electron–ion plasma

consisting of warm adiabatic ions, isothermal and non-

thermal electrons.

Several authors [10–29] investigated different linear and

nonlinear properties of IA waves in a plasma consisting of

one or two ion species and one or two electron species. In

the present paper, we have investigated the effect of linear

Landau damping of electrons of two different populations

at different temperatures on IA solitary waves. But, Yu and

Luo [30] reported that for phenomena on long-time scales,

one can consider electrons into two different species if the

electrons are physically separated in space/time domain of

interest. So, Maxwell–Boltzmann distributed electrons and

Cairns [9] distributed nonthermal electrons can be con-

sidered as two different electron species only when those

electron species are physically separated in the phase space

by external or self-consistent fields. On the basis of the

assumption that the two groups of electrons occupy dif-

ferent regions of phase space, several authors [16, 22, 27]
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considered two populations of electrons at different

temperatures.

Longitudinal electron plasma oscillations are damped

during the propagation through a collisionless plasma. In

particular, Vlasov [31] used the linearized Boltzmann

equation to investigate the small amplitude steady-state

longitudinal electron plasma oscillations. Shortly after-

wards, Landau [32] pointed out that these oscillations are

damped. This damping of longitudinal electron plasma

waves in a collisionless plasma is known as linear electron

Landau damping. For the first time, Ott and Sudan [33]

investigated the effect of linear Landau damping of elec-

trons on IA solitary waves in a collisionless plasma. Sev-

eral authors investigated the effect of Landau damping on

IA solitary waves in unmagnetized or magnetized plasmas

theoretically [34–41] and experimentally [42]. In particu-

lar, Tajiri and Nishihara [36] investigated the effect of

Landau damping on finite amplitude IA solitary waves in a

collisionless unmagnetized electron–ion plasma consisting

of cold ions and two distinct populations of isothermal

electrons at different temperatures by considering a KdV-

like evolution equation including the effect of Landau

damping. Bandyopadhyay and Das [37] derived a Korte-

weg–de Vries–Zakharov–Kuznetsov (KdV–ZK) and a

modified KdV–ZK equations including the effect of linear

Landau damping of electrons to investigate the nonlinear

behaviour of IA waves in a magnetized plasma consisting

of warm adiabatic ions and nonthermal electrons. Recently,

Ghai et al. [43] investigated the dust acoustic solitary and

shock structures under the influence of Landau damping in

a dusty plasma containing two different temperature ion

species.

To investigate the effect of linear Landau damping of

electrons on IA solitary waves in a collisionless unmag-

netized electron–ion plasma consisting of two distinct

populations of electrons at different temperatures, we have

considered coupled Vlasov–Poisson model for two differ-

ent electron species along with the fluid model for ions. So,

in the present plasma system, the kinetic effects of two

different species of electrons at different temperatures have

been investigated on IA solitary structures with special

emphasis on the following cases:

Case-1: Using the reductive perturbation method, an

evolution equation has been derived which describes the

nonlinear behaviour of IA waves along with a correction

due to the kinetic effects of two different species of elec-

trons. This evolution equation reduces to a well-known

Korteweg–de Vries (KdV) equation if electron-to-ion mass

ratio is neglected.

Case-2: It is found that a factor (B1) of the coefficient of

the nonlinear term of the evolution equation derived in

Case-1 vanishes along different family of curves in dif-

ferent parameter planes. In this situation, i.e. when B1 ¼ 0,

a modified evolution equation including the effect of linear

Landau damping of electrons describes the nonlinear

behaviour of IA waves and this modified evolution equa-

tion becomes a modified KdV (MKdV) equation having the

nonlinear term ð/ð1ÞÞ2 o/ð1Þ

on if electron-to-ion mass ratio is

neglected, where /ð1Þ is the perturbed electrostatic poten-

tial and n is the stretched space variable.

Case-3: It has been observed that a factor (B2) of the

coefficient of the nonlinear term of the evolution equation

derived in Case-2 vanishes along a family of curves in the

parameter plane. In this context, a further modified evo-

lution equation including the effect of linear Landau

damping of electrons can describe the nonlinear behaviour

of IA waves when the conditions B1 ¼ 0 and B2 ¼ 0 hold

simultaneously and this further modified evolution equa-

tion reduces to a further modified KdV (FMKdV) equation

having nonlinear term ð/ð1ÞÞ3 o/ð1Þ

on if electron-to-ion mass

ratio is neglected. For the first time, we have derived a

FMKdV equation having nonlinear term ð/ð1ÞÞ3 o/ð1Þ

on

including the effect of linear Landau damping of electrons.

Case-4: Using the multiple time scale analysis, we have

developed a general method to find the solitary wave

solution of the evolution equation having nonlinear term

ð/ð1ÞÞr o/ð1Þ

on including the effect of linear Landau damping

of electrons.

Case-5: The amplitudes of the solitary wave solutions of

the different evolution equations including the effect of

linear Landau damping of electrons have been investigated

for r ¼ 1; 2; 3 and it is found that the amplitude of the

solitary wave solution decreases with time for all

r ¼ 1; 2; 3.

2. Basic equations

In this paper, we have considered the effect of linear Landau

damping of electrons on the IA solitary waves. So, to describe

the nonlinear behaviour of IA waves including the effect of

linear Landau damping of electrons, we take the Vlasov–

Poisson model for two different electron species and the fluid

model for ions. In this section, we have shown that if we

neglect the electron-to-ion mass ratio or if we neglect the

inertia of electrons, i.e. if we neglect the effect of linear

Landau damping of electrons, then the system of equations

reduces to a system of hydrodynamic equations. These

hydrodynamic equations can describe the nonlinear behaviour

of IA waves and small amplitude IA solitary waves can be

described by usual KdV and different modified KdV equa-

tions. So, here Vlasov–Poisson model of electron species

depends on the inertia of electrons only, i.e. if we neglect the

inertia of electrons, then the system of equations reduces to a
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system of hydrodynamic equations. Therefore, to study the

effect of linear Landau damping of electrons on IA solitary

waves, we cannot neglect the inertia of electrons. In fact,

considering Vlasov–Poisson model for electrons and the fluid

model for ions, Ott and Sudan [33] derived a KdV equation

along with an extra term responsible for the effect of linear

Landau damping of electrons. In the present paper, we have

considered a fully ionized collisionless unmagnetized plasma

consisting of warm adiabatic ions, isothermal and nonthermal

[9] electrons. So, to describe the effect of linear Landau

damping of electrons on the nonlinear behaviour of IA waves

propagating along x-axis, we consider the Vlasov–Poisson

model for two different electron species and the fluid model

for ions. The Vlasov–Poisson model for two electron species

at different temperatures can be written in the following form:
ffiffiffiffiffiffi
me

m

r
ofce

ot
þ vjj

ofce

ox
þ o/

ox

ofce

ovjj
¼ 0; ð1Þ

ffiffiffiffiffiffi
me

m

r
ofse

ot
þ vjj

ofse

ox
þ o/

ox

ofse

ovjj
¼ 0; ð2Þ

o2/
ox2

¼ nce þ nse � n; ð3Þ

where

nce ¼
Z 1

�1
fcedvk; nse ¼

Z 1

�1
fsedvjj: ð4Þ

The above equations along with the equation of continuity

of ions and the equation of motion for ion fluid form a

system of coupled equations. The continuity equation and

the momentum equation for ion fluid can be taken as

on

ot
þ oðnuÞ

ox
¼ 0; ð5Þ

ou

ot
þ u

ou

ox
þ r

n

op

ox
¼ � o/

ox
: ð6Þ

In the momentum equation (6), the pressure term has been

included to get the effect of ion temperature. To make a

closed system of equations, we take the following adiabatic

pressure law:

p ¼ nc; ð7Þ

where we have neglected the effects of viscosity, thermal

conductivity and energy transfer due to collisions.

In Eqs. (1)–(7), fce, fse, n, u, vjj, p, /, x and t are the

velocity distribution function of nonthermal electrons, the

velocity distribution function of isothermal electrons, the

ion number density, the ion fluid velocity, the velocity of

electrons in phase space, the ion pressure, the electrostatic

potential, the spatial variable and time, respectively, and

these quantities have been normalized by n0 (unperturbed

ion number density), n0, n0, csð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTef=m

p
Þ,

Vteð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KBTef=me

p
Þ, n0KBTi, KBTef=e, kDð¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KBTef=4pn0e2
p

Þ and x�1
pi ð¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=4pn0e2

p
Þ, where r ¼

Ti=Tef and cð¼ 3Þ is the adiabatic index. Again, KB is the

Boltzmann constant, m is the mass of an ion, me is the mass

of an electron, �e is the charge of an electron, Ti is the

average ion temperature and Tef is given by the following

equation [10]:

nc0 þ ns0

Tef

¼ nc0

Tce

þ ns0

Tse

; ð8Þ

where nc0, ns0, Tce and Tse are, respectively, unperturbed

nonthermal electron number density, unperturbed isother-

mal electron number density, average temperature of

nonthermal electrons and average temperature of isother-

mal electrons.

