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Abstract: The stability and existence conditions of Hopf bifurcation of a commensurate fractional-order van der Pol

oscillator with time-delayed feedback are studied. Firstly, the necessary and sufficient conditions for the asymptotic

stability of the equilibrium point of fractional-order van der Pol oscillator with linear displacement feedback are obtained,

and it is found that the conditions are not only related to the feedback gain, but also to the fractional order. Secondly,

regarding time delay as a bifurcation parameter, the stability of the commensurate fractional-order van der Pol system with

time-delayed feedback is investigated based on the characteristic equation. Under some conditions, the critical value of

time delay is calculated. The equilibrium point is stable when the parameter is less than the critical value and will be

unstable if the parameter is greater than it. Moreover, the conditions for the occurrence of Hopf bifurcation are obtained.

Finally, choosing four typical system parameters, some numerical simulations are carried out to verify the correctness of

the obtained theoretical results.
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1. Introduction

Fractional calculus is a branch of applied mathematics that

deals with the study on fractional-order integral and

derivative operators in real or complex domains. A great

number of real-world objects can be generally identified

and described by the fractional-order model. The main

advantage of the fractional-order model in comparison with

the integer-order model is that a fractional-order derivative

can provide excellent performance in the description of

memory and hereditary properties of various processes. In

recent years, the study of oscillatory behaviors in frac-

tional-order systems has received considerable attention in

various fields, such as physics, engineering, economics,

biology, and materials science [1–24]. Meanwhile, many

different types of van der Pol oscillators containing frac-

tional-order derivatives have attracted more and more

attention [17, 18, 23–30]. For example, Tavazoei et al. [25]

found a simple criterion which determined the oscillation

range for a fractional-order van der Pol oscillator. Attari

et al. [26] established the boundary between oscillatory and

non-oscillatory regions using a describing function method

for a fractional-order van der Pol-like oscillator. Guo and

Leung et al. [27, 28] studied the oscillatory region and

asymptotic solution of the fractional-order van der Pol

system via the residue harmonic balance technique. Shen

et al. [29] obtained the approximate analytical solution of

van der Pol oscillator with two kinds of fractional-order

derivatives based on the averaging method. Xiao et al. [30]

investigated the Hopf bifurcation control for fractional-

order van der Pol oscillator under state feedback schemes.

The time delay is an inherent part of many dynamical

systems such as machine tool dynamics, neural networks,

biological systems, and chemical or process control sys-

tems, and it could lead to the instability of the dynamical

system and the damage to the control performance [2, 3]. In

many fields of science and engineering, the combination of
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the delay with fractional calculus was successfully applied,

especially when the researchers tried to use fractional-order

models to describe complex systems with memory effects.

For example, Deng et al. [31] studied the stability of linear

fractional differential equations with multiple time delays.

Wen et al. [32], based on the averaging method, investi-

gated the approximate analytical solution of Mathieu–

Duffing oscillator under fractional-order delayed feedback.

Huang et al. [33] studied the stability and bifurcation of a

class of delayed fractional complex-valued neural net-

works. Mahmoud et al. [34] investigated the control of the

chaotic fractional Burke–Shaw system using time-delayed

feedback control.

Similar to classical differential systems, the study on

stability is always a central task for fractional-order sys-

tems. To our best knowledge, the stability of fractional-

order van der Pol oscillator under time-delayed feedback is

rarely studied. In this paper, choosing time delay as the

bifurcation parameter, we will discuss the asymptotical

stability of solutions in commensurate fractional-order van

der Pol oscillator. The paper is organized as follows. In

Sect. 2, some definitions are briefly introduced and the

method of stability analysis for the time-delayed fractional-

order systems is represented. Section 3 presents the sta-

bility of the equilibrium point and the occurrence of Hopf

bifurcation of fractional-order van der Pol oscillator with

time-delayed feedback. Numerical simulations are carried

out to verify the theoretical results in Sect. 4. Finally, the

main conclusions are given in Sect. 5.

2. Preliminaries

There are many definitions of fractional-order derivatives.

