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Abstract: To have the effective speech communication, the information should be clearly passed in a noise-free envi-

ronment. However, in real-world environment, the existence of background noise degrades the performance of the system.

Based on the blind source separation strategy, various adaptive algorithms are designed and implemented using both

dispersive impulse response and sparse impulse response. Even though the existing dual fast normalized least mean square

algorithm works well under different noisy situations and gives a good performance, the problem is that it involves large

number of processing steps. To overcome the complexity in finding the signal prediction parameter and to improve the

performance of speech enhancement, we propose three adaptive filtering algorithms namely revised twofold rapid nor-

malized least mean square algorithm, diminished twofold normalized least mean square algorithm and upgraded balanced

twofold normalized least mean square algorithm (UBTNLMS). Taking the performance objective criteria into account,

these algorithms have been tested for segmental signal-to-noise ratio, segmental mean square error, signal-to-noise ratio,

mean square error and cepstral distance. On comparing the performance of the existing and proposed algorithms,

UBTNLMS performs better than the other algorithms.

Keywords: Biophysical techniques; General linear acoustics; Remote sensing; LIDAR and adaptive systems; Acoustics

signal processing
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1. Introduction

Human being naturally possesses variety of ways to get

back the information from the exterior world and much

aware how to communicate with each other. Speech,

images and text are the three most essential sources of

information. For most of the cases, speech stands as the

most resourceful and comfortable one. Speech not only

delivers the content of linguistic information, but also

delivers the extra valuable information like the mood of the

speaker. Once the speaker and listener are close to each

other in a calm situation, communication is normally easy

and accurate. On the other hand, when the listener and

speaker are at a long distance or in a noisy background

situation, the listener’s ability to understand the particular

information may get diminished. So, in most of the speech

communication systems, the quality and intelligibility of

speech play a major role. To reduce the noise and to

improve the speech quality, several enhancement algo-

rithms have been developed over past decades [1, 2].

Adaptive filters [3] are very important in telecommunica-

tion systems such as hand-free telephony [4], teleconfer-

encing systems [5], hearing aids [6] with acoustic noise

cancellation [7] and speech quality enhancement.

The most accepted single channel speech enhancement

algorithms include minimum mean square error estimation

(MMSE) [8], spectral subtraction [9] and log minimum

mean square error (logMMSE) [10]. Some of these tech-

niques have limitations in speech enhancement applica-

tions [11]. The alternate approach to speech enhancement

is the signal subspace method [12]; the signal subspace

method is based on the singular value decomposition [13].

In time domain and frequency domain, several algorithms

have been developed [14–16], the double affine projection

algorithm [17], double fast Newton transversal filter [18]

and double pseudo double affine projection algorithm [19],
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partial update double affine projection algorithm [20], and

sub-band algorithm [7]. In a moving car environment, a

recent technique named blind source separation is used

[21]. In the literature, we find two widely used structures of

blind source separation, the forward blind source separa-

tion [22] and the backward blind source separation [23].

Forward blind source algorithm is used to update the cross-

filters using recursive least square algorithm [24]. The

symmetric adaptive de correlation (SAD) algorithms of

forward and backward types [25–27] are essential keys to

detach the speech signal from noisy observations. A dual

fast normalized least mean square algorithm is used to

improve the intelligibility of the speech enhancement

systems [18, 28]. In most of the cases, blind source sepa-

ration algorithms are used to find the dispersive impulse

response. But this paper concentrates on dispersive and

sparse impulse responses of convolution mixture. In this

paper, we have revised and discussed three different types

of dual channel adaptive algorithms for speech enhance-

ment. This paper is organized as follows: in Sect. 2, we

discuss about the convolution mixture model of the adap-

tive filters. In Sect. 3, we discuss about the mathematical

formulation for the existing DFNLMS algorithm. In

Sect. 4, we discuss about the proposed methods. In Sect. 5,

the comparison results of the various developed algorithms

are given, and finally, the conclusion is given in Sect. 6.

2. Convolution mixture model

Convolution is a mathematical operation on two functions

to produce a third function that expresses how the shape of

one is modified by the other. Convolution is used here to

mix speech and noise signals. The convolution mixture

model consists of two components: an original speech

signal and a noise signal. The original speech signal a nð Þ
and noise signal b nð Þ are convolutedly mixed with two

impulse responses, i.e. dispersive and sparse impulse

responses of mixture contain (h11(n), h22(n), h12(n) and

h21(n)) as shown in Fig. 1. The output signal of the con-

voluted mixture model is given as below

s1 nð Þ ¼ a nð Þ � h11 nð Þ þ b nð Þ � h21 nð Þ ð1Þ
s2 nð Þ ¼ b nð Þ � h22 nð Þ þ b nð Þ � h12 nð Þ ð2Þ

where (*) represents the convolution operation. Consider

the two direct acoustic paths through h11(n) and h22(n) are

assumed to be identity, i.e. h11 (n) = h22(n) = d(n). Hence,
here we consider the dispersive and sparse impulse

responses between the cross-coupling effects of the

channels h12(n) and h21(n). The two acoustic paths are

found to be unity, and hence, the model is further

simplified and is given by the following expression

k1 nð Þ ¼ a nð Þ þ b nð Þ � h21 nð Þ ð3Þ
k2 nð Þ ¼ b nð Þ þ a nð Þ � h12 nð Þ: ð4Þ