On the basis of the above-mentioned normalization of

the independent and dependent variables, the unperturbed

velocity distribution functions of nonthermal Cairns [9]

distributed electrons and isothermal electrons can be writ-

ten in the following form:

fc0 ¼�nc0

ffiffiffiffiffiffi
rc

2p

r
1 þ aer2

cv4
jj

1 þ 3ae

 !
exp �

rcv2
jj

2

" #
; ð9Þ

fs0 ¼�ns0

ffiffiffiffiffiffi
rs

2p

r
exp �

rsv
2
jj

2

" #
; ð10Þ

where aeð� 0Þ is the nonthermal parameter associated with

the Cairns model [9] for electron species and the

expressions of �nc0, �ns0, rc and rs are given by

�nc0 ¼ nc0

n0

; �ns0 ¼ ns0

n0

; rc ¼
Tef

Tce

; rs ¼
Tef

Tse

: ð11Þ

Using (11), Eq. (8) and the unperturbed charge neutrality

condition (nc0 þ ns0 ¼ n0) can be written as

�nc0rc þ �ns0rs ¼ 1; �nc0 þ �ns0 ¼ 1: ð12Þ

Following Dalui et al. [10] and using Eq. (12), we can

write the expressions of �nc0, �ns0, rc and rs in the following

form:

�ns0 ¼ nsc

1 þ nsc

; �nc0 ¼ 1

1 þ nsc

; ð13Þ

rs ¼
1 þ nsc

rsc þ nsc

; rc ¼ rsc

1 þ nsc

rsc þ nsc

; ð14Þ

where nsc ¼ ns0

nc0
and rsc ¼ Tse

Tce
.

If we neglect the electron-to-ion mass ratio, then (1) and

(2) assume the following form:

vjj
ofce

ox
þ o/

ox

ofce

ovjj
¼ 0; ð15Þ
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vjj
ofse

ox
þ o/

ox

ofse

ovjj
¼ 0: ð16Þ

The solutions of (15) and (16) can be written as follows:

fce ¼fc0ðv2
jj � 2/Þ; ð17Þ

fse ¼fs0ðv2
jj � 2/Þ: ð18Þ

Substituting (17) and (18) into the expressions nce and nse

as given in the first and second equations of (4), we get the

following expressions for nce and nse:

nce ¼�nc0ð1 � berc/þ ber
2
c/

2Þ exp½rc/�; ð19Þ

nse ¼�ns0 exp½rs/�: ð20Þ

The linearized dispersion relation of the IA wave obtained

from a set of Eqs. (5), (6), (7) and the Poisson equation (3)

can be written as

x
k
¼ Ms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

s � crÞ�1 þ cr
M2

s
k2

ðM2
s � crÞ�1 þ k2

vuut ; ð21Þ

where x is the normalized wave frequency and k is the

normalized wave number and we have used Eqs. (19) and

(20) to describe nce and nse in Eq. (3). The expression of Ms

is given by

Ms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
crþ 1

nsors þ ð1 � beÞncorc

s
: ð22Þ

Now, for long-wavelength plane wave perturbation, i.e. for

k ! 0, from the linear dispersion relation (21), we have

lim
k!0

x
k
¼ Ms and lim

k!0

ox
ok

¼ Ms: ð23Þ

Therefore, for long-wavelength plane wave perturbation

(for small value of k), the phase of the wave can be written

as

kx � xt ¼kðx � MstÞ þ
M2

s � crffiffiffiffiffiffiffiffi
2Ms

p
� �2

k3t þ Oðk5Þ: ð24Þ

This equation suggests to choose the stretched space

coordinate and stretched time as

n ¼ �
1
2ðx � MstÞ; s ¼ �

3
2t; ð25Þ

where k ¼ �
1
2 and consequently, � measures the weakness of

dispersion. Since, we have considered the weakly nonlinear

and weakly dispersive IA wave, then � also measures the

weakness of nonlinearity if we assume that the weakness of

nonlinearity is of the same order of weakness of dispersion.

Therefore, � measures the weakness of dispersion as well as

the weakness of nonlinearity.

In the present paper, our main aim is to consider the

effect of linear Landau damping of electrons on IA solitary

waves. Now, if we neglect the electron-to-ion mass ratio,

then the nonlinear behaviour of the IA wave can be

expressed by a set hydrodynamic equations (5), (6), (7) and

(3) along with equations (19) and (20). From these

hydrodynamic equations, one can analyse the nonlinear

behaviour of the small amplitude IA wave with the help of

usual KdV or modified KdV equations. So, to include the

kinetic effect of electrons or to study the effect of linear

Landau damping of electrons on IA solitary wave, we

cannot neglect electron-to-ion mass ratio. But we have

assumed that the effect of electron Landau damping on the

nonlinear behaviour of IA wave is small and the effect of

linear Landau damping of electrons on the nonlinear

behaviour of IA wave is of the same order of nonlinearity,

i.e. dispersion, nonlinearity and the effect of linear Landau

damping of electrons are small but of the same order of

magnitude. Therefore, following Ott and Sudan [33], we

replace
ffiffiffiffiffiffiffiffiffiffiffiffi
me=m

p
by �a1 in Eqs. (1) and (2), and conse-

quently these two equations can be written in the following

form:

a1�
ofce

ot
þ vjj

ofce

ox
þ o/

ox

ofce

ovjj
¼ 0; ð26Þ

a1�
ofse

ot
þ vjj

ofse

ox
þ o/

ox

ofse

ovjj
¼ 0: ð27Þ

Now using (7), the momentum equation (6) can be written

as

ou

ot
þ u

ou

ox
þ crnc�2 on

ox
¼ � o/

ox
: ð28Þ

Again, using (4), the Poisson equation (3) can be written as

o2/
ox2

¼
Z 1

�1
fcedvk þ

Z 1

�1
fsedvjj � n: ð29Þ

Therefore, Eqs. (26), (27), (29), (5) and (28) are the basic

equations to derive Korteweg–de Vries (KdV) equation and

different modified Korteweg–de Vries equations including

the effect of linear Landau damping of electrons. Finally,

we have solved the different macroscopic nonlinear evo-

lution equations including the kinetic effect of electrons on

IA waves by considering appropriate initial and boundary

conditions.

3. Derivation of different evolution equations

To derive different nonlinear evolution equations including

the kinetic effect of electrons on IA waves propagating

along x-axis, we consider the following stretching of the

space coordinate and time:
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n ¼ �
1
2ðx � VtÞ; s ¼ �

3
2t; ð30Þ

where V is a constant and � is a small parameter.

3.1. KdV equation including the effect Landau

damping

To derive the KdV equation including the effect of linear

Landau damping of electrons, we take the following per-

turbation expansions of the dependent variables:

K ¼ Kð0Þ þ
X1
i¼1

�iKðiÞðn; sÞ; ð31Þ

where K ¼ n, u, /, fce and fse with (nð0Þ,uð0Þ, /ð0Þ, f
ð0Þ
ce ,

f
ð0Þ
se Þ ¼ ð1, 0, 0, fc0, fs0).

Substituting (30) and (31) into Eqs. (26), (27), (29), (5)

and (28) and collecting the terms of different powers of �

on both sides of each equation, we get a sequence of

equations and from this sequence of equations, we get the

following nonlinear evolution equation:

o/ð1Þ

os
þ AB1/

ð1Þ o/
ð1Þ

on
þ 1

2
A
o3/ð1Þ

on3

þ 1

2
AEa1P

Z 1

�1

o/ð1Þ

on0
dn0

n� n0
¼ 0;

ð32Þ

where we have used the same procedure of Bandyopadhyay

and Das [37] to derive Eq. (32).

The coefficients A, B1, E are given by

A ¼ 1

V
ðV2 � rcÞ2; ð33Þ

B1 ¼ 1

2

3V2 þ rcðc� 2Þ
ðV2 � rcÞ3

� �nc0r
2
c þ �ns0r

2
s

� �" #
; ð34Þ

E ¼ Vffiffiffiffiffiffi
2p

p �nc0r
3=2
c 1 � 3

4
be

	 

þ �ns0r

3=2
s

� �
: ð35Þ

The constant V is given by

ðV2 � rcÞð1 � �nc0rcbeÞ ¼ 1; ð36Þ

where be ¼ 4ae

1þ3ae
and the physically admissible range of be

is 0� be � 4
7
. The physically admissible range of be is

pointed out by Verheest and Pillay [44]. The calculation

regarding the physically admissible range of be has been

given by Debnath et al. [45], although, mathematically, be

is restricted by the inequality: 0� be\ 4
3
.