The Grünwald–Letnikov definition, Riemann–Liouville

definition and Caputo definition are widely employed [6].

The main advantage of Caputo derivative lies in the initial

conditions of fractional-order differential equations having

the same forms as those of integer-order ones, so that

Caputo definition is adopted in this paper. The a-order

derivative of function gðtÞ in Caputo sense is described as

follows

C
0 Da

t gðtÞ ¼ 1

Cðm � aÞ

Z t

a

ðt � sÞm�a�1gðmÞðsÞds; ð1Þ

where m � 1� a\m, m 2 N, and Cð:Þ is the Gamma

function.

The following fractional-order system is studied

dai xi

dtai
¼ fiðx1;x2; . . .; xnÞ; ð2Þ

where 0\ai\1; i ¼ 1; 2; . . .n, ai 2 Q. The notation d
ai

dtai

is Caputo fractional-order derivative operator of Eq. (1). If

a1 ¼ a2 ¼ � � � ¼ an, Eq. (2) is called as a commensurate

fractional-order system; otherwise, it is an incommensurate

fractional-order one.

The following commensurate fractional-order system is

discussed

dax

dta
¼ f ðxÞ; ð3Þ

where 0\a\1 and x 2 Rn. It is concluded that the equi-

librium point x0 of Eq. (3) is locally asymptotically

stable if and only if all the eigenvalues k of the Jacobian

matrix J ¼ of
ox x

0

��� satisfy argðkÞj j[ ap
2

[25].

Next, the n-dimensional linear fractional-order system

with multiple time delays is considered as follows

d
a1 x1

dta1
¼ a11x1ðt � s11Þ þ a12x2ðt � s12Þ þ � � � þ a1nxnðt � s1nÞ

d
a2 x2

dta2
¼ a21x1ðt � s21Þ þ a22x2ðt � s22Þ þ � � � þ a2nxnðt � s2nÞ

..

.

d
an

xn

dtan
¼ an1x1ðt � sn1Þ þ an2x2ðt � sn2Þ þ � � � þ annxnðt � snnÞ

8>>>>>>>><
>>>>>>>>:

;

ð4Þ

where 0\ai\1; i ¼ 1; 2; . . .n, ai 2 Q. The initial values

xiðtÞ ¼ uiðtÞ are given for �maxi;jðsijÞ ¼ �smax � t� 0,

i ¼ 1; 2; . . .n. A ¼ ðai;jÞn�n is the coefficient matrix for

Eq. (4).

Taking Laplace transform on both sides of Eq. (4) and

arranging them, one could obtain the following matrix

DðsÞ ¼

sa1 � a11e�ss11 �a12e�ss12 � � � �a1ne�ss1n

�a21e�ss21 sa2 � a22e�ss22 � � � �a2ne�ss2n

..

. ..
. . .

. ..
.

�an1e�ssn1 �an2e�ssn2 � � � san � anne�ssnn

0
BBB@

1
CCCA:

ð5Þ

Hence, the stability of Eq. (4) can be entirely

determined by the distribution of the roots of

detðDðsÞÞ ¼ 0.

Lemma 1 ([31]) Supposing a1 ¼ a2 ¼ � � � ¼ an ¼ q 2
ð0; 1Þ and sq ¼ k, the zero solution of Eq. (4) is Lyapunov

globally asymptotically stable, if all the eigenvalues of A

satisfy argðkÞj j[ qp
2

, and the characteristic equation

detðDðsÞÞ ¼ 0 has no purely imaginary roots for any

si;j � 0, i; j ¼ 1; 2; . . .; n.

Remark For nonlinear fractional-order systems with time

delay, these systems can be changed into the linear time-

delayed fractional-order systems by using transformation

techniques and Taylor formula. Then, the above lemma can

be adopted to discuss easily the stability and bifurcation of

nonlinear fractional delayed systems [25, 31].

Since it is transcendental, the characteristic equation of

detðDðsÞÞ ¼ 0 is difficult to find its eigenvalues
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analytically. In order to discuss the distribution of the roots

of the exponential polynomial, the following conclusion in

[35] is presented.