Sparse impulse response is nothing but an impulse

response that consists only a small percentage of its

components with a significant magnitude, while others are

zeros which is shown in Fig. 2(a) for the adaptive filter

length L = 64. The vice versa is the dispersive impulse

response, i.e. large number of components having its

significant magnitude and small portions are containing

zeros which is shown in Fig. 2(b).

3. Existing method

In this section, we discuss about the mathematical formu-

lation of the dual fast normalized least mean square method

[20]. This algorithm is used to update the two cross-filters.

To estimate the original speech signal, the adaptive filters

p21(n) and p12(n) are used. From the mixing model, the

enhanced speech output is given below:

s1 nð Þ ¼ a nð Þ � pT1 nð ÞK2 nð Þ ð5Þ

s2 nð Þ ¼ b nð Þ � pT2 nð ÞK1 nð Þ ð6Þ

where K1(n) = [k1(n), k1(n - 1) …., k1(n - L?1)]T and

K2(n) = [k2(n), k2(n - 1)…..,k2(n - L?1)]T.

The adaptive filter is used for updating the relation

which is given as:

p1 nþ 1ð Þ ¼ p1 nð Þ � l1 s1 nð Þd1 nð Þð Þ ð7Þ
p2 nþ 1ð Þ ¼ p2 nð Þ � l2 s2 nð Þd2 nð Þð Þ ð8Þ

where 0\ l1, l2\ 2 are the two step sizes which control

the convergence behaviour of the adaptive filters. The

h11(n)

h12(n)

h22(n)

h21(n)

+

+

s1(n)

s2(n)

b(n)

a(n)

Fig. 1 Convolution mixture model
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adaptation gains d1(n) and d2(n) are given by the following

relation:

d1 nð Þ ¼ c1 nð ÞN1 nð Þ ð9Þ
d2 nð Þ ¼ c2 nð ÞN2 nð Þ ð10Þ

where c1(n), c2(n) and N1(n), N2(n) are the likelihood

variables and dual Kalman gain, respectively. The

likelihood variables c1(n) and c2(n) and Kalman variables

N1(n), N2(n) can be calculated as follows:

c1 nð Þ ¼ 1

1� NT
1 K2 nð Þ ð11Þ

c2 nð Þ ¼ 1

1� NT
2 K1 nð Þ ð12Þ

N1 nð Þ
�

� �
¼ c1 nð Þ

kZ1 n� 1ð Þ þ c0

�1

N1 n� 1ð Þ kZ1 n�1ð Þþc0
c1 nð Þ

� �

ð13Þ

N2 nð Þ
�

� �
¼ c2 nð Þ

kZ2 n� 1ð Þ þ c0

�1

N2 n� 1ð Þ kZ2 n�1ð Þþc0
c2 nð Þ

� �

ð14Þ

where �ð Þ represents the last element of the Kalman vari-

able, c0 is a small positive constant, k (0\ k\ 1) is an

exponential forgetting factor, and ka is a small positive

constant.

The parameters Z1(n) and Z2(n) are the forward pre-

diction errors variances, and c1(n) and c2(n) are given

below:

Z1 nð Þ ¼ kaZ1 n� 1ð Þ þ c21 nð Þ ð15Þ

Z2 nð Þ ¼ kaZ2 n� 1ð Þ þ c22 nð Þ ð16Þ

c1 nð Þ ¼ k2 nð Þ � g1k2 n� 1ð Þ ð17Þ
c2 nð Þ ¼ k1 nð Þ � g2k1 n� 1ð Þ: ð18Þ

The variables g1(n) and g2(n) can be calculated as

g1 nð Þ ¼ f1 nð Þ
f2 nð Þ þ ca

ð19Þ

g2 nð Þ ¼ f3 nð Þ
f4 nð Þ þ ca

ð20Þ

where f1(n) and f2(n) represent the first autocorrelation

mixture of k2(n), and f3(n) and f4(n) represent the first

autocorrelation mixture of k2(n). The following relations

f1(n), f2(n), f3(n) and f4(n) are estimated recursively by

f1 nð Þ ¼ kaf1 n� 1ð Þ þ k2 nð Þk2 n� 1ð Þ ð21Þ

f2 nð Þ ¼ kaf2 n� 1ð Þ þ k22 nð Þ ð22Þ
f3 nð Þ ¼ kaf3 n� 1ð Þ þ k1 nð Þk2 n� 1ð Þ ð23Þ

f4 nð Þ ¼ kaf4 n� 1ð Þ þ k21 nð Þ: ð24Þ

4. Proposed algorithms

Under different noisy circumstances, the existing

DFNLMS algorithm works well and offers good perfor-

mance. But the challenge lies in estimating the parameters

of the signal prediction using vast computation. In order to

eliminate the problem of signal prediction parameter and to

improve speech enhancement performance, we proposed

three algorithms derived as follows:

4.1. Revised twofold rapid normalized least mean

square (RTRNLMS) algorithm

The main objective of this RTRNLMS algorithm is to

reduce the steps of derivation in the existing DFNLMS

algorithm and to overcome the complexity of signal pre-

diction problem. In the RTRNLMS method, we neglect the

parameters, g1(n) and g2(n) from Eqs. (17) and (18),

respectively, because the signal prediction parameter has

little significance and offered no such greater improvement

in performance of the speech. In RTRNLMS, we get a

better performance by subtracting the previous values
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Fig. 2 Impulse response with

L = 64. (a) Sparse impulse

response (b) dispersive impulse

response
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directly. The mathematical expression for the RTRNLMS

is given below:

The parameter error variances are as in (15) and (16).

The c1(n) and c2(n) are given as:

c1 nð Þ ¼ k2 nð Þ � k2 n� 1ð Þ ð25Þ
c2 nð Þ ¼ k1 nð Þ � k1 n� 1ð Þ: ð26Þ

In (25), by subtracting the previous value of mixture k2
from the present value of mixture k2, we get a better

improvement in the speech quality. The mixture k1 is

obtained by convolving the impulse response with noise

signal and then added with the speech signal, and mixture

k2 is obtained by convolving the impulse response with

speech signal and then added with noise signal. The

likelihood variables c1(n) and c2(n) are given in (11) and

(12).The Kalman variables N1(n), N2(n) can be calculated

as follows:

N1 nð Þ
�

� �
¼ � c1 nð Þ

kZ1 n� 1ð Þ þ c0
þ N1 n� 1ð Þ ð27Þ

N2 nð Þ
�

� �
¼ � c1 nð Þ

kZ2 n� 1ð Þ þ c0
þ N2 n� 1ð Þ: ð28Þ

The adaptation gains d1(n) and d2(n) are given in (9) and

(10), the updating is as per (7) and (8), and the enhanced

speech s1 nð Þ and s2 nð Þ are as given in (5) and (6).

4.2. Diminished twofold normalized least mean square

(DTNLMS) algorithm

In diminished twofold normalized least mean square

method, the derivation steps are minimized to few steps.

The filter weight update equation used in DTNLMS is

different from the existing and the RTRNLMS algorithms.

In DTNLMS, we used the enhanced speech convolved with

the segments of enhanced speech, instead of mixtures of

noise that we used in DFNLMS and RTRNLMS. By using

the weight adaptation method, we get a better improvement

in the enhanced speech. The controlled parameter used

here is with the step size l1 ¼ l2 ¼ 0:1; and b = 10-2

The estimated speech signal is given by,

s1 nð Þ ¼ a nð Þ � uT1 nð ÞK2 nð Þ ð29Þ

s2 nð Þ ¼ b nð Þ � uT2 nð ÞK1 nð Þ: ð30Þ

For updating the adaptive filter, the expression is given

by,

p1 nþ 1ð Þ ¼ p1 nð Þ � ðl1 s1 nð Þs2 nð Þ=eð Þ ð31Þ
p2 nþ 1ð Þ ¼ p2 nð Þ � ðl2 s2 nð Þs1 nð Þ=eð Þ ð32Þ

where s1(n) = [s1(n), s1(n - 1),….,s1(n - L?1)]T, and

s2(n) = [s2(n), s2(n - 1),….,s2(n - L?1)]T, e is a small

positive constant. The K1(n) and K2(n) are defined in

Sect. 3. The filter weight adaptation is obtained by con-

volving the enhanced speech signal with the segments of

enhanced speech signal and also with the step size and then

divided by the controlled parameter and then it is sub-

tracted from the value of the weight in adaptive filter. The

enhanced speech signal depends on the b value. By prop-

erly selecting the step sizes and b, we get the better

enhanced speech quality.