If we neglect electron-to-ion mass ratio, i.e. if we set

a1 ¼ 0, then the nonlinear evolution equation (32) simply

reduces to the well-known KdV equation.

Equation (32) describes the propagation of weakly

nonlinear and weakly dispersive IA solitary waves in a

multi-species collisionless unmagnetized plasma consisting

of nonthermal and isothermal electrons including the effect

of linear Landau damping of electrons.

From Eq. (32), we see that the nonlinearity of the IA

wave is only due to the second term of (32), i.e. AB1 is

responsible for the nonlinearity of the system. When

AB1 ¼ 0, i.e. B1 ¼ 0 (as A 6¼ 0 for any set of physically

admissible values of the parameters of the system), it is not

possible to discuss the nonlinear behaviour of IA waves

with the help of the evolution equation (32).

In Fig. 1, B1 is plotted against rsc for c ¼ 3, r ¼ 0:001

and for (a) nsc ¼ 0:05, (b) nsc ¼ 0:2, (c) nsc ¼ 0:3 and (d)

nsc ¼ 0:5. Here, red, black, green and blue curves of each

figure correspond to be ¼ 0, be ¼ 0:2, be ¼ 0:4 and be ¼
0:57 respectively. From Fig. 1(a), (b) and (c), we see that

there exists a value rðcÞsc of rsc such that B1 ¼ 0 at rsc ¼ rðcÞsc ,

and more specifically, B1\0 for rsc\rðcÞsc and B1 [ 0 for

rsc [ rðcÞsc . Again, from Fig. 1(d), we see that B1 [ 0 for all

values of be. From Fig. 1, it is evident that there exists a

region RI ¼ fðnsc; rsc; beÞ : B1ðnsc; rsc; beÞ 6¼ 0g such that

each point of RI satisfies the condition B1ðnsc; rsc; beÞ 6¼ 0.

On the other hand, there must exist a collection of points from

the entire parameter space such that every point of the col-

lection must satisfy equation B1ðnsc; rsc; beÞ ¼ 0 and conse-

quently for these values of the parameters nsc, rsc and be we

cannot use the KdV-like evolution equation to investigate the

effect of linear Landau damping of electrons on IA solitary

waves. To confirm the existence of a region RII ¼

0 0.2388 0.5
−3

0

1.1

B 1
→

0 0.5
−1.5

0

1

0 0.5
−0.6

0

1

σsc →

B 1
→

0 0.5
0

1

σsc →

(c)

(a) (b)

(d)

n
sc

=0.05

n
sc

=0.3

n
sc

=0.5

n
sc

=0.2

Fig. 1 B1 is plotted against rsc for c ¼ 3, r ¼ 0:001 and for (a)

nsc ¼ 0:05, (b) nsc ¼ 0:2, (c) nsc ¼ 0:3 and (d) nsc ¼ 0:5. Red, black,

green and blue curves of each figure correspond to be ¼ 0, be ¼ 0:2,

be ¼ 0:4 and be ¼ 0:57 respectively. (a)–(c) show the existence of

points rðcÞsc such that B1 ¼ 0 for some values of be whereas (d) shows

that B1 [ 0 for all values of be and for all rsc lying within the interval

(0, 0.5). In particular, for nsc ¼ 0:05, be ¼ 0:4, the value of rðcÞsc is

0.2388 (approx.) (colour figure online)
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fðnsc; rsc; beÞ : B1ðnsc; rsc; beÞ ¼ 0g in the entire parameter

space, we consider the following figures in different param-

eter planes.

Now, it is simple to check that B1 is a function of nsc, rsc

and be for any prescribed value of r and c, i.e.

B1 ¼ B1ðnsc; rsc; beÞ. Throughout this paper, we take c ¼ 3

and r ¼ 0:001, then all the coefficients A, B1, E can be

regarded as functions of nsc, rsc and be. Therefore, B1 is a

function of rsc and nsc for any given value of be, and con-

sequently, B1 ¼ 0 gives a functional relationship between

rsc and nsc. This functional relationship between rsc and nsc

is plotted in Fig. 2 when B1ðnsc; rsc; beÞ ¼ 0 for different

values of be. Here, red, black, green and blue curves corre-

spond to be ¼ 0, be ¼ 0:4, be ¼ 0:5 and be ¼ 0:57 respec-

tively. From this figure, we see that the interval of existence

of rsc increases with increasing be when B1ðnsc; rsc; beÞ ¼ 0:

Again, from the equation B1ðnsc; rsc; beÞ ¼ 0, we get a

functional relationship between nsc and be for any given

value of rsc. In Fig. 3, nsc is plotted against be when

B1ðnsc; rsc; beÞ ¼ 0 for (a) rsc ¼ 0:05, (b) rsc ¼ 0:1, (c)

rsc ¼ 0:2 and (d) rsc ¼ 0:4. From this figure, we see that

the interval of existence of be decreases with increasing rsc

when B1ðnsc; rsc; beÞ ¼ 0:

Similarly, when B1ðnsc; rsc; beÞ ¼ 0, we get a functional

relationship between rsc and be for any fixed value of nsc.

When B1ðnsc; rsc; beÞ ¼ 0, then the functional relation

between rsc and be is plotted in Fig. 4 for different values

of nsc with r ¼ 0:001. Red, black, green and blue curves

correspond to nsc ¼ 0:1, nsc ¼ 0:2, nsc ¼ 0:3 and nsc ¼ 0:4

respectively. From this figure, we see that the interval of

existence of be increases with increasing nsc whereas rsc

decreases with increasing nsc for any fixed be:

So, Figs. 1, 2, 3 and 4 confirm the existence of a region

RII ¼ fðnsc; rsc; beÞ : B1ðnsc; rsc; beÞ ¼ 0g in the parameter

space such that each point of RII satisfies the equation

B1ðnsc; rsc; beÞ ¼ 0. Therefore, for B1ðnsc; rsc; beÞ ¼ 0 or

for ðnsc; rsc; beÞ 2 RII , it is necessary to modify the KdV-

like evolution equation to investigate the effect of linear

Landau damping of electrons on IA solitary waves.

3.2. MKdV equation including the Landau damping

effect

When B1 ¼ 0, we take the following perturbation expan-

sions of the dependent variables:

K ¼ Kð0Þ þ
X1
i¼1

�
i
2KðiÞðn; sÞ; ð37Þ

where K ¼ n, u, /, fce and fse with (nð0Þ,uð0Þ, /ð0Þ, f
ð0Þ
ce ,

f
ð0Þ
se Þ ¼ ð1, 0, 0, fc0, fs0).

Substituting (30) and (37) into Eqs. (26), (27), (29), (5)

and (28) and collecting the terms of different powers of �,

0 0.5
0.1

0.5
γ = 3, σ = 0.001

σsc →

n s
c

→

Fig. 2 nsc is plotted against rsc when B1 ¼ 0 for different values of

be. For every value of be, we have a curve in the rsc � nsc parameter

plane and at every point on this curve we get a value of rsc as well as

a value of nsc, and finally for these values of be, rsc and nsc, the

equation B1 ¼ 0 holds good. Red, black, green and blue curves

correspond to be ¼ 0, be ¼ 0:4, be ¼ 0:5 and be ¼ 0:57 respectively

(colour figure online)

0 0.57
0.34

0.44

n s
c

→

0.28 0.57
0.27

0.38

0.4 0.57
0.14

0.3

βe →

n s
c

→

0.42 0.57
0

0.23

βe →

(d)(c)

(b)(a)

σ
sc

=0.2

σ
sc

=0.05 σ
sc

=0.1

σ
sc

=0.4

Fig. 3 nsc is plotted against be when B1 ¼ 0 for r ¼ 0:001 and for

different values of rsc. For every value of rsc, we have a curve in the

be � nsc parameter plane and at every point on this curve we get a

value of be as well as a value of nsc, and finally for these values of rsc,

be and nsc, the equation B1 ¼ 0 holds good (colour figure online)