Lemma 2 Consider the exponential polynomial

Pðk; e�ks1 ; . . .; e�ksmÞ ¼ kn þ p
ð0Þ
1 kn�1 þ � � � þ p

ð0Þ
n�1k

þ pð0Þ
n þ ½pð1Þ

1 kn�1 þ � � � þ p
ð1Þ
n�1kþ pð1Þ

n �e�ks1

þ � � � þ ½pðmÞ
1 kn�1 þ � � � þ p

ðmÞ
n�1kþ pðmÞ

n �e�ksm ;

where si � 0 ði ¼ 1; 2; . . .;mÞ, p
ðiÞ
j ði ¼ 0; 1; . . .;m; j ¼

1; 2; . . .; nÞ are constants, and the sum of the orders of the

zeros of Pðk; e�ks1 ; . . .; e�ksmÞ on the open right half plane

can be changed only if a zero appears on or crosses the

imaginary axis when ðs1; s2; . . .; smÞ vary.

3. Stability analysis of fractional-order van der Pol

oscillator with time-delayed feedback

Recently, the following fractional-order van der Pol system

was introduced, and the stability and bifurcation control of

the system under nonlinear feedback were investigated

[25, 30]

dqx1ðtÞ
dtq

¼ x2ðtÞ

dqx2ðtÞ
dtq

¼ �x1ðtÞ � aðx2
1ðtÞ � 1Þx2ðtÞ

8>><
>>:

; ð6Þ

where 0\q\1 and a[ 0.

In this paper, the commensurate fractional-order van der

Pol system is considered with the delayed feedback

controller

dqx1ðtÞ
dtq

¼ x2ðtÞ

dqx2ðtÞ
dtq

¼ �x1ðtÞ � aðx2
1ðtÞ � 1Þx2ðtÞ � kx1ðt � sÞ

8>><
>>:

;

ð7Þ

where s[ 0 and k [ 0. The unique equilibrium point of

Eq. (7) is ðx1; x2Þ ¼ ð0; 0Þ, and the corresponding

linearized model is

dqx1ðtÞ
dtq

¼ x2ðtÞ

dqx2ðtÞ
dtq

¼ �x1ðtÞ þ ax2ðtÞ � kx1ðt � sÞ

8>><
>>:

: ð8Þ

The coefficient matrix A is described by

A ¼ 0 1

�1 � k a

� �
:

Its characteristic equation is

detðDðsÞÞ ¼ sq �1

1 þ ke�ss sq � a

����
���� ¼ s2q � asq þ 1 þ ke�ss

¼ 0:

ð9Þ

Using Lemma 1 and the method in the literature [25],

one could obtain the following result.

Theorem 1 If s ¼ 0, for each fixed q, the equilibrium

ð0; 0Þ of Eq. (7) is asymptotically stable if and only if

0\a\ac, where

ac ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 þ k

p
cos

qp
2
: ð10Þ

Then, for any s[ 0, the conditions that the

characteristic equation detðDðsÞÞ ¼ 0 has no purely

imaginary roots would be investigated.

Supposing s ¼ ix ¼ x cos p
2
þ i sin p

2

� �
(x[ 0) be a root

of Eq. (9), one could obtain

x2qðcos qpþ i sin qpÞ � axq cos
qp
2

þ i sin
qp
2

� 	

þ 1 þ k cosxs� i sinxsð Þ ¼ 0:
ð11Þ

Separating real and imaginary parts of Eq. (11), one

could get

x2q cos qp� axq cos
qp
2

þ 1 ¼ �k cosxs; ð12aÞ

x2q sin qp� axq sin
qp
2

¼ k sinxs: ð12bÞ

Adding up the squares of both equations, one could

obtain

x4q þ A3x
3q þ A2x

2q þ A1x
q þ A0 ¼ 0: ð13Þ

where A3 ¼ �2a cos qp
2

, A2 ¼ a2þ2 cos qp,

A1 ¼ �2a cos qp
2

, and A0 ¼ 1 � k2.

