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Abstract: The stability and existence conditions of Hopf bifurcation of a commensurate fractional-order van der Pol
oscillator with time-delayed feedback are studied. Firstly, the necessary and sufficient conditions for the asymptotic
stability of the equilibrium point of fractional-order van der Pol oscillator with linear displacement feedback are obtained,
and it is found that the conditions are not only related to the feedback gain, but also to the fractional order. Secondly,
regarding time delay as a bifurcation parameter, the stability of the commensurate fractional-order van der Pol system with
time-delayed feedback is investigated based on the characteristic equation. Under some conditions, the critical value of
time delay is calculated. The equilibrium point is stable when the parameter is less than the critical value and will be
unstable if the parameter is greater than it. Moreover, the conditions for the occurrence of Hopf bifurcation are obtained.
Finally, choosing four typical system parameters, some numerical simulations are carried out to verify the correctness of

the obtained theoretical results.
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1. Introduction

Fractional calculus is a branch of applied mathematics that
deals with the study on fractional-order integral and
derivative operators in real or complex domains. A great
number of real-world objects can be generally identified
and described by the fractional-order model. The main
advantage of the fractional-order model in comparison with
the integer-order model is that a fractional-order derivative
can provide excellent performance in the description of
memory and hereditary properties of various processes. In
recent years, the study of oscillatory behaviors in frac-
tional-order systems has received considerable attention in
various fields, such as physics, engineering, economics,
biology, and materials science [1-24]. Meanwhile, many
different types of van der Pol oscillators containing frac-
tional-order derivatives have attracted more and more
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attention [17, 18, 23-30]. For example, Tavazoei et al. [25]
found a simple criterion which determined the oscillation
range for a fractional-order van der Pol oscillator. Attari
et al. [26] established the boundary between oscillatory and
non-oscillatory regions using a describing function method
for a fractional-order van der Pol-like oscillator. Guo and
Leung et al. [27, 28] studied the oscillatory region and
asymptotic solution of the fractional-order van der Pol
system via the residue harmonic balance technique. Shen
et al. [29] obtained the approximate analytical solution of
van der Pol oscillator with two kinds of fractional-order
derivatives based on the averaging method. Xiao et al. [30]
investigated the Hopf bifurcation control for fractional-
order van der Pol oscillator under state feedback schemes.

The time delay is an inherent part of many dynamical
systems such as machine tool dynamics, neural networks,
biological systems, and chemical or process control sys-
tems, and it could lead to the instability of the dynamical
system and the damage to the control performance [2, 3]. In
many fields of science and engineering, the combination of
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the delay with fractional calculus was successfully applied,
especially when the researchers tried to use fractional-order
models to describe complex systems with memory effects.
For example, Deng et al. [31] studied the stability of linear
fractional differential equations with multiple time delays.
Wen et al. [32], based on the averaging method, investi-
gated the approximate analytical solution of Mathieu—
Duffing oscillator under fractional-order delayed feedback.
Huang et al. [33] studied the stability and bifurcation of a
class of delayed fractional complex-valued neural net-
works. Mahmoud et al. [34] investigated the control of the
chaotic fractional Burke—Shaw system using time-delayed
feedback control.

Similar to classical differential systems, the study on
stability is always a central task for fractional-order sys-
tems. To our best knowledge, the stability of fractional-
order van der Pol oscillator under time-delayed feedback is
rarely studied. In this paper, choosing time delay as the
bifurcation parameter, we will discuss the asymptotical
stability of solutions in commensurate fractional-order van
der Pol oscillator. The paper is organized as follows. In
Sect. 2, some definitions are briefly introduced and the
method of stability analysis for the time-delayed fractional-
order systems is represented. Section 3 presents the sta-
bility of the equilibrium point and the occurrence of Hopf
bifurcation of fractional-order van der Pol oscillator with
time-delayed feedback. Numerical simulations are carried
out to verify the theoretical results in Sect. 4. Finally, the
main conclusions are given in Sect. 5.