0 0.57
0

0.33
γ=3, σ=0.001

βe →

σ s
c

→

Fig. 4 rsc is plotted against be when B1 ¼ 0 for different values of

nsc. For a fixed value of nsc, we have a curve in the be � rsc parameter

plane and at every point on this curve we get a value of be as well as a

value of rsc, and finally for these values of nsc, be and rsc, the

equation B1 ¼ 0 holds good. Red, black, green and blue curves

correspond to nsc ¼ 0:1, nsc ¼ 0:2, nsc ¼ 0:3 and nsc ¼ 0:4 respec-

tively (colour figure online)
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we get a sequence of equations and from this sequence of

equations, following Bandyopadhyay and Das [37], we get

the following nonlinear evolution equation:

o/ð1Þ

os
þ AB2½/ð1Þ�2 o/

ð1Þ

on
þ 1

2
A
o3/ð1Þ

on3
þ 1

2
AEa1P

Z 1

�1

o/ð1Þ

on0
dn0

n� n0
¼ 0:

ð38Þ

Here, it is important to mention that the condition B1 ¼ 0

has been used to eliminate the term AB1
oð/ð1Þ/ð2ÞÞ

on from the

final form of (38). The expressions of A, E, V are given by

(33), (35), (36), respectively, and the expression of B2 can

be written as

B2 ¼ 1

4
H2 � �nc0r

3
cð1 þ 3beÞ þ �ns0r

3
s

� �
 �
; ð39Þ

where

H2 ¼ 1

ðV2 � rcÞ5
15V4 þ rcðc2 þ 13c� 18ÞV2



þr2c2ðc� 2Þð2c� 3Þ�:
ð40Þ

If a1 ¼ 0, then the nonlinear evolution equation (38) sim-

ply reduces to the well-known MKdV equation.

From Eq. (38), we see that the nonlinearity of the IA

wave is only due to the second term of (38). So, Eq. (38)

describes the nonlinear dynamics of IA waves when B1 ¼ 0

and B2 6¼ 0:

Now, in Fig. 5, B2 is plotted against be when B1 ¼ 0 for

c ¼ 3 and r ¼ 0:001, and for different values of nsc. In

fact, for given values of c, r and nsc, B1 is a function of rsc

and be only and consequently if we solve the equation

B1 ¼ 0 with respect to the unknown rsc, we get rsc as a

function of be. If we put all the values of c, r, nsc and rsc in

the expression of B2, we get B2 as a function of be. This B2

is plotted against be in Fig. 5. Here, red, black and blue

curves correspond to nsc ¼ 0:02, nsc ¼ 0:05 and nsc ¼ 0:08

respectively. This figure clearly shows that there exists a

value bðcÞe of be such that B2 ¼ 0 at be ¼ bðcÞe and more

specifically, B2\0 for be\bðcÞe , B2 [ 0 for be [ bðcÞe and

B2 ¼ 0 at be ¼ bðcÞe . In particular, for nsc ¼ 0:05, the value

of bðcÞe is approximately equal to 0.2847. Therefore, there

exist points ðnsc; rsc; beÞ in the parameter space such that

B1 ¼ B2 ¼ 0. So, now it is necessary to divide the region

RII into two regions R
ðaÞ
II and R

ðbÞ
II such that R

ðaÞ
II ¼

fðnsc; rsc; beÞ : B1 ¼ 0 and B2 6¼ 0g and

R
ðbÞ
II ¼ fðnsc; rsc; beÞ : B1 ¼ B2 ¼ 0g:

We see that Eq. (38) is free from any nonlinear effect

when B1 ¼ B2 ¼ 0, i.e. if ðnsc; rsc; beÞ 2 R
ðbÞ
II . To explain

the existence of the region R
ðbÞ
II , we consider Fig. 6. Now, it

is simple to check that B1 and B2 are the functions of nsc,

rsc and be for any prescribed value of r and c, i.e. B1 ¼
B1ðnsc; rsc; beÞ and B2 ¼ B2ðnsc; rsc; beÞ for any given

value of r and c. We have mentioned earlier that

throughout this paper we take c ¼ 3 and r ¼ 0:001. Now,

for given values of be and rsc, B1ðnsc; rsc; beÞ ¼ 0 gives an

equation for the unknown nsc and consequently, B1 ¼ 0

gives a real solution for nsc. Let nsc ¼ nscðbe; rscÞ be the

physically admissible real solution of the equation

B1ðnsc; rsc; beÞ ¼ 0, i.e. the physically admissible real

solution nsc of the equation B1ðnsc; rsc; beÞ ¼ 0 can be

considered as a function of be and rsc. If we put this value

of nscðbe; rscÞ in the expression of B2ðnsc; rsc; beÞ then the

function B2 is reduced to a function of be and rsc only, i.e.

B2 ¼ B2ðbe; rscÞ. Again, B2 ¼ B2ðbe; rscÞ ¼ 0 gives a

functional relationship between rsc and be. This functional

relationship between rsc and be is plotted in Fig. 6, for

fixed values of the other parameters, i.e. in Fig. 6, rsc is

plotted against the nonthermal parameter be when B1 ¼ 0

and B2 ¼ 0. Figure 6 shows a variation of rsc against the

0.1647 0.2847 0.3525
−2

0
0.5

γ = 3, σ = 0.001, B1 = 0

βe →

B 2
→

Fig. 5 B2 is plotted against be when B1 ¼ 0 for different values of

nsc, i.e. the solution of the equation B1 ¼ 0 for the unknown rsc gives

rsc as a function of be and consequently one can express B2 as a

function of be, this B2 is plotted against be. Red, black and blue

curves correspond to nsc ¼ 0:02, nsc ¼ 0:05 and nsc ¼ 0:08 respec-

tively. This figure shows the existence of a point bðcÞe of be where

B2 ¼ 0. In particular, for nsc ¼ 0:05, the value of bðcÞe is approxi-

mately 0.2847 (colour figure online)

0 0.41
0

0.035
γ = 3, σ = 0.001, B1 = B2 = 0

βe →

σ s
c

→

Fig. 6 rsc is plotted against be when B1 ¼ B2 ¼ 0. Here, B1 and B2

both are the functions of nsc, rsc and be. Therefore, solving the

equation B1 ¼ 0 for the unknown nsc, we get nsc as a function of rsc

and be. If we put this solution for nsc in the expression of B2, we get

B2 as a function of rsc and be. Finally, the equation B2 ¼ 0 gives rsc

as a function of be. We plot this solution rsc against be and along this

curve, we have B1 ¼ B2 ¼ 0
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nonthermal parameter be in be-rsc parameter plane when

B1 ¼ B2 ¼ 0. This figure shows the existence of a curve in

the be-rsc parameter plane along which B1 ¼ 0 and B2 ¼ 0.

Different values of r will give different curves in the be-rsc

parameter plane along which B1 ¼ 0 and B2 ¼ 0. There-

fore, the existence of region R
ðbÞ
II in the parameter space is

confirmed, and consequently, in this region of parameter

space, it is not possible to describe the nonlinear dynamics

of IA waves either by the KdV-like Eq. (32) or by the

MKdV-like Eq. (38). Therefore, for B1 ¼ B2 ¼ 0, a further

modification of the evolution equation (38) is necessary to

study the effect of linear Landau damping of electrons on

IA solitary waves. In the next subsection, we have derived

a new evolution equation when the conditions B1 ¼ 0 and

B2 ¼ 0 hold simultaneously.

3.3. FMKdV equation including the Landau damping

effect

To derive the FMKdV equation including the effect of

linear Landau damping of electrons when the conditions

B1 ¼ 0 and B2 ¼ 0 hold simultaneously, we take the fol-

lowing perturbation expansions of the dependent variables:

K ¼ Kð0Þ þ
X1
i¼1

�
i
3KðiÞðn; sÞ; ð41Þ

where K ¼ n, u, /, fce and fse with (nð0Þ,uð0Þ, /ð0Þ, f
ð0Þ
ce ,

f
ð0Þ
se Þ ¼ ð1, 0, 0, fc0, fs0).

Substituting (30) and (41) into Eqs. (26), (27), (29), (5)

and (28) and collecting the terms of different powers of �

on both sides of each equation, we get a sequence of

equations.