Letting xq ¼ z, Eq. (13) becomes

z4 þ A3z3 þ A2z2 þ A1z þ A0 ¼ 0: ð14Þ

Lemma 3 ([35]) If A0\0, Eq. (14) has at least one

positive root.

Denoting HðzÞ ¼ z4þA3z3 þ A2z2 þ A1z þ A0, we have

H0ðzÞ ¼ 4z3 þ 3A3z2 þ 2A2z þ A1 and set

4z3 þ 3A3z2 þ 2A2z þ A1 ¼ 0: ð15Þ

Letting z ¼ y � A3

4
and substituting it into Eq. (15), one

could obtain

Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator… 1617



y3 þ p1y þ q1 ¼ 0: ð16Þ

where p1¼ A2

2
� 3

16
A2

3 and q1¼ A3
3

32
� A2A3

8
þ A1

4
.

Using Cardano formula, we have

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
þ

ffiffiffiffi
D

p
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
�

ffiffiffiffi
D

p
3

r
;

y2 ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
þ

ffiffiffiffi
D

p
3

r
þ r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
�

ffiffiffiffi
D

p
3

r
;

y3 ¼ r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
þ

ffiffiffiffi
D

p
3

r
þ r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q1

2
�

ffiffiffiffi
D

p
3

r
:

where D ¼ q2
1

4
þ p3

1

27
and r ¼ �1þ

ffiffi
3

p
i

2
.

Therefore, the zeros of H0ðzÞ are zi ¼ yi � A3

4
, i ¼ 1; 2; 3:

Lemma 4 ([35]) Supposing A0 � 0, one could establish

the following conclusions.

(i) When D� 0, Eq. (14) has positive roots if and only if

z1 [ 0 and Hðz1Þ\0;

(ii) When D\0, Eq. (14) has positive roots if and only if

there exists at least one z� 2 fz1; z2; z3g, satisfying

z� [ 0 and Hðz�Þ� 0.

Now we consider the case that Eq. (14) has positive

roots. Without loss of generality, we assume that it has two

positive roots, denoted by z�i ,i ¼ 1; 2. Then, Eq. (13) has

two positive roots written as xi ¼ ðz�i Þ
1
q, i ¼ 1; 2:

Letting

sðjÞk ¼ 1

xk
arctan

axq
k sin qp

2
� x2q

k sin qp

x2q
k cos qp� axq

k cos qp
2
þ 1

 !
þ pj

" #
;

k ¼ 1; 2; j ¼ 0; 1; 2; � � �
ð17Þ

then 	 ixk is a pair of purely imaginary roots of Eq. (9)

with s¼sðjÞk ;k ¼ 1; 2; j ¼ 0; 1; 2; . . .. Obviously, limj!1
sðjÞk ¼ 1,k ¼ 1; 2:

Thus, we can define

s0¼sðj0Þk0
¼ min

j� 0
fsðjÞ1 ; sðjÞ2 g; x0¼xk0

; z0 ¼ z�k0
: ð18Þ

Lemma 5 Supposing 0\a\ac, the following

conclusions could be established.

i. If one of the following three conditions holds

(a) A0\0;

(b) A0 � 0, D� 0, z1 [ 0, and Hðz1Þ\0;

(c) A0 � 0, D\0, and there exists a z� 2 fz1; z2; z3g
meeting z� [ 0 and Hðz�Þ � 0;

all roots of Eq. (9) have negative real parts when

s 2 ½0; s0Þ;

ii. If the conditions (a)–(c) of (i) are not satisfied, all the

roots of Eq. (9) have negative real parts for all s� 0.

Proof When s ¼ 0, from Theorem 1, we know that all

roots of Eq. (9) have negative real parts if 0\a\ac.

From Lemmas 3 and 4, we know that Eq. (9) has no

roots with zero real part for all s� 0 if (a)–(c) are not

satisfied.

If one of (a)–(c) holds, when s 6¼ sðjÞk ;k ¼
1; 2; j ¼ 0; 1; 2; . . ., Eq. (9) has no roots with zero real

part.