2. Preliminaries

There are many definitions of fractional-order derivatives.
The Griinwald-Letnikov definition, Riemann—Liouville
definition and Caputo definition are widely employed [6].
The main advantage of Caputo derivative lies in the initial
conditions of fractional-order differential equations having
the same forms as those of integer-order ones, so that
Caputo definition is adopted in this paper. The o-order
derivative of function g(¢) in Caputo sense is described as
follows

6Dyg(r) =

1 ! m—o—1 _(m
s / (1 — 7" g™ (r)de, (1)

where m —1<oa<m, m €N, and I'(.) is the Gamma
function.
The following fractional-order system is studied

d“’xi
L ), @)

where O<o; <1, i=1,2,...n, o; € Q. The notation 5(117

:ﬁ(xLXQ, ..

is Caputo fractional-order derivative operator of Eq. (1). If

o =0y =---=0y, Eq. (2) is called as a commensurate
fractional-order system; otherwise, it is an incommensurate
fractional-order one.

The following commensurate fractional-order system is
discussed

d*x
dr :f<x)7 (3)

where O <o <1 and x € R". It is concluded that the equi-

librium point xy of Eq. (3) is locally asymptotically

stable if and only if all the eigenvalues A of the Jacobian
o

matrix J = g |, satisfy [arg(4)| > % [25].

Next, the n-dimensional linear fractional-order system
with multiple time delays is considered as follows

1
%tfl‘ =anxi(t — 1) +apx(t — 1) + -+ apxa(t — T1n)

k)
%t:;z = ayx(t — ‘521) + anx,(t — Tzz) + -+ aann(t — Ton)

)

c}it");” = dm 1 (t N T”l) + a”2x2(t - T”Z) o+ annxn(t - Trm)

(4)

where O<o; <1, i=1,2,...n, o; € Q. The initial values
xi(t) = @;(t) are given for —max;;(7;) = —Tmax <1 <0,
i=1,2,...n. A= (aij),y, is the coefficient matrix for
Eq. (4).

Taking Laplace transform on both sides of Eq. (4) and
arranging them, one could obtain the following matrix

—S5T12 —S5Tin

st —ap e —dape —da,e
7“2187”2[ Slz _ azze*.\‘fzz *612,,67”2”
A(s) =
_anle—STnl _anze—STnZ S““ _ anne_”“"
(5)
Hence, the stability of Eq.(4) can be entirely
determined by the distribution of the roots of
det(A(s)) = 0.
Lemma 1 ([31]) Supposing oy =0 =---=a,=q €

(0,1) and s7 = A, the zero solution of Eq. (4) is Lyapunov
globally asymptotically stable, if all the eigenvalues of A
satisfy |arg(4)| > %, and the characteristic equation
det(A(s)) =0 has no purely imaginary roots for any
‘E,'JZO, l,]: l, 2,..., n.

Remark For nonlinear fractional-order systems with time
delay, these systems can be changed into the linear time-
delayed fractional-order systems by using transformation
techniques and Taylor formula. Then, the above lemma can
be adopted to discuss easily the stability and bifurcation of
nonlinear fractional delayed systems [25, 31].

Since it is transcendental, the characteristic equation of
det(A(s)) =0 is difficult to find its eigenvalues
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analytically. In order to discuss the distribution of the roots
of the exponential polynomial, the following conclusion in
[35] is presented.

Lemma 2 Consider the exponential polynomial
-t (0)
P(l,e ™, .. +p, A
0+ P g pl g pD e
e " e P 2 p e

.,eih’”) ) +p§0)in71 +...

where 7,20 (i=1,2,...,m), J@ i=0,1,...m j=
1,2,...,n) are constants, and the sum of the orders of the
zeros of P(A,e™* ... e~*™) on the open right half plane
can be changed only if a zero appears on or crosses the

imaginary axis when (11,7a, ..., Ty) vary.

