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Abstract: In this article, we present modal characteristics of single-mode polarization maintaining off centered circular

core fiber in the mid infrared region. We investigate the properties such as modal birefringence, effective index and

bending loss for this class of optical fiber by using FEM, a numerically efficient technique at a wavelength of 1.55 lm. The

computed value of modal birefringence suggests that the two modes are widely separated to maintain the polarization state.

The computed value of effective index explains that the mode remains tightly bound to the core at e ¼ 20 lm, and bending

loss is found to be very small for a fiber having bending radius lying in microbending region at different eccentricity. This

class of fiber is cheap, practical and promising as well.

Keywords: Optical fiber; Polarization; Birefringence; Bend radius; Effective index

PACS Nos.: 42.81.- i; 42.81.Gs; 42.25.Lc

1. Introduction

Polarization preserving optical fibers are vastly utilized in

communication and sensing systems [1, 2]. In such sys-

tems, a high degree of polarization preservation can be

achieved due to the presence of modal birefringence.

Conventional mono-mode optical fibers used in commu-

nication system are having a perfect cylindrical core, with

uniform diameter. Birefringent fibers can smartly handle

high data rate transmission as well as long length com-

munication. Optical fibers posses waveguide dispersion

property giving rise to large bandwidth and hence

increasing the data rate transmission capabilities [3–5]. In

such class of fibers, the degenerate modes characterized as

HEe
11 and HEo

11 can easily propagate. Birefringent fibers

require non-circularity of core or asymmetrical length

stress. The anisotropy in cross section yields large differ-

ence between the two polarized modes [6]. However, the

state of polarization remains unaltered at the output when a

polarized light is launched at the input of an off centered

circular core fiber. Thus, modes intrinsic to off centered

circular core fibers are non-degenerate in comparison to

concentric circular optical fibers [7].

Various types of single-polarization single-mode

(SPSM) fiber such as non-circular core [8–10], elliptical

cladding [11, 12], isolated circular [13], PANDA fibers

[14] were fabricated and experimented as well. In a bent

optical fiber, lateral internal stress induces a birefringence

[15]. Optical fibers operating at 1.5 lm have advantage

over 1.3 lm owing to dispersion free characteristics [16].

The highly birefringent optical fibers have large impact on

optical fiber sensors [17]. The value of fundamental cutoff

frequency and fractional power for decaying fields for

different order of eccentricity, wavelength and refractive

index by conformal mapping technique were utilized in

designing the structural parameters for off centered circular

core fiber in long-distance absorption sensors [18, 19]. In

case of PCF, the propagation of light takes place in air due

to large band gap with respect to surrounding material and

hence principle of propagation of light is opposite to that of

conventional fiber [20]. Losses in case of PCF are low, and

birefringence is one order higher than the conventional

SMF [21–23]. A simple hexagonal PCF achieves ultra-high
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birefringence, large non-linear coefficient and two zero-

dispersion wavelengths as studied by using FEM technique

[24]. PCF operates in tetra hertz region, which has limited

practical implementation ability because of bulky size and

its dependence on free space propagation. In case of free

space propagation, number of undesirable losses takes

place such as coupling with other component, transporting

and management of tetra hertz beam, etc.

Mono-mode polarization maintaining highly birefrin-

gent (HB) optical fibers has become a topic of major

interest due to the importance of their potential applications

in fiber-optic sensing devices. Our approach can be

extended to multi-mode fiber, but major difficulty lies in

the fact that they suffer from intermodal dispersion causing

pulse to spread out at the output. However, it can be

reduced with the use of graded-index fiber [5]. The other

way of minimizing intermodal dispersion is by controlling

the helix pitch angle [25] to a desired level, which effec-

tively reduces the number of guided modes, there by ful-

filling the requirement for long-distance transmission.

In this article, we present the computational results of

modal birefringence for mono-mode polarization main-

taining optical fiber with off centered core by using FEM

technique. The approach is based on the solution of scalar

wave equation with appropriate boundary conditions at the

interfaces. The work embodied in this article is as follows:

In Sect. 2, we present formulation of the problem. In

Sect. 3, we present the description of numerical results and

discussion. Sect. 3.1 deals with physical structure and

electromagnetic wave confinement aspect. In Sect. 3.2, we

present modal birefringence analysis. In Sect. 3.3, we

present effective index analysis, while Sect. 3.4, we pre-

sent bending loss analysis. Finally in Sect. 4, we describe

the outcome of our contribution.