4.3. Upgraded balanced twofold normalized least mean

square (UBTNLMS) algorithm

DTNLMS gives a better result when compared to

DFNLMS and RTRNLMS. There exist few issues to

enhance the speech signal, because it is controlled by a

single variable b. We cannot rely on adjusting that single

value to obtain the enhanced speech signal. So, we go for

the UBTNLMS method. In UBTNLMS method, we used

many parameters to obtain the enhanced speech. The

controlled parameter used here is with step size

l1 ¼ l2 ¼ 0:1; and n = 1 and a is - 0.5. In UBTNLMS,

we used a different updating expression for the adaptive

filter and the adaptive filter is designed with diagonal

weight elements. Diagonal matrix contains the value only

in the diagonals, remaining are zeros. This algorithm pos-

sesses the stability of the outcomes with the best perfor-

mance by the balanced control parameters. So this

algorithm is named as upgraded balanced twofold nor-

malized least mean square algorithm. The two diagonal

step size control matrixes w12(n) and w21(n) are given by,

w12 nð Þ ¼ diagfw12;0 nð Þ;w12;1 nð Þ. . .:w12;L�1 n� 1ð Þ

¼

w12;0 nð Þ 0 � � � 0

0 w12;1 nð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � w12;L�1 nð Þ

2
66664

3
77775

w21 nð Þ ¼ diagfw21;0 nð Þ;w21;1 nð Þ. . .:w21;L�1 n� 1ð Þ

¼

w21;0 nð Þ 0 � � � 0

0 w21;1 nð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � w21;L�1 nð Þ

2
66664

3
77775

w12;l nð Þ ¼ 1� a
2L

þ 1þ að Þ 1

2�
PL�1

i¼0 w12;i nð Þ
� �

þ u

ð33Þ
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w21;l nð Þ ¼ 1� a
2L

þ 1þ að Þ 1

2�
PL�1

i¼0 w21;i nð Þ
� �

þ u
:

ð34Þ

The a is a small value takes between - 1 and 1, and u is

a small positive constant. In UBTNLMS, we have used a

different updating formulas for the adaptive filter. We have

used diagonal weight elements of the diagonal step size

control matrixes w12(n) and w21(n) in the adaptive filter

Eqs. (33) and (34). By using this step in UBTNLMS

algorithm, it possesses stability of the outcomes and better

performance with the support of balanced control

parameters.

The tap weight adaptation is given by,

p12 nð Þ ¼ p12 n� 1ð Þ þ l1
w12 n� 1ð Þs1 nð Þs2 nð Þ
KT
1 nð ÞK1 nð Þ þ n

ð35Þ

p21 nð Þ ¼ p n� 1ð Þ þ l2
w21 n� 1ð Þs1 nð Þs2 nð Þ
KT
2 nð ÞK2 nð Þ þ n

: ð36Þ

The weight adaptation is obtained by multiplying the

previous values of diagonal elements with the enhanced

speech signal along with segments of enhanced speech

signal and then divided with the sum of mixtures of k1 and

n. The value of n is 1, and the value of a is - 0.5. By

substituting the tap weight adaptation in the output, we get

the enhanced speech as per (5) and (6). Based on the update

equations of the two adaptive filters (35) and (36) and the

diagonal elements presented in w21 nð Þ and w12 nð Þ,
enhanced speech signal is obtained.

5. Evaluation of simulation result

In this section, evaluation results of the proposed algo-

rithms are discussed. From Sect. 2, we take the convolution

mixture model for mixing the noise and the speech. Fig-

ure 3 shows a clean speech and its spectrogram, while

Fig. 4 represents a noise signal and its spectrogram.

The original speech signal and noise signal are subjected

to convolution operation with two impulse responses, i.e.

dispersive and sparse impulse responses. An impulse

response is sparse, if a large fraction of its energy is con-

centrated in a small fraction of its duration. According to

[18], sparse and dispersive impulse response sequences are

generated by using the expression h nð Þ ¼ Ae�Bn, where A

represents a scalar factor that is equal to one and B is a

damping factor which is related to the reverberation time

tr. The damping factor for dispersive impulse response is

B ¼ 3log 10ð Þ=tr. Therefore, the decay factor is 10-3. For

the sparse impulse response, the damping factor is

B ¼ 20log 10ð Þ=tr. Therefore, the decay factor is 10-20

which is a very less compared to 10-3. Hence, in dispersive

impulse response, the damping decays very slowly and has

more damping than sparse. Sparse impulse response decays

fast and has more zero values. The impulse response is

generated when the length of the adaptive filter is taken as

L = 64

The database used here is NOIZEOUS database with the

sampling rate = 8 kHz. It consists of 30 speakers that

contain different noises like car, train, airport, street, sta-

tion, restaurant noise at input with SNR of 0, 5, 10 and

15 dB.

Figure 5 represents the mixing samples of mixture 1 and

2. Figure 6 represents the enhanced speech signal. In this

section, we compare the performance of the existing

algorithm with the proposed algorithms. The first proposed

algorithm is revised twofold normalized least mean square

(RTRNLMS) algorithm. This algorithm improves the per-

formance by avoiding the problem of prediction parame-

ters. The second proposed algorithm is the diminished

twofold normalized least mean square (DTNLMS) algo-

rithm. This algorithm reduces the level of noise to a

maximum level. The third proposed algorithm is upgraded

balanced twofold normalized least mean square algorithm

(UBTNLMS). This algorithm used a diagonal matrix in the

weight update equation to improve the performance of

enhanced speech signal. The parameters of the existing and

proposed algorithm are summarized in Table 1.