3.3.1. Equations for ion fluid at the order �5=6

At the order �5=6, solving the equation of continuity and the

equation of motion of ion fluid for the unknowns nð1Þ and

uð1Þ, we get

nð1Þ ¼ 1

V2 � rc
/ð1Þ; uð1Þ ¼ V

V2 � rc
/ð1Þ: ð42Þ

3.3.2. Vlasov–Boltzmann equation at the order �5=6

The Vlasov–Boltzmann equation of nonthermal electrons

at the order �5=6 is

vjj
of

ð1Þ
ce

on
þ o/ð1Þ

on
ofc0

ovjj
¼ 0: ð43Þ

The above equation does not have a unique solution and

consequently to get the unique solution of Eq. (43), we follow

the method of Ott and Sudan [33]. This method suggests to

add an extra higher-order time derivative term �17=6a1
of

ð1Þ
ce

os

with the Vlasov–Boltzmann equation at the order �5=6. So,

Eq. (43) can be written in the following form:

a1�
2 of

ð1Þ
ce�

os
þ vjj

of
ð1Þ
ce�

on
þ o/ð1Þ

on
ofc0

ovjj
¼ 0; ð44Þ

where f
ð1Þ
ce is replaced by f

ð1Þ
ce� and one can get f

ð1Þ
ce from the

solution of the above equation by considering the following

relation for j ¼ 1.

f ðjÞce ¼ lim
�!0

f ðjÞce�; j ¼ 1; 2; 3; . . .: ð45Þ

To solve (44), we have assumed that the time dependence

of any perturbed quantity is of the form expðixsÞ and we

can write Eq. (44) as

ia1x�
2f ð1Þce� þ vjj

of
ð1Þ
ce�

on
þ o/ð1Þ

on
ofc0

ovjj
¼ 0: ð46Þ

Now, taking the Fourier transform of this equation with

respect to n, we get

ef ð1Þce� ¼ �2
ofc0

ov2
jj

svjj
svjj þ a1x�2

e/ð1Þ; ð47Þ

where the Fourier transform of g with respect to n is

defined as

eg ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
gðnÞe�isndn: ð48Þ

Again, using the Landau prescription to resolve the

singularities involved, Eq. (47) can be written as

ef ð1Þce� ¼ �2
ofc0

ov2
jj

svjjP
1

svjj þ a1x�2
þ ipsvjjdðsvjj þ a1x�

2Þ
� �

e/ð1Þ:

ð49Þ

Taking limit � ! 0, we get

ef ð1Þce ¼ �2
ofc0

ov2
jj

svjjP
1

svjj
þ ipsvjjdðsvjjÞ

� �
e/ð1Þ; ð50Þ

where we have used the relation (45) for j ¼ 1.

Now, using the relations xPð1=xÞ ¼ 1 and xdðxÞ ¼ 0,

Eq. (50) can be simplified as

ef ð1Þce ¼ �2
ofc0

ov2
jj

e/ð1Þ: ð51Þ

Taking Fourier inversion of the above equation, we get

f ð1Þce ¼ �2
ofc0

ov2
jj
/ð1Þ: ð52Þ

Similarly, considering the Vlasov–Boltzmann equation of

isothermal electrons at the order �5=6, we get
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f ð1Þse ¼ �2
ofs0

ov2
jj
/ð1Þ: ð53Þ

3.3.3. Poisson equation at the order �
1
3

From the Poisson equation at the order �
1
3, we get

nð1Þ ¼
Z 1

�1
f ð1Þce dvk þ

Z 1

�1
f ð1Þse dvjj: ð54Þ

Using (52) and (53), the above equation can be written in

the following form:

nð1Þ ¼ ð1 � �nc0rcbeÞ/ð1Þ: ð55Þ

Using this equation and the first equation of (42), we get

Eq. (36). Therefore, the Poisson equation at the order �
1
3

gives the dispersion relation (36) which determines the

constant V.

3.3.4. Equations for ion fluid at the order �7=6

At the order �7=6, solving the continuity equation and the

momentum equation of ion fluid for the unknowns nð2Þ and

uð2Þ, we get

nð2Þ ¼ /ð2Þ

ðV2 � rcÞ þ
3V2 þ rcðc� 2Þ

2ðV2 � rcÞ3
½/ð1Þ�2; ð56Þ

uð2Þ ¼ V/ð2Þ

ðV2 � rcÞ þ
VðV2 þ rc2Þ
2ðV2 � rcÞ3

½/ð1Þ�2: ð57Þ

3.3.5. Vlasov–Boltzmann equation at the order �7=6

At the order �7=6, the Vlasov–Boltzmann equation for

nonthermal and isothermal electrons are

vjj
of

ð2Þ
ce

on
þ o/ð2Þ

on
ofc0

ovjj
þ o/ð1Þ

on
of

ð1Þ
ce

ovjj
¼ 0; ð58Þ

vjj
of

ð2Þ
se

on
þ o/ð2Þ

on
ofs0

ovjj
þ o/ð1Þ

on
of

ð1Þ
se

ovjj
¼ 0: ð59Þ

Following exactly the same analysis as given in Sect. 3.3.2,

the solutions of (58) and (59) can be written as follows:

f ð2Þce ¼� 2
ofc0

ov2
jj
/ð2Þ � 2

ogc0

ov2
jj
wð2Þ; ð60Þ

f ð2Þse ¼� 2
ofs0

ov2
jj
/ð2Þ � 2

ogs0

ov2
jj
wð2Þ; ð61Þ

where

wð2Þ ¼ �ð/ð1ÞÞ2; gc0 ¼ ofc0

ov2
jj
; gs0 ¼ ofs0

ov2
jj
: ð62Þ

3.3.6. Poisson equation at the order �
2
3

It is simple to check that the Poisson equation at the order

�
2
3 is identically satisfied due to the dispersion relation (36)

and the condition B1 ¼ 0.

3.3.7. Equations for ion fluid at the order �9=6

Again, at the order �9=6, solving the continuity equation of

ions and the momentum equation of ions for the unknowns

nð3Þ and uð3Þ, we obtain the following equations:

nð3Þ ¼ /ð3Þ

V2 � rc
þ 3V2 þ rcðc� 2Þ

ðV2 � rcÞ3
/ð1Þ/ð2Þ þ 1

6
H2½/ð1Þ�3; ð63Þ

uð3Þ ¼ V/ð3Þ

V2 � rc
þ VðV2 þ rc2Þ

ðV2 � rcÞ3
/ð1Þ/ð2Þ þ G2½/ð1Þ�3;

ð64Þ

where

G2 ¼ V

6

3V4 þ rc2ðcþ 7ÞV2 þ r2c3ð2c� 1Þ
ðV2 � rcÞ5

" #
: ð65Þ

3.3.8. Vlasov–Boltzmann equation at the order �9=6

Following exactly the same analysis as given in Sect. 3.3.2,

the solutions of the Vlasov–Boltzmann equations of non-

thermal and isothermal electrons at the order �9=6 can be

written as follows:

f ð3Þce ¼� 2
ofc0

ov2
jj
/ð3Þ � 2

ogc0

ov2
jj
wð3Þ � 2

ohc0

ov2
jj
vð3Þ; ð66Þ

f ð3Þse ¼� 2
ofs0

ov2
jj
/ð3Þ � 2

ogs0

ov2
jj
wð3Þ � 2

ohs0

ov2
jj
vð3Þ; ð67Þ

where

wð3Þ ¼ �2/ð1Þ/ð2Þ; vð3Þ ¼ 2

3
ð/ð1ÞÞ3; hc0 ¼ ogc0

ov2
jj
; hs0 ¼ ogs0

ov2
jj
:

ð68Þ

3.3.9. Poisson equation at the order �

It is simple to check that the Poisson equation at the order �

is also identically satisfied due to the dispersion relation

(36) and the conditions B1 ¼ 0 and B2 ¼ 0.

3.3.10. Equations for ion fluid at the order �11=6

At the order �11=6, solving the continuity equation and the

momentum equation of ions, onð4Þ

on and ouð4Þ

on can be expressed

as functions of /ð1Þ, /ð2Þ, /ð3Þ and /ð4Þ along with their
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different derivatives with respect to n and s. In particular,
onð4Þ

on can be written as

onð4Þ

on
¼ 1

ðV2 � rcÞ
o/ð4Þ

on
þ 2V

ðV2 � rcÞ2

o/ð1Þ

os

þ 3V2 þ rcðc� 2Þ
ðV2 � rcÞ3

o

on
½/ð1Þ/ð3Þ þ 1

2
ð/ð2ÞÞ2�

þ H2

2

o

on
½ð/ð1ÞÞ2/ð2Þ� þ H3

6
½/ð1Þ�3 o/

ð1Þ

on
;

ð69Þ

where

H3 ¼ 1

ðV2 � rcÞ7
105V6 þ rcðc3 þ 21c2 þ 161c� 174ÞV4



þr2c2ð8c3 þ 53c2 � 162cþ 108ÞV2

þr3c3ðc� 2Þð2c� 3Þð3c� 4Þ�:
ð70Þ

3.3.11. Vlasov–Boltzmann equation at the order �11=6

At the order �11=6, the Vlasov–Boltzmann equation of

nonthermal electrons is

vjj
of

ð4Þ
ce

on
þ o/ð4Þ

on
ofc0

ovjj
þ owð4Þ

on
ogc0

ovjj
þ ovð4Þ

on
ohc0

ovjj

þ ojð4Þ

on
okc0

ovjj
þ 2a1V

ofc0

ov2
jj

o/ð1Þ

on
¼ 0;