2. Formulation of the problem

Refractive index profile of step index fiber is given by

ncl ¼ nco 1� Dð Þ ð1Þ

where

ncl ¼ R:I of cladding

nco ¼ R:I of core

D ¼ core� cladding index difference:

Figure 1 shows a long cylindrical dielectric optical

waveguide with circular cross section and off centered

circular core. The electric and magnetic field equations are

expressed in the cylindrical coordinate systems. The

electric and magnetic field components satisfy the scalar

wave equation, and the equations for region I, II and III are

expressed as

r2
t þ a2i

� � Ez

Hz

( )

¼ 0 ð2Þ

where

a2i ¼ x2liei � b2 ð3Þ

here i ¼ 1; 2; 3 for the region I, II and III and a2i is positive
for the region I and negative for the region II and III with

r2
t as the Laplacian operator.

Once these equations are solved, other perpendicular

components of the electromagnetic fields are derived from

Ez and Hz, using Maxwell’s equations. We have inten-

tionally not included ‘z’ and ‘t’ dependence in the solution

which is in the form exp i bz� xtð Þ½ �, where x is the

angular frequency and b is the axial propagation constant

determined by the interface boundary conditions.

The hybrid electromagnetic fields are expanded in terms

of linear combinations of Bessel functions. The fields in the

direction of propagation in region I are expressed as

Ez1 ¼
X1

m¼0

A1
mJm a1rð Þ cos mhþ hoð Þ ð4Þ

Hz1 ¼
X1

m¼0

B1
mJm a1rð Þ sin mhþ hoð Þ ð5Þ

The even and odd modes are given by Eqs. (4) and (5)

with ho ¼ 0 and ho ¼ p
2
, respectively. ho is the phase

constant.

θ′′θ

e

P

rr′′

O′′ θ
O I

III

II

Fig. 1 Geometrical configuration for an off centered circular core of

a cylindrical optical fiber
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The field components in the direction of propagation in

region II are

Ez2 ¼
X1

m¼0

A2
mIm a2rð Þ þ C2

mKm a2rð Þ
� �

cos mhþ hoð Þ ð6Þ

Hz2 ¼
X1

m¼0

B2
mIm a2rð Þ þ D2

mKm a2rð Þ
� �

sin mhþ hoð Þ ð7Þ

In this analysis, we have considered the region III as

medium of air and the fields are given by

Ez3 ¼
X1

m¼0

C3
m Km a3 rð Þ cos m h þ hoð Þ ð8Þ

Hz3 ¼
X1

m¼0

D3
m Km a3 rð Þ sin m h þ hoð Þ ð9Þ

The perpendicular field components are obtained with

the use of following equations

Er ¼
i

a2

� �
b
oEz

or
þ xl

r

� � oHz

oh

� 	
ð10Þ

Hr ¼
i

a2

� �
b
oHz

or
� xe

r

� � oEz

oh

� 	
ð11Þ

Eh ¼
i

a2

� �
b
r

� �
oEz

oh
� xl

oHz

or

� 	
ð12Þ

Hh ¼
i

a2

� �
b
r

� �
oHz

oh
þ xe

oEz

or

� 	
ð13Þ

The boundary condition can be conveniently applied if

E0s
z and H0s

z are expressed explicitly in terms of r0 and h0,
and it has been achieved by the use of the Graf’s addition