(a) (b)Fig. 3 (a) Clean speech signal

and (b) spectrogram of clean

speech signal
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In the case of DFNLMS algorithm, we have selected the

optimum step size as l1 ¼ l2 ¼ 0:1, forgetting factor

k = 0.09, ka = 0.1 and constant c0 = 0.0009, ca = 1.

However, in RTRNLMS algorithm, we have fixed the step

size as l1 ¼ l2 ¼ 0:1, forgetting factor k = 0.09, ka = 0.1

and constant c0 = 0.0009. Similarly, for DTNLMS and

UBTNLMS, we fixed the step size as l1 = l2 = 0.1, e = 1,

a = - 0.5 and u = 10-2. The values for the parameters are

selected by referring the parameter ranges from the liter-

ature [21], and then by iteratively fixing the parameter

values, it gives the best result by implementing the algo-

rithm. In RTRNLMS algorithm, k varies between 0\ k\1

and similarly step size l also changes from 0 to 1. So the

values are randomly selected between 0 to 1 for both l and

k. For different values of l1 = l2 such as 0.8, 0.6, 0.4, 0.2,

0.1, the corresponding readings are taken for k = 0.09,

0.06, 0.04, 0.01. From this, we infer that for 0 dB, 5 dB,

10 dB and 15 dB inputs, the parameters l1 ¼ l2 ¼ 0:1 and

k = 0.09 gave a comparatively good improvement and

these parameter values are used for the enhancement in

RTRNLMS algorithm. Similarly, in DTNLMS and

UBTNLAM algorithms, the same iterative procedure is

used for fixing the parameter values.

The size of the adaptive filter used in this work is 64. For

simulation results, we have taken the filter size as 64,128

and 256. The filter weights are adjusted according to the

filter weight update equation of the respective algorithm,

until it gives the best result. In UBTNLMS, we used a

different updating formulas for the adaptive filter. The

balanced control parameters in this algorithm ensure per-

formance stability. When compared to other algorithms,

UBTNLMS performs best in enhancing the speech. To

analyse the quality of the speech signal, in the next section,

we present the comparative results of the existing and

proposed algorithms in terms of the objective measures (1)

the segmental signal-to-noise ratio, (2) the segmental mean

square error, (3) signal-to-noise ratio, (4) cepstral distance

and (5) mean square error.

5.1. Segmental signal-to-noise ratio (segSNR)

It is defined as the ratio of the enhanced speech signal to

that of the background noise. The segmental signal-to-

noise ratio is calculated by the following relation:

(a) (b)Fig. 4 (a) Noise signal and

(b) spectrogram of noise signal

(a) (b)Fig. 5 (a) Mixing samples of

mixture 1 and (b) mixing

samples of mixture 2

Fig. 6 Enhanced speech signal
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ðsegsnrÞdB ¼ 10 log10

PR
i¼0 a ið Þj j2PR

i¼0 a ið Þ � S1 ið Þj j2

 !
ð37Þ

where R is the number of frames and s1 represents the

enhanced speech signal, and a is the clean speech signal.

The VAD is the voice activity detector which detects the

presence and absence of speech and noise components. The

segmental signal-to-noise ratio is calculated only in pres-

ence of speech only presence periods. In segmental SNR,

the block size represents the total number of frame seg-

ments which has voice activity. After VAD detection, if the

length of the speech only presence region has 9000 samples

for the given input speech signal, we split the region into

100 9 90 frames. The total frame is now 100, and each

frame consists of 90 samples. The 100 frames represent the

block size. The block size depends on frame size. First, we

divide the presence of speech regions into frames, where

each frame consists of segments of particular length. In this

paper, we have split the speech only presence regions into

45 frames and each frame consists of 75 samples.

Figures 7. 8, 9 and 10 portray the measure segmental

SNR for both dispersive impulse and sparse responses for

L = 64 and 128. The impulse responses at 0 dB and 5 dB

are analysed for the bloc of 45 samples. Among the

existing and proposed algorithms, the UBTNLMS algo-

rithm responded with the better response. The SegSNR is

about 98 dB at 0 dB and 100 dB at 5 dB. The sparse

responses are also analysed at 0 dB and 5 for a bloc of 45

samples which give the performance better than the dis-

persive impulse response. At 0 dB, the SegSNR is about

100 dB which is higher than the dispersive impulse

responses. By increasing the adaptive length of the filter,

sparse impulse response performs better when compared to

dispersive impulse response.