3. Stability analysis of fractional-order van der Pol
oscillator with time-delayed feedback

Recently, the following fractional-order van der Pol system
was introduced, and the stability and bifurcation control of
the system under nonlinear feedback were investigated
[25, 30]

dqxl (l)

qe =) .
dq)CQ([) 5 )
qa = a(0) —ale () = Dx()

where 0 <g<1 and a > 0.

In this paper, the commensurate fractional-order van der
Pol system is considered with the delayed feedback
controller

T =l
dq()jch(t) = —x(t) — a(xj(t) — Dxa(t) — kxi (t — 1)

(7)

where 7 > 0 and k > 0. The unique equilibrium point of

Eq. (7) is (x1,x2) = (0,0), and the corresponding
linearized model is
dx; (¢
=)
y (8)
qu2(l)

prab —x1(t) + axp (1) — kxy (t — 1)

The coefficient matrix A is described by

0 1
A= (—l—k a)'

Its characteristic equation is

s? -1
det(A6) = |3, e

=0.

=5 —as? + 1+ ke

©)

Using Lemma 1 and the method in the literature [25],
one could obtain the following result.

Theorem 1 If t =0, for each fixed q, the equilibrium
(0,0) of Eq.(7) is asymptotically stable if and only if
O<a<a., where

ac:2\/1—|—kcos%. (10)

Then, for any 7 >0, the conditions that the
characteristic equation det(A(s)) =0 has no purely
imaginary roots would be investigated.

Supposing s = i®w = w(cosZ + isinZ) (w > 0) be a root
of Eq. (9), one could obtain

2 .. q qm . q7r>
w™(cosgn +1singm) — aw (cos——|—151n—
(cosq qm) 5 > ()

+ 1+ k(cos wt — isinwt) = 0.

Separating real and imaginary parts of Eq. (11), one
could get

®* cos qm — aw? cos % + 1 = —kcoswr, (12a)

* singn — aw? sin” = ksinwr. (12b)
Adding up the squares of both equations, one could
obtain

o + A3 + Ay™ + Ao + Ag = 0.

(13)

where A3 = —2acos %, Ay = a*+2cos g,
A; = —2acos?, and Ag =1 — k2.

Letting w? = z, Eq. (13) becomes
2+ A + A + Az + Ay =0, (14)

Lemma 3 ([35]) If Ao<O0, Eq. (14) has at least one
positive root.

Denoting H(z) = z*+A32° + Axz> + Az + Ay, we have
H'(z) = 42 + 3A3722 + 2A2z + A} and set
42° + 34377 + 2422+ A, = 0. (15)

Letting z =y — % and substituting it into Eq. (15), one
could obtain
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Y +piy+q =0. (16)
s
where Plz/% —%A% and qlzg_%_AzsAs +%

Using Cardano formula, we have

- ;/-‘ngﬁ-‘g_@,

yz:o~f/—%+\/K+az-f/—%—\/&
y3:oz-,"/—%+\/Z+a-f/—%—\/Z.

2 3 )
whereA:‘{Tl+% ando_:,pﬁT\/g_,,.
Therefore, the zeros of H'(z) are z; = y; — 4%, i = 1,2,3.

Lemma 4 ([35]) Supposing Ao >0, one could establish
the following conclusions.

(i) When A >0, Eq. (14) has positive roots if and only if
z1 >0 and H(z;) <0;

(i)) When A <0, Eq. (14) has positive roots if and only if
there exists at least one z* € {z1, 22, z3}, satisfying
z*>0and H(z*) <0.

Now we consider the case that Eq. (14) has positive
roots. Without loss of generality, we assume that it has two
positive roots, denoted by z7,i =1,2. ]Then, Eq. (13) has
two positive roots written as w; = (z)s, i = 1,2.