ð71Þ

where we have used Eqs. (52), (60) and (66) to get Eq. (71)

and in this equation, we have used the following notations:

wð4Þ ¼ �2/ð1Þ/ð3Þ � ð/ð2ÞÞ2; vð4Þ ¼ 2ð/ð1ÞÞ2/ð2Þ;

jð4Þ ¼ � 1

3
ð/ð1ÞÞ4; kc0 ¼ ohc0

ov2
jj
:

ð72Þ

Including an extra higher-order time derivative term

�23=6a1
of

ð4Þ
ce

os , Eq. (71) can be written as

a1�
2 of

ð4Þ
ce�

os
þ vjj

of
ð4Þ
ce�

on
þ o/ð4Þ

on
ofc0

ovjj
þ owð4Þ

on
ogc0

ovjj

þ ovð4Þ

on
ohc0

ovjj
þ ojð4Þ

on
okc0

ovjj

þ 2a1V
ofc0

ov2
jj

o/ð1Þ

on
¼ 0;

ð73Þ

where f
ð4Þ
ce is replaced by f

ð4Þ
ce� and f

ð4Þ
ce can be obtained from

the unique solution of Eq. (73) by considering the relation

(45) for j ¼ 4.

Now, assuming the s dependence of the perturbed

quantities is of the form expðixsÞ and taking the Fourier

transform with respect to n, we get the following equation

from Eq. (73):

ief ð4Þce� ¼ � 2

s

ofc0

ov2
jj

e/ð4Þ
n þ ogc0

ov2
jj

ewð4Þ
n þ ohc0

ov2
jj
evð4Þn þ okc0

ov2
jj
ejð4Þ
n

" #

�
svjj

svjj þ a1x�2
� 2a1V

ofc0

ov2
jj

1

svjj þ a1x�2
e/ð1Þ
n ;

ð74Þ

where e/ð4Þ
n , ewð4Þ

n , evð4Þn , ejð4Þ
n and e/ð1Þ

n are, respectively, the

Fourier transform of /ð4Þ
n , wð4Þ

n , vð4Þn , jð4Þn and /ð1Þ
n .

Now, making � ! 0 and using the relations

xPð1=xÞ ¼ 1, xdðxÞ ¼ 0 and sdðsvjjÞ ¼ sgn ðsÞdðvjjÞ, we

get the following expression of ef ð4Þce :

isef ð4Þce ¼ �2
ofc0

ov2
jj

e/ð4Þ
n þ ogc0

ov2
jj

ewð4Þ
n þ ohc0

ov2
jj
evð4Þn þ okc0

ov2
jj
ejð4Þ
n

" #

�2a1V
ofc0

ov2
jj

sP
1

svjj

	 

þ ip sgn ðsÞdðvjjÞ

� �
e/ð1Þ
n :

ð75Þ

Integrating (75) over the velocity space, we get

is

Z þ1

�1
ef ð4Þce dvjj ¼ �2 Fc0

e/ð4Þ
n þ Gc0

ewð4Þ
n þ Hc0evð4Þn þ Kc0ejð4Þ

n

h i

� 2ipa1VZc0 sgn ðsÞe/ð1Þ
n ;

ð76Þ

where Fc0, Gc0, Hc0, Kc0, Zc0 are given in Appendix 1.

Taking Fourier inversion of (76), we get

o

on

Z þ1

�1
f ð4Þce dvjj

	 

¼� 2 Fc0/

ð4Þ
n þ Gc0w

ð4Þ
n þ Hc0v

ð4Þ
n þ Kc0j

ð4Þ
n

h i

þ 2a1VZc0P
Z 1

�1

o/ð1Þ

on0
dn0

n� n0
;

ð77Þ

where we have used the convolution theorem of Fourier

transform to find the inverse Fourier transform of

sgn ðsÞe/ð1Þ
n . Here, o/ð1Þ

on0
is the value of o/ð1Þ

on at n ¼ n0.

Similarly, considering the Vlasov–Boltzmann equation

of the isothermal electrons at the order �11=6, we get

o

on

Z þ1

�1
f ð4Þse dvjj

	 

¼� 2 Fs0/

ð4Þ
n þ Gs0w

ð4Þ
n þ Hs0v

ð4Þ
n þ Ks0j

ð4Þ
n

h i

þ 2a1VZs0P
Z 1

�1

o/ð1Þ

on0
dn0

n� n0
;

ð78Þ

where Fs0, Gs0, Hs0, Ks0, Zs0 are given in Appendix 2.

3.3.12. Poisson equation at the order �4=3

From the Poisson equation at the order �
4
3, we get
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nð4Þ ¼
Z 1

�1
f ð4Þce dvk þ

Z 1

�1
f ð4Þse dvjj �

o2/ð1Þ

on2
: ð79Þ

Differentiating this equation with respect to n, using

equations (77) and (78) in the resulting equation, we get the

following expression of onð4Þ

on as follows:

onð4Þ

on
¼� o3/ð1Þ

on3
þ ð1 � �nc0rcbeÞ

o/ð4Þ

on

þ �nc0r
2
c þ �ns0r

2
s

� � o

on
½/ð1Þ/ð3Þ þ 1

2
ð/ð2ÞÞ2�

þ 1

2
�nc0r

3
cð1 þ 3beÞ þ �ns0r

3
s


 � o

on
½ð/ð1ÞÞ2/ð2Þ�

þ 1

6
�nc0r

4
cð1 þ 8beÞ þ �ns0r

4
s


 �
½/ð1Þ�3 o/

ð1Þ

on

� a1EP
Z 1

�1

o/ð1Þ

on0
dn0

n� n0
:

ð80Þ

Now, eliminating onð4Þ

on from Eqs. (69) and (80), we get

o/ð1Þ

os
þ AB3½/ð1Þ�3 o/

ð1Þ

on
þ 1

2
A
o3/ð1Þ

on3
þ 1

2
AEa1P

Z 1

�1

o/ð1Þ

on0
dn0

n� n0
¼ 0;

ð81Þ

where we have used the dispersion relation (36), conditions

B1 ¼ 0 and B2 ¼ 0 to eliminate the terms o/ð4Þ

on ,

AB1
o
on ½/

ð1Þ/ð3Þ þ 1
2
ð/ð2ÞÞ2� and AB2

o
on ½ð/

ð1ÞÞ2/ð2Þ� respec-

tively, to simplify Eq. (81).

Here, B3 is given by

B3 ¼ 1

12
H3 � �nc0r

4
cð1 þ 8beÞ þ �ns0r

4
s

� �
 �
; ð82Þ

where H3 is given by Eq. (70).

Therefore, the Poisson equation at the order �
4
3 gives a

FMKdV equation including the effect of Landau damping

which describes the nonlinear behaviour of IA waves when

B1 ¼ 0, B2 ¼ 0 but B3 6¼ 0.

4. Solitary wave solution

In more compact form, we can write the KdV equation,

MKdV equation and FMKdV equation as

o/ð1Þ

os
þ ABr½/ð1Þ�r o/

ð1Þ

on
þ 1

2
A
o3/ð1Þ

on3
þ 1

2
AEa1P

Z 1

�1

o/ð1Þ

on0
dn0

n� n0
¼ 0;

ð83Þ

where r ¼ 1; 2; 3.

If we put a1 ¼ 0 in Eq. (83), then Eq. (83) reduces to a

KdV equation for r ¼ 1, an MKdV equation for r ¼ 2 and

a FMKdV equation for r ¼ 3.

For a solitary wave solution of (83) with a1 ¼ 0, we

consider the following transformation of the independent

variables:

X ¼ n� Us; s0 ¼ s: ð84Þ

Under the above transformation of independent variables,

Eq. (83) with a1 ¼ 0 assumes the following form:

o/ð1Þ

os
� U

o/ð1Þ

oX
þ ABr½/ð1Þ�r o/

ð1Þ

oX
þ 1

2
A
o3/ð1Þ

oX3
¼ 0;

ð85Þ

where we drop the prime on the independent variable s to

simplify the notation.