5.2. Segmental mean square error (SegMSE)

It is defined as the difference between the square of the true

values and the estimated value. The segmental mean square

error is given by the following relation

ðsegmseÞdB ¼ 10 log10

XR
i¼0

ja ið Þ � S1 ið Þj2
 !

ð38Þ

where R is the number of frames and s1 represents the

enhanced speech signal, and a is the clean speech signal.

The segmental mean square error ratio is calculated only in

the absence of speech only presence periods, i.e. only in

noise presence periods. First, we divide the noise only

presence regions into frames and each frame consists of

segments of particular length. In this paper, we have split

the speech signal into 55 frames and each frame with of 75

samples.

Figures 7, 8, 9, 10, 11, 12, 13 and 14 portray the per-

formance measure with segmental SNR and segmental

MSE for both dispersive impulse and sparse impulse for

length L = 64 and 128. The impulse responses at 0 dB and

Table 1 Simulation parameter values of the existing and proposed algorithm with L = 64

Algorithms Existing DFNLMS Proposed algorithms

RTR NLMS DT NLMS UBT NLMS

Controlled parameter values l1 ¼ l2 ¼ 0:1 l1 ¼ l2 ¼ 0:1 l1 ¼ l2 ¼ 0:1 l1 ¼ l2 ¼ 0:1

k = 0.09 k = 0.09 b = 10-2 a = - 0.5

ka = 0.1 ka = 0.1 u = 10-2

c0 = 0.0009 c0 = 0.0009 n = 1

ca = 1

Fig. 7 SegSNR for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) and by

using the dispersive impulse

response. The adaptive filter

length is taken as L = 64
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5 dB are analysed for the bloc of 45 samples for segmental

SNR, and the bloc of 75 samples is analysed for segmental

MSE. Among the discussed algorithms, the UBTNLMS

algorithm responded with the better response in both dis-

persive and spare impulse responses. From Figs. 5, 6, 7 and

8, it is clear that the sparse impulse response performs

better than the dispersive impulse response. By increasing

the adaptive filter length, sparse impulse response performs

better than dispersive impulse response.

Fig. 8 SegSNR for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (Right) by using

the sparse impulse response.

The adaptive filter length is

taken as L = 64

Fig. 9 SegSNR for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the dispersive impulse response.

The adaptive filter length is

taken as L = 128

Fig. 10 SegSNR for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the sparse impulse response.

The adaptive filter length is

taken as L = 128

Fig. 11 SegMSE for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the dispersive impulse response.

The adaptive filter length is

taken as L = 64
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5.3. Signal-to-noise ratio (SNR)

It is defined as the ratio of the speech signal to that of noise

signal. The signal-to-noise ratio is given in (37). Here, SNR

is calculated for total length of the samples.

5.4. Cepstral distance (CD)

It is used to measure the distortion present in the signal.

The cepstral distance is given by the relation,

CDdB ¼
XR
i¼1

ISFT½log a x; ið Þj j � log s1 x; ið Þj jð Þð �2 ð39Þ

where ISFT denotes the inverse short-time Fourier trans-

form. The STFT of the original speech signal and enhanced

speech signal is a x; ið Þ; and s1 x; ið Þ, respectively.

5.5. Mean square error (MSE)

Mean square error is calculated for the difference between

the true values and the estimated value. The mean square

error equation is given in (38). Here, MSE is calculated for

total length of the samples. Table 4 shows the performance

of MSE for the existing and proposed algorithms for dis-

persive and sparse impulse responses. From Table 4, we

infer that, at 0 dB input SNR for dispersive impulse

response for DFNLMS, the MSE is - 65.90 dB,

RTRNLMS has - 73.17 dB, DTNLMS has - 98.34 dB,

UBTNLMS has - 98.55 dB and for sparse impulse

response the existing DFNLMS has the MSE of

- 73.58 dB, RTRNLMS has - 80.94 dB, DTNLMS has

- 106.24 dB, and UBTNLMS has - 116.99 dB. On

comparing, sparse impulse response shows better perfor-

mance for all the proposed algorithms when compared to

the dispersive impulse response.

Fig. 12 SegMSE for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the dispersive impulse response.

The adaptive filter length is

taken as L = 64

Fig. 13 SegMSE for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the dispersive impulse response.

The adaptive filter length is

taken as L = 128

Fig. 14 SegMSE for the

proposed and existing algorithm

having the input SNR 0 dB

(left) and 5 dB (right) by using

the sparse impulse response.