theorem [26, 27]. Applying the continuity of the tangential

field components at the region I–II interface and the region

II–III interface, the equations so obtained are expressed in

terms of constants C2
m and D2

m after doing required

mathematical manipulations and simplifications. The two

equations are as follows

X1

m¼0

PmnC
2
m þ QmnD

2
m

� �
¼ 0 ð14Þ

and

X1

m¼0

RmnC
2
m þ SmnD

2
m

� �
¼ 0 ð15Þ

The above two equations are characteristics equations

for HE and EH modes. The cutoff conditions are expressed

in the form

det
~Pmm

~Qmm
~Rmm

~Smm











 ¼ 0 ð16Þ

here tilde sign represents the transpose of the correspond-

ing matrix. The elements are in closed analytical form, and

matrix elements involve combination of Bessel’s functions

of first kind Jm xð Þ and also the modified Bessel’s functions

of first kind Im xð Þ and second kind Km xð Þ along with

optical fiber parameters such as permittivity, permeability,

core cladding radius and eccentricity. Above equation is

same as obtained by authors [6]. The elements also involve

eccentricity factor after the use of Graf’s addition theorem

and play very important role in determining the modal

characteristics of optical fiber. Solutions of dual core

optical fiber can be obtained by other methods [28].

The propagation constant is the eigenvalues obtained

by determinantal equation. The odd and even mode

matrix equations are constructed separately from the

coefficients of the matrix and by setting the determinant

equal to zero, be and bo are obtained. The difference

between the propagation constants of two orthogonal

modes Db ¼ be � bo is called modal birefringence, and

the normalized quantity is called normalized birefringence

and is given by

B ¼ Db
k

¼ 2p
k

be � boð Þ ð17Þ

where k is the optical wavelength. The birefringence results
from geometrical deformation. We have also calculated the

effect of microbending radius on the effective index of the

fiber. Due to the total internal reflection mechanism, a

mode will propagate in the core region if it travels with a

propagation constant b such that effective index neff is

larger than ncl. The bending of the fiber was taken into

account by transforming the index profile n rð Þ to nbend rð Þ
[29, 30] and is expressed as

neff rð Þ ¼ n rð Þ 1þ 2
x

n
1

Rbend

� 	
ð18Þ

where n accounts for bend-induced stress in the fiber and

its value is nearly one.

3. Numerical results and discussion

3.1. Physical structure and electromagnetic wave

confinement

Figures 2, 3, 4, 5 and 6 show the order of eccentricity in

steps of 5 lm up to a maximum of 20 lm in an off cen-

tered circular core mono-mode birefringent fiber.

The values of fiber parameters are practical with D ¼
0:2% and cladding to core radius ratio as 14. The electro-

magnetic energy or electric field is mainly confined in the

fiber core region irrespective of order of the eccentricity,
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and evanescent field may leak into cladding region as

shown in Figs. 7, 8 and 9.

Figures 10, 11 and 12 show the propagation of elec-

tromagnetic waves in an off centered circular core fiber

with order of eccentricity 0 lm, 10 lm and 20 lm. It is

mostly seen that electromagnetic waves propagate along

the axis of the off centered circular core of the fiber.

3.2. Modal birefringence analysis

In this subsection, we present the birefringence character-

istics of a mono-mode birefringent off centered circular

Fig. 2 Order of eccentricity (e = 0 lm)

Fig. 3 Order of eccentricity (e = 5 lm)

Fig. 4 Order of eccentricity (e = 10 lm)

Fig. 5 Order of eccentricity (e = 15 lm)

Fig. 6 Order of eccentricity (e = 20 lm)

Fig. 7 Variation of electric field with eccentricity when e = 0 lm
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core fiber. The physical quantities are as follows: The

refractive index of the region I ncoð Þ is 1.447 and that of the
region II nclð Þ is 1.444. The core and cladding radius are

being 4.5 lm and 62.5 lm with input signal wavelength

k ¼ 1:55 lm.
The modal birefringence was computed for various

wavelengths ranging from 1.40 to 1.60 lm using FEM

numerical technique. The results of modal birefringence so

obtained with respect to operating wavelength are shown in

Fig. 13.

Fig. 8 Variation of electric field with eccentricity when e = 10 lm

Fig. 9 Variation of electric field with eccentricity when e = 20 lm

Fig. 10 Propagation of electromagnetic waves when e = 0 lm

Fig. 11 Propagation of electromagnetic waves when e = 10 lm

Fig. 12 Propagation of electromagnetic waves when e = 20 lm
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The result obtained by FEM technique proposed in this

article for different order of eccentricity say e = 5 lm,

e = 10 lm and e = 20 lm is shown in the graph. The

values of birefringence are found to vary from 1:2880�
10�4 to 1:2960� 10�4 when the operating wavelength is

varied from 1:40 to 1:60 lm. We observed that as the

eccentricity increases, the value of modal birefringence

also increases, which clearly explains that the separation

between two orthogonal polarized modes also increases

and the orthogonal modes become significantly

birefringent.