For the travelling wave solution of (85), we take

/ð1Þ ¼ /0ðXÞ: ð86Þ

Substituting (86) into (85), we get the following ordinary

differential equation of /0:

�U
d/0

dX
þ ABr½/0�r

d/0

dX
þ 1

2
A

d3/0

dX3
¼ 0: ð87Þ

To get the solitary wave solution of (87), we use the

boundary conditions: /0;
dn/0

dXn ! 0 as jXj ! 1 for n ¼ 1,

2, 3, . . . and using these conditions, the solitary wave

solution of (87) can be written as

/0 ¼ a sech
2
r ½WX�; ð88Þ

where the amplitude (a) and width ( 1
W) are given by

ar ¼ ðr þ 1Þðr þ 2ÞU
2ABr

and W2 ¼ r2U

2A
: ð89Þ

Now, using (89), Eq. (88) can be written as

/0 ¼ a sech
2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2arBr

ðr þ 1Þðr þ 2Þ

s
n� 2ABra

rs
ðr þ 1Þðr þ 2Þ

� �" #
:

ð90Þ

Again, multiplying Eq. (83) by /ð1Þ and then integrating

the resulting equation with respect to n within the interval

ð�1; 1Þ, and finally, using the boundary conditions:

/ð1Þ; on/ð1Þ

onn ! 0 as jnj ! 1 for n ¼ 1; 2; 3; . . ., we get the

following equation:

o

os

Z 1

�1
/ð1Þ
� �2

dn ¼ �AEa1

Z 1

�1
/ð1Þ

P
Z 1

�1

o/ð1Þ

on0
dn0

n� n0

" #
dn:

ð91Þ
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If we neglect the electron-to-ion mass ratio, then Eq. (91)

reduces to the following equation: o
os

R1
�1ð/ð1ÞÞ2dn ¼ 0.

This equation shows that the wave energy is conserved. On

the other hand, if a1 6¼ 0 and if the initial perturbation is of

the form (90), then the integral appearing in the right-hand

side of (91) is positive for r ¼ 1; 2; 3 and consequently

from (91), we have the inequality : o
os

R1
�1 /ð1Þ
� �2

dn\0 for

any values of the parameters of the system, because A, E,

a1 are all strictly positive. This inequality shows that the

initial perturbation of the form (90) will decay to zero. This

phenomenon suggests that the amplitude of the solitary

wave solution of the form (90) is not a constant but

decreases slowly with time.

Now for a1 6¼ 0, to get a solitary wave solution of

Eq. (83), we shall follow the method of Ott and

Sudan [33]. So, using the prescription of Ott and

Sudan [33], we have introduced the following space

coordinate:

X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2arBr

ðr þ 1Þðr þ 2Þ

s
n� 2ABr

ðr þ 1Þðr þ 2Þ

Z s

0

ards

� �
;

ð92Þ

where the amplitude (a) is a slowly varying function of

time. Therefore, considering /ð1Þ as a function of X and s,

i.e. /ð1Þ ¼ /ð1ÞðX; sÞ, Eq. (83) can be written as

o/ð1Þ

os
þ � 2ABra

rW

ðr þ 1Þðr þ 2Þ þ
rX

2a

oa

os

� �
o/ð1Þ

oX

þ ABrW /ð1Þ
� �ro/ð1Þ

oX
þ 1

2
AW3 o

3/ð1Þ

oX3

þ 1

2
AEWa1P

Z 1

�1

o/ð1Þ

oX0
dX0

X � X0 ¼ 0;

ð93Þ

where o/ð1Þ

oX0 ¼ o/ð1Þ

oX at X ¼ X0.
To find the solitary wave solution, we follow the pro-

cedure of Ott and Sudan [33] and considering two time

scales with respect to a1 as s0 ¼ s, s1 ¼ a1s, We take the

solution of (93) as

/ð1ÞðX; sÞ ¼ qð0ÞðX; s0; s1Þ þ a1qð1ÞðX; s0; s1Þ þ Oða2
1Þ:
ð94Þ

Substituting (94) into (93) and equating the coefficients of

order unity [ða1Þ0
] and order a1 [ða1Þ1

] on each side of the

resulting equation, we get the following equations:

q
oqð0Þ

os0

þ rX

2a

oa

os0

oqð0Þ

oX

� �
þ L

oqð0Þ

oX

� �
¼ 0; ð95Þ

q
oqð1Þ

os0

þ rX

2a

oa

os0

oqð1Þ

oX

� �
þ o½Lqð1Þ�

oX
¼ qMqð0Þ; ð96Þ

where

q ¼ 2

AW3
; L ¼ o2

oX2
þ 2ðr þ 1Þðr þ 2Þ

r2ar
ðqð0ÞÞr � 4

r2
; ð97Þ

�Mqð0Þ ¼ oqð0Þ

os1

þ rX

2a

oa

os1

oqð0Þ

oX
þ 1

2
AEWP

Z 1

�1

oqð0Þ

oX0
dX0

X � X0 :

ð98Þ

Now, in view of initial and boundary conditions:

/ð1ÞðX; 0Þ ¼ a0 sech
2
rX and /ð1Þð�1; sÞ ¼ 0, it is

simple to check that qð0Þ ¼ a sech
2
r ½X� is the soliton

solution of (95) if and only if oa
os0

¼ 0 and consequently the

solution of (95) can be written in the following form:

qð0Þ ¼ aðs1Þ sech
2
r ½X�, where aðs1Þ is an arbitrary function

of s1 except for the initial condition að0Þ ¼ a0. Therefore,

Eq. (96) can be written as

q
oqð1Þ

os0

þ o

oX
½Lqð1Þ� ¼ qMqð0Þ: ð99Þ

Now, for the existence of the solution of (99), we have the

following consistency condition:
Z 1

�1
sech

2
r ½X�Mqð0ÞdX ¼ 0: ð100Þ

The above equation states that the right-hand side of (99) is

perpendicular to the kernel of adjoint operator of o
oX ½L� and

this kernel is sech
2
r ½X�, which satisfies the boundary

conditions at X ¼ �1, i.e. sech
2
r ½X� ! 0 as X ! �1.

Eq. (100) gives the following differential equation for

the solitary wave amplitude a:

Mr
o

os1

a

a0

	 

þ Wr

a

a0

	 
r
2
þ1

¼ 0; ð101Þ

where a0 is the value of a when s ¼ 0 and

Mr ¼
Z 1

�1
½ sech X�

4
rð1 � X tanh XÞdX; ð102Þ

Wr ¼
1

2
IrAE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ar

0Br

ðr þ 1Þðr þ 2Þ

s
; ð103Þ

Ir ¼P
Zþ1

�1

Zþ1

�1

½ sech X�
2
r
o½ sech X0�

2
r

oX0
dXdX0

X � X0 : ð104Þ

Now, it is simple to check that M1 ¼ 1, M2 ¼ 1,

M3 � 0:6468. In Appendix 3, we have generalized the

method of Weiland et al. [46] to find Ir. Using this method

and MATHEMATICA [47], we get the following numer-

ical values of Ir for r ¼ 1; 2; 3 : I1 � 2:9231, I2 � 2:7726,

I3 � 2:6649.

For r ¼ 1; 2; 3 the solution of (101) can be written as

378 S Dalui and A Bandyopadhyay



a ¼ a0 1 þ s
Tr

	 
�2
r

; ð105Þ

where Tr is given by the following equation:

Tr ¼
r

4Mr
AEa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ar

0Br

ðr þ 1Þðr þ 2Þ

s
Ir

" #�1

: ð106Þ

Eq. (105) shows that the amplitude of solitary wave solu-

tion is proportional to 1 þ s
Tr

� ��2
r

for r ¼ 1; 2; 3.

Therefore, the first-order solitary wave solution of the

evolution Eq. (83) can be written in the following form :

/ð1Þ ¼ a sech
2
rX for r ¼ 1, 2 and 3, where the amplitude

(a) of the solitary wave is not a constant but it is a function

of time s and its functional form is given by Eq. (105).

From Eq. (105), we see that the amplitude of the solitary

wave decreases slowly with time s.

5. Conclusions

We have considered a collisionless unmagnetized electron–

ion plasma consisting of warm adiabatic ions and two

distinct populations of electrons at different tempera-

tures—a cooler one is isothermally distributed and follows

Maxwell–Boltzmann distribution, whereas the hotter one is

nonthermally distributed and obeys the distribution func-

tion of Cairns et al. [9].

Considering the Vlasov–Poisson model for two different

electron species and the fluid model for ions, we have

derived a KdV-like evolution equation including the effect

of linear Landau damping of electrons. We have studied

the propagation of weakly nonlinear and weakly dispersive

IA waves using this KdV-like evolution equation.