Letting

e 2q -
awy sinG — o singn

G _ 1 -

T,’ = — |arctan +m
o l (wiq cos gm — aw] cos G + 1)
k=1,2;j=0, 1,2,

bl

(17)

then =+ iwy is a pair of purely imaginary roots of Eq. (9)
with ==t/ k=1, 2; j=0, 1, 2,.... Obviously, lim; .,
V) =0k =1, 2.

Thus, we can define

o=1/" = gg{fY), DYoo=k, 20 =21, (18)
Lemma 5 Supposing O<a<a,, the following

conclusions could be established.
i. If one of the following three conditions holds

(a) Ag<O0;

(b) Ay>0,A>0,z >0, and H(z;)<O0;

(¢) Ap>0, A<0, and there exists a z* € {zi, 22, 23}
meeting z* > 0 and H(z*) <0;
all roots of Eq. (9) have negative real parts when
7€ [0, 79);

ii. If the conditions (a)-(c) of (i) are not satisfied, all the
roots of Eq. (9) have negative real parts for all > 0.

Proof When 1t =0, from Theorem 1, we know that all
roots of Eq. (9) have negative real parts if 0 <a<a,.

From Lemmas 3 and 4, we know that Eq. (9) has no
roots with zero real part for all 1 >0 if (a)-(c) are not
satisfied. '

If one of (a)-(c) holds, when 71# r,((’) k=
1,2;j=0,1, 2,..., Eq. (9) has no roots with zero real
part.

Moreover, 1 is the minimum value of 7 so that Eq. (9)
has purely imaginary root. Using Lemma 2, we can draw
the conclusions.

Letting

s(t) = a(t) + iw(7) (19)

be the root of Eq. (9) satisfying a(t9) =0, w(tp) = wo,
one could obtain the following results.

Lemma 6 Supposing H'(0}) #0, L iwy is a pair of
simple purely imaginary roots of Eq. (9) if 1 = 19. More-

over, di(jo(T)) £ 0, and LRSTS(T))
=10

has the same sign
=1
as wgH'(of).
Proof 1If iwg is not a simple root of Eq. (9), it must satisfy
=0.

S:iwo

d
I [s% — as? + 1 + ke™™]
s

Separating real and imaginary parts, one could obtain

20! <2q—1 ) -1 (q—l )
g cos| = —m ) —agef " cos( “o—

= k1 cos wot, (20a)
2g — 1 —1
Zq(ug‘r1 sin( qz n) — ago? " sin (q 5 n)
= —kt sin wot. (20b)
Denoting

_ 2g -1 _ -1
Uy = 2qwpt lcos( q2 77:) — aqw lcos(q 3 n),
and

1. (2g—1 1 . -1
Vi :quéq 1sm( 612 n> — aqo} 1sm<q 3 n),

one could get

U,
—cot =—. 21
cot ot v, (21)

Denoting

2 qrn
U, = wy? cos gn — aw cos -+ 1,

and
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2q - . gqmn
Vo = wy! singn — awg sin—-,
one could obtain

U,
—cot =—=. 22
cot woTt V) (22)
From Egs. (21) and (22), we have %‘z%, which means
u,v,—U,v, =0.
Thus, one could get

208 —3a cos%wéq + (a* 4+ 2cos gn)wf — a cos% =0.

Recalling wg=z, we have

4z, — 6a cos%zg +2(a® +2cosqm)zo — 2a cos% =0.

(23)

Noticing that A3 = —2acos%, A, =da’+2cosqn,
A; = —2acos%, Ag=1-— k?, and H'(z) = 47> +3A322+
2A>z+ Ay, it could be found that Eq. (23) is in
contradiction with condition H'(w¢) # 0. Therefore,
+iwy is a pair of simple purely imaginary roots of Eq. (9).