Moreover, s0 is the minimum value of s so that Eq. (9)

has purely imaginary root. Using Lemma 2, we can draw

the conclusions.

Letting

sðsÞ ¼ aðsÞ þ ixðsÞ ð19Þ

be the root of Eq. (9) satisfying aðs0Þ ¼ 0; xðs0Þ ¼ x0,

one could obtain the following results.

Lemma 6 Supposing H0ðxq
0Þ 6¼ 0, 	 ix0 is a pair of

simple purely imaginary roots of Eq. (9) if s ¼ s0. More-

over,
dðResðsÞÞ

ds

���
s¼s0

6¼ 0, and dðResðsÞÞ
ds

���
s¼s0

has the same sign

as xq
0H0ðxq

0Þ.

Proof If ix0 is not a simple root of Eq. (9), it must satisfy

d

ds
½s2q � asq þ 1 þ ke�ss�

����
s¼ix0

¼ 0:

Separating real and imaginary parts, one could obtain

2qx2q�1
0 cos

2q � 1

2
p

� �
� aqxq�1

0 cos
q � 1

2
p

� �

¼ ks cosx0s; ð20aÞ

2qx2q�1
0 sin

2q � 1

2
p

� �
� aqxq�1

0 sin
q � 1

2
p

� �

¼ �ks sinx0s: ð20bÞ

Denoting

U1 ¼ 2qx2q�1
0 cos

2q � 1

2
p

� �
� aqxq�1

0 cos
q � 1

2
p

� �
;

and

V1 ¼ 2qx2q�1
0 sin

2q � 1

2
p

� �
� aqxq�1

0 sin
q � 1

2
p

� �
;

one could get

� cotx0s ¼
U1

V1

: ð21Þ

Denoting

U2 ¼ x2q
0 cos qp� axq

0 cos
qp
2

þ 1;

and
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V2 ¼ x2q
0 sin qp� axq

0 sin
qp
2
;

one could obtain

� cotx0s ¼
U2

V2

: ð22Þ

From Eqs. (21) and (22), we have U1

V1
¼ U2

V2
, which means

U1V2 � U2V1 ¼ 0.

Thus, one could get

2x3q
0 � 3a cos

qp
2
x2q

0 þ ða2 þ 2 cos qpÞxq
0 � a cos

qp
2

¼ 0:

Recalling xq
0¼z0, we have

4z3
0 � 6a cos

qp
2

z2
0 þ 2ða2 þ 2 cos qpÞz0 � 2a cos

qp
2

¼ 0:

ð23Þ

Noticing that A3 ¼ �2a cos qp
2

, A2 ¼ a2þ2 cos qp,

A1 ¼ �2a cos qp
2

, A0 ¼ 1 � k2, and H0ðzÞ ¼ 4z3 þ 3A3z2þ
2A2z þ A1, it could be found that Eq. (23) is in

contradiction with condition H0ðxq
0Þ 6¼ 0. Therefore,

	ix0 is a pair of simple purely imaginary roots of Eq. (9).

Differentiating Eq. (9) with respect to s, one could

obtain

ð2q s2q�1 � aq sq�1 � ks e�ssÞ ds

ds
� kse�ss ¼ 0; ð24Þ

which means

ds

ds

� ��1

¼ 2qs2q�1 � aqsq�1

kse�ss
� s

s
: ð25Þ

When s ¼ s0 and s ¼ ix0, Eq. (25) becomes

ds

ds

� ��1
�����
s¼s0

¼ � 1

ix0

2qðix0Þ2q�1 � aqðix0Þq�1

�ke�ix0s

" #
� s0

ix0

¼ i

x0

2qðix0Þ2q�1 � aqðix0Þq�1

ðix0Þ2q � aðix0Þq þ 1

" #
þ is0

x0

¼ i

x0

U1 þ iV1

U2 þ iV2

þ is0

x0

¼ i

x0

1

U2
2 þ V2

2

½ðU1U2 þ V1V2Þ

� iðU1V2 � U2V1Þ� þ
is0

x0

Accordingly, one could get

Re
ds

ds

� ��1
�����
s¼s0

¼ U1V2 � U2V1

x0ðU2
2 þ V2

2 Þ
¼ U1V2 � U2V1

x0k2

¼ qxq�1
0

x0k2

H0ðxq
0Þ

2
¼ qxq�2

0

2k2
H0ðxq

0Þ:

Therefore,

sign
dðResðsÞÞ

ds

����
s¼s0

( )
¼ sign

dðResðsÞÞ
ds

� ��1
�����
s¼s0

8<
:

9=
;

¼ sign xq
0H0ðxq

0Þ

 �

:

We complete the proof of Lemma 6.

Based on Lemmas 3–6, the following theorem is

available.

Theorem 2 Letting x0; z0; s0, and sðsÞ be defined by

Eqs. (18) and (19) and assuming 0\a\ac, the following

results could be obtained.

I. If the conditions (a)–(c) of Lemma 5 are not satisfied,

the zero equilibrium point of Eq. (7) is asymptotically

stable for all s� 0;

II. If one of the conditions (a), (b), and (c) is satisfied, the

zero equilibrium point of Eq. (7) is asymptotically

stable when s 2 ½0; s0Þ.
III. If the condition of (II.) is satisfied, and H0ðxq

0Þ 6¼ 0,

Eq. (7) undergoes a Hopf bifurcation at the origin

when s¼s0.

4. Results and discussion

In this section, we select four typical system parameters to

simulate the fractional-order van der Pol oscillator,

respectively, to verify the correctness of the above theo-

retical results. The simulation results are all based on the

power series expansion method [6, 23], and step-length is

h ¼ 0:005.

(1) Choosing q ¼ 0:8 and k ¼ 0:5, we have ac ¼ 0:7569

from Eq. (10). Selecting a ¼ 0:6\ac, one can get

A0 ¼ 0:75[ 0, D ¼ � 0:0046\0, and there exists

z1 ¼ 0:9999[ 0 satisfying Hðz1Þ ¼ �0:2497\0.

Thus, the condition (c) of Lemma 5 is satisfied. At

this point, Eq. (14) has two positive roots z�1 ¼ xq
1 ¼

1:2345 and z�2 ¼ xq
2 ¼ 0:69, so that x1 ¼ 1:3013 and

x2 ¼ 0:6289. By using Eq. (17), one could obtain s1 ¼
0:3018 and s2 ¼ 0:3654. Therefore, we get

s0 ¼ 0:3018,x0 ¼ 1:3013, and H0ðxq
0Þ ¼ 2:3532[ 0.

When time delay s ¼ 0:26\s0 is taken, the zero solu-

tion of Eq. (7) is asymptotically stable, as shown in

Fig. 1(a, b). When s ¼ 0:34[ s0 is chosen, the zero

solution of Eq. (7) is unstable and the periodic solution

appears, as shown in Fig. 1(c, d). When s ¼
0:38[ s2 [ s0 is selected, the zero solution of Eq. (7) is

still unstable, as shown in Fig. 1(e, f). Therefore, Eq. (7)

undergoes a Hopf bifurcation at the origin when s ¼ s0,

which is completely consistent with the conclusion of

Theorem 2.

Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator… 1619



(2) Choosing q ¼ 0:8 and k ¼ 0:9, it could be obtained

ac ¼ 0:8519 from Eq. (10). Selecting a ¼ 0:75\ac,

one can get A0 ¼ 0:19[ 0, D ¼ 0:0013[ 0, and z1 ¼

0:995[ 0 meeting Hðz1Þ ¼ �0:7927\0, which sat-

isfy the condition (b) of Lemma 5. Meanwhile, Eq. (14)

has two positive roots z�1 ¼ xq
1 ¼ 1:3912 and
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Fig. 1 Time histories and phase diagrams of Eq. (7) with q ¼ 0:8 and k ¼ 0:5, where the subfigures (a), (c), and (e) denote time histories, and