The value of modal birefringence calculated by us is one

order of magnitude higher than the values obtained by

Alphones and Sanyal [1].

3.3. Effective index analysis

In this subsection, we present the computation of funda-

mental mode effective index neff
� �

which is a mode-related

property and its variation with the bending radius of the

optical fiber at an operating wavelength of 1:55 lm using

numerically efficient technique. The calculated values

suggest that neff lies between nco and ncl, when the bending

radius is varied from 80 to 260 mm for an order of

eccentricity ranging from 5 to 20 lm as shown in Fig. 14.

For e ¼ 5 lm, there is slow variation in the value of

effective index for the considered value of bending radius.

Further, the effective index increases with eccentricity and

decreases with increasing bending radius. The neff value is

1.44523 at e ¼ 20 lm, while neff ¼ 1:44508 at e ¼ 10 lm
for a bending radius of 100 mm. Thus, we notice that neff
value at e ¼ 20 lm is very close to nco value, and hence

the fundamental mode is more tightly bound to the core

than at e ¼ 10 lm and therefore bending loss will be

minimum. However, if the bending radius is further

increased, the modes no more remain tightly bound to the

core as neff value approaches toward ncl leading to bending

loss more pronounced. Thus, one can say that the funda-

mental mode remains confined to the core at e = 20 lm at

k ¼ 1:55 lm, at bending radius of 100 mm, and hence loss

is minimum.

Bending loss in microbending region at a wave length of

k ¼ 1:55 lm is found to be minimum [31]. Loss can fur-

ther be minimized by creating a spatial shift between the

fiber and the source and then coupling it with microlens.

It has been observed experimentally that loss on account

of bending is sensitive to the direction of bending. From

experiment, it has been observed that ? X direction (neu-

tral axis direction) orientation of optical fiber yields less

bending losses in comparison to ? Y direction orientation

(perpendicular to neutral axis direction) at the same oper-

ating wavelength and bending radius [32, 33].

3.4. Bending loss analysis

Microbending loss is due to microscopic fiber deformation

at the core cladding interface usually caused by poor cable

design and fabrication. Non-uniform lateral stresses during

the cabling and the deployment of the fiber in the ground

induce microbending [34].

For a single-mode fiber with length ‘‘’ bending loss ‘La’

is obtained by

La ¼ 10 log10 exp 2a‘ð Þ½ � ð19Þ

Here a is the bending loss coefficient and is function of

radius, operating wavelength, optical structure and material

of the fiber [35].

The bending loss calculation shows that loss per km due

to bending is minimum at around 100 mm bending radius

as shown in Fig. 15, which supports our results of effective

index versus bending radius. This happens because of the

confinement of the electromagnetic wave to the core is

Fig. 13 Variation of birefringence with wavelength

Fig. 14 Variation of effective index with bending radius
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maximum and the loss is minimum. There is a role of

eccentricity on the bending loss, and it is observed that as

eccentricity increases the bending loss also increases. We

can thus conclude that the bending radius and the eccen-

tricity contribute to bending loss, and it clearly relates to

the confinement of electromagnetic wave to the core.

Furthermore, the losses at 1.55 lm wavelength are found to

be minimum in single-mode fiber.

The losses can further be minimized by adhering to the

following:

• By taking high quality cables.

• By choosing qualified connectors.

• Splicing should be done by following environment

requirements.

4. Conclusion

We have discussed the polarization preservation for an off

centered core fiber, and the analysis has been made by a

numerically efficient FEM technique. It gives large modal

birefringence of the order of 1:2960� 10�4 at

k ¼ 1:55 lm, at e ¼ 20 lm, and therefore two polarized

modes get widely separated. Further, the value of neff is

found to be 1.44523 at e ¼ 20 lm, and hence mode

remains tightly confined to the core. Further, bending loss

is very small and is of the order of 0.05 dB/km for a fiber

of bending radius from 100 to 400 mm for different order

of eccentricity. This class of fiber is cheap, practical and

promising as well.
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