We have seen that the coefficient of the nonlinear term

of the KdV-like evolution equation vanishes along differ-

ent family of curves in different parameter planes, viz.,

rsc � nsc, be � rsc, be � nsc. In this situation, to describe

the nonlinear behaviour of IA waves, we have derived an

MKdV-like evolution equation including the effect of lin-

ear Landau damping of electrons having nonlinear term

/ð1Þ
� �2

o/ð1Þ

on but the term responsible for the effect of linear

Landau damping of electrons remains the same in both

KdV and MKdV-like evolution equations.

Again, we have seen that the coefficients of the non-

linear terms of both KdV and MKdV-like evolution

equations simultaneously vanish along a family of curves

for different values of r. In this situation, for the first time,

we have derived a FMKdV-like evolution equation

including the effect of linear Landau damping of electrons

and this equation efficiently describes the nonlinear

behaviour of IA waves. We have found that the nonlinear

term of FMKdV-like evolution equation is of the form

/ð1Þ
� �3

o/ð1Þ

on but the term responsible for the effect of linear

Landau damping of electrons remains same in all KdV,

MKdV and FMKdV-like evolution equations.

The evolution equations can be written in a more

compact form by considering the nonlinear term of the

form /ð1Þ
� �r

o/ð1Þ

on for r ¼ 1; 2; 3. For r ¼ 1; 2 and 3, we,

respectively, get KdV, MKdV and FMKdV-like evolution

equations. Using the multiple time scale analysis with

respect to the small parameter a1, we have generalized the

method of Ott and Sudan [33] to solve evolution equation

(83).

The solitary wave solution of the evolution equation (83)

can be simplified as /ð1Þ ¼ a sech
2
rX, where the amplitude

a of the solitary wave solution of (83) is a decreasing function

of time and its functional form is given by Eq. (105).

For the first time, we have found the solitary wave

solution of FMKdV-like evolution equation and we have

seen that the amplitude of solitary wave solution of

FMKdV-like evolution equation is proportional to

1 þ s
T3

� ��2
3

, where T3 is given by Eq. (106) for r ¼ 3.

For r ¼ 1, the amplitude a of the KdV soliton is plotted

against s in Fig. 7 for c ¼ 3, r ¼ 0:001, rsc ¼ 0:25 and

nsc ¼ 0:3 and for different values of be. Here, red, black

and blue curves correspond to be ¼ 0, be ¼ 0:4 and be ¼
0:57 respectively. From this figure, we see that the

amplitude a of the KdV soliton increases with increasing be

for any fixed s. This figure also shows that the amplitude

decreases with time.

For r ¼ 2, the amplitude a of the MKdV soliton is

plotted against s in Fig. 8 when B1 ¼ 0 for c ¼ 3, r ¼
0:001 and rsc ¼ 0:25, and for different values of be. Here,

0 100
0

0.5
γ=3, σ=0.001, σsc=0.25, nsc=0.3

τ →

a
→

Fig. 7 The amplitude (a) of the KdV soliton is plotted against s for

different values of be. Red, black and blue curves correspond to

be ¼ 0, be ¼ 0:4 and be ¼ 0:57 respectively. This figure shows that

the amplitude of the KdV soliton decreases with increasing time s for

any fixed value of be whereas for any fixed value of s, the amplitude

of the KdV soliton increases with the increasing nonthermal

parameter be (colour figure online)
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red, black and blue curves correspond to be ¼ 0, be ¼ 0:45

and be ¼ 0:57 respectively. This figure shows that the

amplitude decreases with time.

For r ¼ 3, the amplitude a of the FMKdV soliton is

plotted against s in Fig. 9 when B1 ¼ B2 ¼ 0 for c ¼ 3 and

r ¼ 0:001, and for different values of be. Red, black and

blue curves correspond to be ¼ 0, be ¼ 0:352 and be ¼
0:42 respectively. This figure shows that the amplitude

decreases with time.

Therefore, from Figs. 7, 8 and 9, we can conclude that

the amplitude of the IA soliton decreases with time s for all

r ¼ 1; 2; 3 if the effect of linear Landau damping of elec-

trons is taken into account.

Finally, it is important to note that if we neglect the effect of

linear Landau damping of electrons, then Eqs. (1)–(7) reduce

to a full set of hydrodynamic equations and simultaneously the

nonlinear evolution equation (83) reduces to KdV and dif-

ferent modified KdV equation for different values of r ¼ 1, 2

and 3. These equations can describe the small amplitude

solitary wave solutions under different circumstances of the

present plasma system, viz., the nonlinear evolution equation

is a KdV-like equation if B1 6¼ 0 or a modified KdV-like

equation if B1 ¼ 0 but B2 6¼ 0 or a further modified KdV-like

equation if B1 ¼ B2 ¼ 0 but B3 6¼ 0. In fact, here Vlasov–

Poisson model of electron species depends on the inertia of

electrons, i.e. if we neglect the inertia of electrons, then the

system of equations reduces to a system of hydrodynamic

equations and all the usual nonlinear evolution equations can

be obtained from Eq. (83) by neglecting the effect of linear

Landau damping of electrons. Therefore, one can assume that

the treatment made in this paper is physically consistent when

we are going to consider the effect of linear Landau damping

of electrons on IA solitary waves. In fact, VanDam and

Taniuti [34] clearly stated that Ott and Sudan [33] considered

the electron Landau damping only, being based on an

approximation in powers of mass ratio, related to the small-

ness of electron inertia. Hence, it cannot be applied to treat ion

Landau damping. Furthermore, Meiss and Morrison [35]

considered nonlinear electron Landau damping on IA solitons.

They reported that the theory of Ott and Sudan [33] is valid for

time much less than the electron bounce time, i.e. nonlinear

effects are important for time greater than electron bounce

time. It is also important to note that the last terms of left-hand

side of Eqs. (32), (38) and (81) are all equal as these terms are

responsible for the effect of linear Landau damping of elec-

trons. But, of course, the more realistic physical situation is to

consider nonlinear wave modulation along with nonlinear

Landau damping.
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Appendix 1

Coefficients of Eq. (76):

Jc0 ¼
Z þ1

�1

ojc0

ov2
jj

dvjj; Zc0 ¼ ofc0

ov2
jj

����
vjj¼0

; ð107Þ

where J ¼ F, G, H, K for j ¼ f , g, h, k, respectively.

Appendix 2

Coefficients of Eq. (78):

Js0 ¼
Z þ1

�1

ojs0

ov2
jj

dvjj; Zs0 ¼ ofs0

ov2
jj

����
vjj¼0

; ð108Þ

where J ¼ F, G, H, K for j ¼ f , g, h, k, respectively.

0 100
0

0.5
γ=3, σ=0.001, σsc=0.25, B1=0

τ →

a
→

Fig. 8 The amplitude (a) of the MKdV soliton is plotted against s for

different values of be when B1 ¼ 0. Red, black and blue curves

correspond to be ¼ 0, be ¼ 0:45 and be ¼ 0:57 respectively. This

figure shows that the amplitude of the MKdV soliton decreases with

increasing time s for any fixed value of be (colour figure online)

0 100
0

0.5
γ=3, σ=0.001, B1=B2=0

τ →

a
→

Fig. 9 The amplitude (a) of the FMKdV soliton is plotted against s
for different values of be when B1 ¼ B2 ¼ 0. Red, black and blue

curves correspond to be ¼ 0, be ¼ 0:352 and be ¼ 0:42 respectively.

This figure shows that the amplitude of the FMKdV soliton decreases

with increasing time s for any fixed value of be (colour figure online)
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Appendix 3

Method of finding Ir associated with Eqs. (103) and (104):

Ir ¼ P
Zþ1

�1

Zþ1

�1

½ sech X�
2
r
o½ sech X0�

2
r

oX0
dXdX0

X � X0 : ð109Þ

Now Ir can be written as

Ir ¼ �
Z 1

�1

o½ sech z�
2
r

oz
I1rdz; ð110Þ

where X ¼ z0, X0 ¼ z and

I1r ¼ P
Z 1

�1

½ sech z0�
2
r

z � z0
dz0: ð111Þ

Using the following known result

Z 0

�1
eisðz�z0Þds ¼ pdðz � z0Þ � iP 1

z � z0
; ð112Þ

form Eq. (112), we get

P 1

z � z0
¼ 1

2i

Z 1

�1

s

jsj eisðz�z0Þds: ð113Þ

Using (113), Eq. (111) can be written as

I1r ¼
1

2i

Z 1

�1

s

jsjFðsÞeiszds; ð114Þ

where

FðsÞ ¼
Z 1

�1
½ sech z�

2
re�iszdz: ð115Þ

Therefore, Eq. (110) can be written as

Ir ¼
Z 1

0

s½FðsÞ�2ds: ð116Þ
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