(b), (d), and (f) denote phase diagrams for s ¼ 0:26, 0:34, and 0:38, respectively
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Fig. 2 Time histories and phase diagrams of Eq. (7) with q ¼ 0:8 and k ¼ 0:9, where the subfigures (a), (c), and (e) denote time histories, and

(b), (d), and (f) denote phase diagrams for s ¼ 0:08, 0:12, and 0:9, respectively
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z�2 ¼ xq
2 ¼ 0:2547, so that one could get x1 ¼ 1:5109

and x2 ¼ 0:1810. According to Eq. (17), one could

find s1 ¼ 0:1073 and s2 ¼ 0:8852. Therefore, we have

s0 ¼ 0:1073,x0 ¼ 1:5109, and H0ðxq
0Þ ¼ 4:6785[ 0.

When time delay s ¼ 0:08\s0 is chosen, the zero

solution of Eq. (7) is asymptotically stable, as shown in

Fig. 2(a) and Fig. 2(b). When s ¼ 0:12[ s0 is taken, the

zero solution of Eq. (7) is unstable and the periodic solu-

tion will appear, as shown in Fig. 2(c, d). When s ¼
0:9[ s2 [ s0 is selected, the zero solution of Eq. (7) is

still unstable, as shown in Fig. 2(e, f). Therefore, Hopf

bifurcation occurs at the origin when s ¼ s0.

(3) Choosing q ¼ 0:8 and k ¼ 1:1, we get ac ¼ 0:8956

from Eq. (10). Taking a ¼ 0:7\ac, one could obtain

A0 ¼ �0:21\0. Thus, the condition (a) of Lemma 5

is satisfied. At this point, Eq. (14) has only one

positive root z�1 ¼ xq
1 ¼ 1:4681, so x1 ¼ 1:6160.

Based on Eq. (17), one could get s1 ¼ 0:1648.

Therefore, we obtain s0 ¼ 0:1648, x0 ¼ 1:6160, and

H0ðxq
0Þ ¼ 6:1148[ 0.

When time delay s ¼ 0:1\s0 is taken, the zero solution

of Eq. (7) is asymptotically stable, as shown in Fig. 3(a, b).

When s ¼ 0:2[ s0 is chosen, the zero solution of Eq. (7)

is unstable and the periodic solution appears, as shown in

Fig. 3(c, d). Therefore, Eq. (7) undergoes a Hopf bifurca-

tion at the origin when s ¼ s0.

(4) Choosing q ¼ 0:8 and k ¼ 0:1, we have ac ¼ 0:6482

from Eq. (10). Selecting a ¼ 0:4\ac, one could get

A0 ¼ 0:99[ 0, D ¼ �0:0121573\0, and HðzÞ has a

unique stationary point z1 ¼ 0:995063[ 0, but

Hðz1Þ ¼ 0:0369[ 0. So, the conditions (a)–(c) of

Lemma 5 are not satisfied. It can be seen from Fig. 4

that the zero solution of Eq. (7) is asymptotically

stable for any s � 0, which means Hopf bifurcation

does not occur.
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Fig. 3 Time histories and phase diagrams of Eq. (7) with q ¼ 0:8 and k ¼ 1:1 where the subfigures (a) and (c) denote time history diagrams, and

(b) and (d) denote phase diagrams for s ¼ 0:1 and 0:2, respectively

1622 J Chen et al.



5. Conclusions

The stability and existence conditions of Hopf bifurcation

of a commensurate fractional-order van der Pol oscillator

with time-delayed feedback are investigated by choosing

time delay s as the bifurcation parameter. When time delay

is 0, the fractional-order van der Pol oscillator becomes a

fractional-order system only with linear displacement

feedback. The necessary and sufficient conditions for the

asymptotic stability of the equilibrium point are obtained,

which is not only related to the feedback gain, but also to

the fractional order. When time delay is larger than 0, the

critical value of time delay for the stability of the equi-

librium point is calculated based on the characteristic

equation, and the generation conditions of the Hopf

bifurcation are obtained. Therefore, the stability and

bifurcation of fractional-order systems can be easily con-

trolled by adjusting the parameter value of time delay.
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