Differentiating Eq. (9) with respect to 7, one could
obtain

d
(2¢s*" —aqsT" — kre™) d—i — kse™" =0, (24)

which means

ds\ ! 2gs2 ! —ags?™! 1
() ' -

kse—5t s
When t = 19 and s = iwg, Eq. (25) becomes

ds - 1| 2g(iw0)* ™" — ag(ioy)?™! T
dr i

img —ke—icot 100

_—
2g (o)™ — ag(ie)?”"
(iw0)* — a(img)? + 1
U+ i

T woUy+iVa | wp

i1

T Ui+ V2

i

Wo

(U,U, + Vi Vs)

T
—i(U Vs — UsV))] + —2
o

Accordingly, one could get

ds\ !
R -
(&)
T=T0

A A
wo(Us +V3)

UV, — UV
CO()k2
g 'H'(0})  qof”

T ok 2 22 H' ().

Therefore,

ian {d(Rzi(r»

”}—wnCmﬁmy,

= sign{w{H'(wf)}.

T=T0

We complete the proof of Lemma 6.
Based on Lemmas 3-6, the following theorem is
available.

Theorem 2 Letting wy, 2o, To, and s(t) be defined by
Egs. (18) and (19) and assuming 0<a<a, the following
results could be obtained.

1. If the conditions (a)-(c) of Lemma 5 are not satisfied,
the zero equilibrium point of Eq. (7) is asymptotically
stable for all T >0;

II. If one of the conditions (a), (b), and (c) is satisfied, the
zero equilibrium point of Eq. (7) is asymptotically
stable when 7 € [0, 19).

III. If the condition of (IL.) is satisfied, and H'(w{) # 0,

Eq. (7) undergoes a Hopf bifurcation at the origin
when 1 =1.

4. Results and discussion

In this section, we select four typical system parameters to
simulate the fractional-order van der Pol oscillator,
respectively, to verify the correctness of the above theo-
retical results. The simulation results are all based on the
power series expansion method [6, 23], and step-length is
h = 0.005.

(1) Choosing g = 0.8 and k = 0.5, we have a, = 0.7569
from Eq. (10). Selecting a = 0.6 <a., one can get
Ag=0.75>0, A =—0.0046<0, and there exists
71 =0.9999 > 0 satisfying H(z;) = —0.2497 <0.
Thus, the condition (c) of Lemma 5 is satisfied. At
this point, Eq. (14) has two positive roots z; = of =
1.2345 and z; = o} = 0.69, so that w; = 1.3013 and
wy = 0.6289. By using Eq. (17), one could obtain 1, =
0.3018 and 1, =0.3654. Therefore, we get
79 = 0.3018, wy = 1.3013, and H'(w{) = 2.3532 > 0.

When time delay t = 0.26 <7 is taken, the zero solu-
tion of Eq. (7) is asymptotically stable, as shown in
Fig. 1(a, b). When 7=0.34 > 15 is chosen, the zero
solution of Eq. (7) is unstable and the periodic solution
appears, as shown in Fig. I(c, d). When 1=
0.38 > 1, > 19 is selected, the zero solution of Eq. (7) is
still unstable, as shown in Fig. 1(e, f). Therefore, Eq. (7)
undergoes a Hopf bifurcation at the origin when t = 7,
which is completely consistent with the conclusion of
Theorem 2.
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Fig. 1 Time histories and phase diagrams of Eq. (7) with ¢ = 0.8 and k = 0.5, where the subfigures (a), (¢), and (e) denote time histories, and
(b), (d), and (f) denote phase diagrams for t = 0.26, 0.34, and 0.38, respectively