The adaptive filter length is

taken as L = 128
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Table 2 shows the SNR performance for the existing

and proposed algorithms for dispersive and sparse impulse

responses. From Table 2, we infer that, at 0 dB input SNR

for dispersive impulse response for DFNLMS, the SNR is

19.57 dB, RTRNLMS has 28.23 dB, DTNLMS has

42.85 dB, UBTNLMS has 63.74 dB and for sparse impulse

response the existing DFNLMS has the SNR of 27.58 dB,

RTRNLMS has 35.33 dB, DTNLMS has 42.66 dB, and

UBTNLMS has 71.79 dB. On comparing with dispersive

and sparse impulse responses, sparse impulse response

shows better performance for all the algorithms. Table 3

shows the performance of CD for the existing and proposed

algorithms for dispersive and sparse impulse responses.

From Table 3, we infer that, at 0 dB for dispersive impulse

response for DFNLMS, the cepstral distance is - 2.49 dB,

RTRNLMS has - 3.52 dB, DTNLMS has - 6.77 dB,

UBTNLMS has - 7.96 dB and for sparse impulse

response the existing DFNLMS has the cepstral distance of

- 3.40 dB, RTRNLMS has - 4.41 dB, DTNLMS has

- 6.46 dB, and UBTNLMS has - 8.97 dB. Sparse

impulse response performs better for all the algorithms.

From the measures shown in Tables 2, 3 and 4, while

analysing the performances in dispersive impulse response

and sparse impulse response, UBTNLMS outperforms all

other algorithms for sparse impulse response. Taking all

the performance measure into account, while comparing

the overall algorithms in both dispersive and sparse

impulse responses, Sparse impulse response performance

in UBTNLMS has improved much better than the disper-

sive impulse response in all the noise types because it

automatically determines the locations of the nonzero

impulse response coefficients for their adaptation and

eliminates the unnecessary adaptation for zero coefficients.

6. Conclusion

In this work, we show that the proposed algorithms

RTRNLMS, DTNLMS and UBTNLMS perform better

than the existing DFNLMS algorithm. The existing algo-

rithm has large number of processing steps for enhancing

the speech signal. To overcome this problem, proposed

algorithms are designed to improve the performance with

reduced computational steps. Out of the three proposed

algorithms, the UBTNLMS algorithm shows good beha-

viour of superiority for both dispersive impulse response

and sparse impulse response. In specific, the UBTNLMS

shows better performance for sparse impulse response. The

Table 2 Performance of SNR for the existing and proposed algorithms in terms of dispersive and sparse impulse responses

Noise

type

Input SNR

(dB)

Signal-to-noise ratio (SNR) in dB

Dispersive impulse response Sparse impulse response

Existing

DFNLMS

Proposed algorithms Existing

DFNLMS

Proposed algorithms

RTR

NLMS

DT

NLMS

UBT

NLMS

RTR

NLMS

DT

NLMS

UBT

NLMS

Station 0 19.57 28.23 42.85 63.74 27.58 35.33 42.66 71.79

5 28.19 38.20 49.66 64.24 35.45 46.22 48.88 72.72

10 38.58 47.83 50.46 71.93 47.29 55.16 60.90 82.50

15 50.39 56.56 58.54 76.11 57.37 58.92 64.44 83.42

Street 0 18.84 26.23 42.49 61.00 26.53 34.16 42.76 69.33

5 26.90 34.28 47.34 68.66 34.52 42.68 47.55 76.63

10 40.96 47.51 54.93 77.83 49.67 55.13 57.77 84.34

15 51.01 59.67 59.74 75.89 57.37 58.92 64.44 83.42

Car 0 18.34 26.25 42.50 60.36 25.20 34.14 43.04 68.51

5 30.38 38.50 49.43 67.18 38.09 46.15 49.53 74.81

10 40.38 52.53 54.86 71.96 46.22 53.98 58.46 80.56

15 49.46 59.16 59.95 72.95 57.65 59.82 67.87 80.98

Babble 0 23.68 27.72 44.83 62.84 31.59 35.85 44.90 70.73

5 31.33 37.71 50.01 70.96 42.51 47.21 51.93 78.93

10 39.82 44.21 51.96 74.12 48.27 52.46 52.83 80.94

15 47.39 56.78 57.82 74.21 57.65 59.82 67.87 81.98

The bold in the last column of Table is the indication and quantitative evidence of superior performance of UBT NLMS algorithm over RTR

NLMS and DT NLMS algorithms in speech enhancement
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Table 3 Performance of CD for the existing and proposed algorithms in terms of dispersive and sparse impulse responses

Noise

type

Input SNR

(dB)