(2) Choosing ¢ = 0.8 and k = 0.9, it could be obtained 0.995 > 0 meeting H(z;) = —0.7927 <0, which sat-
a. = 0.8519 from Eq. (10). Selecting a = 0.75<a,, isfy the condition (b) of Lemma 5. Meanwhile, Eq. (14)
one can getAg = 0.19 > 0,A =0.0013 > 0,and z; = has two positive roots zj = a)’f =1.3912 and
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Fig. 2 Time histories and phase diagrams of Eq. (7) with ¢ = 0.8 and k = 0.9, where the subfigures (a), (¢), and (e) denote time histories, and
(b), (d), and (f) denote phase diagrams for © = 0.08, 0.12, and 0.9, respectively
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Fig. 3 Time histories and phase diagrams of Eq. (7) with ¢ = 0.8 and k = 1.1 where the subfigures (a) and (c¢) denote time history diagrams, and

(b) and (d) denote phase diagrams for T = 0.1 and 0.2, respectively

z; = wd = 0.2547, so that one could get w; = 1.5109
and wy = 0.1810. According to Eq. (17), one could
find 7; = 0.1073 and 7, = 0.8852. Therefore, we have
79 = 0.1073, wp = 1.5109, and H' () = 4.6785 > 0.

When time delay 7= 0.08<1y is chosen, the zero
solution of Eq. (7) is asymptotically stable, as shown in
Fig. 2(a) and Fig. 2(b). When 7 = 0.12 > 1, is taken, the
zero solution of Eq. (7) is unstable and the periodic solu-
tion will appear, as shown in Fig. 2(c, d). When 7=
0.9 > 1, > 19 is selected, the zero solution of Eq. (7) is
still unstable, as shown in Fig. 2(e, f). Therefore, Hopf
bifurcation occurs at the origin when t = 7.

(3) Choosing ¢ =0.8 and k = 1.1, we get a. = 0.8956
from Eq. (10). Taking a = 0.7 <a,, one could obtain
Ag = —0.21 <0. Thus, the condition (a) of Lemma 5
is satisfied. At this point, Eq. (14) has only one
positive root zj = w! = 1.4681, so w; = 1.6160.
Based on Egq. (17), one could get 7 = 0.1648.

Therefore, we obtain 79 = 0.1648, wy = 1.6160, and
H'(wf) = 6.1148 > 0.

When time delay T = 0.1 <1y is taken, the zero solution
of Eq. (7) is asymptotically stable, as shown in Fig. 3(a, b).
When 7 = 0.2 > 1 is chosen, the zero solution of Eq. (7)
is unstable and the periodic solution appears, as shown in
Fig. 3(c, d). Therefore, Eq. (7) undergoes a Hopf bifurca-
tion at the origin when t = 1.

(4) Choosing g = 0.8 and k = 0.1, we have a. = 0.6482
from Eq. (10). Selecting a = 0.4 <a,., one could get
Ap=0.99 >0, A=—-0.0121573 <0, and H(z) has a
unique stationary point z; = 0.995063 > 0, but
H(z;) =0.0369 > 0. So, the conditions (a)—(c) of
Lemma 5 are not satisfied. It can be seen from Fig. 4
that the zero solution of Eq. (7) is asymptotically
stable for any t >0, which means Hopf bifurcation
does not occur.
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Fig. 4 Phase diagrams of Eq. (7) with ¢ =0.8 and k =0.1 for(a) t=0,(b) 1=0.5,(¢c)t=1,and (d) 1 =2

5. Conclusions

The stability and existence conditions of Hopf bifurcation
of a commensurate fractional-order van der Pol oscillator
with time-delayed feedback are investigated by choosing
time delay t as the bifurcation parameter. When time delay
is 0, the fractional-order van der Pol oscillator becomes a
fractional-order system only with linear displacement
feedback. The necessary and sufficient conditions for the
asymptotic stability of the equilibrium point are obtained,
which is not only related to the feedback gain, but also to
the fractional order. When time delay is larger than 0, the
critical value of time delay for the stability of the equi-
librium point is calculated based on the characteristic
equation, and the generation conditions of the Hopf
bifurcation are obtained. Therefore, the stability and
bifurcation of fractional-order systems can be easily con-
trolled by adjusting the parameter value of time delay.
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