Cepstral distance (CD) in dB

Dispersive impulse response Sparse impulse response

Existing

DFNLMS

Proposed algorithms Existing

DFNLMS

Proposed algorithms

RTR

NLMS

DT

NLMS

UBT

NLMS

RTR

NLMS

DT

NLMS

UBT

NLMS

Station 0 - 2.49 - 3.52 - 6.77 - 7.96 - 3.40 - 4.41 - 6.46 - 8.97

5 - 3.52 - 4.72 - 7.27 - 8.03 - 4.43 - 5.77 - 7.21 - 9.09

10 - 4.82 - 5.97 - 7.38 - 8.99 - 5.91 - 6.89 - 7.38 - 10.31

15 - 4.82 - 5.97 - 7.38 - 9.51 - 7.38 - 8.12 - 8.83 - 10.42

Street 0 - 2.37 - 3.30 - 7.09 - 7.62 - 3.33 - 4.28 - 7.10 - 8.66

5 - 3.34 - 4.26 - 6.81 - 8.52 - 4.31 - 5.32 - 6.89 - 9.57

10 - 5.11 - 5.94 - 6.81 - 9.73 - 6.20 - 6.81 - 7.14 - 10.54

15 - 6.37 - 7.45 - 7.28 - 9.48 - 6.90 - 7.08 - 8.14 - 10.49

Car 0 - 2.31 - 3.28 - 6.43 - 7.54 - 3.16 - 4.26 - 6.45 - 8.56

5 - 3.80 - 4.81 - 7.05 - 8.39 - 4.76 - 5.76 - 7.18 - 9.35

10 - 5.04 - 6.56 - 7.45 - 8.99 - 5.77 - 7.28 - 7.30 - 10.08

15 - 6.18 - 7.30 - 7.49 - 9.08 - 7.20 - 8.48 - 9.79 - 10.08

Babble 0 - 2.93 - 3.44 - 6.17 - 7.85 - 3.94 - 4.47 - 7.17 - 8.84

5 - 3.91 - 4.70 - 7.13 - 8.87 - 5.31 - 5.89 - 7.20 - 9.86

10 - 4.98 - 5.52 - 7.17 - 9.26 - 6.03 - 6.60 - 8.33 - 10.24

15 - 5.92 - 7.09 - 7.42 - 9.27 - 7.12 - 7.19 - 9.19 - 10.28

The bold in the last column of Table is the indication and quantitative evidence of superior performance of UBT NLMS algorithm over RTR

NLMS and DT NLMS algorithms in speech enhancement

Table 4 Performance of MSE for the existing and proposed algorithms in terms of dispersive and sparse impulse responses

Noise

type

Input SNR

(dB)

Mean square error (MSE) in dB

Dispersive impulse response Sparse impulse response

Existing

DFNLMS

Proposed algorithms Existing

DFNLMS

Proposed algorithms

RTR

NLMS

DT

NLMS

UBT

NLMS

RTR

NLMS

DT

NLMS

UBT

NLMS

Station 0 - 65.90 - 73.17 - 98.55 - 98.34 - 73.58 - 80.94 - 106.24 - 116.99

5 - 73.32 - 87.16 - 99.47 - 110.65 - 81.33 - 91.94 - 106.97 - 117.14

10 - 84.30 - 91.91 - 107.82 - 117.82 - 92.71 - 101.17 - 116.27 - 126.38

15 - 94.66 - 101.47 - 110.64 - 120.54 - 102.69 - 111.20 - 119.80 - 129.71

Street 0 - 64.36 - 71.78 - 94.95 - 107.05 - 71.84 - 79.65 - 103.65 - 114.73

5 - 72.44 - 80.94 - 104.04 - 114.21 - 82.15 - 89.66 - 112.41 - 122.64

10 - 87.32 - 92.49 - 111.34 - 121.34 - 94.13 - 101.01 - 119.24 - 129.37

15 - 91.99 - 100.84 - 111.55 - 121.39 - 103.97 - 111.94 - 120.09 - 130.02

Car 0 - 63.13 - 72.33 - 94.71 - 104.30 - 71.13 - 80.00 - 102.88 - 113.97

5 - 75.38 - 85.05 - 102.00 - 112.18 - 83.69 - 93.50 - 110.10 - 120.28

10 - 85.08 - 98.27 - 110.24 - 120.22 - 92.69 - 105.52 - 115.31 - 125.73

15 - 93.48 - 103.18 - 108.66 - 118.56 - 103.64 - 113.69 - 116.56 - 126.56

Babble 0 - 69.96 - 74.15 - 96.38 - 107.19 - 77.11 - 80.83 - 105.23 - 115.77

5 - 78.41 - 86.67 - 106.07 - 116.19 - 86.58 - 94.34 - 114.18 - 124.91

10 - 86.90 - 89.85 - 108.57 - 118.91 - 95.30 - 98.32 - 116.87 - 127.46

15 - 94.69 - 106.50 - 110.62 - 120.57 - 102.03 - 110.09 - 117.72 - 127.64

The bold in the last column of Table is the indication and quantitative evidence of superior performance of UBT NLMS algorithm over RTR

NLMS and DT NLMS algorithms in speech enhancement
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algorithms are tested under the objective criteria like SNR,

MSE, SegMSE and CD. For all the objective criteria,

UBTNLMS performs better in both sparse and dispersive

impulse response.
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