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Abstract: This paper presents the use of infinite element boundary conditions for physical and engineering problems in a

three-dimensional unbounded domain, subjected to seismic loading, with a view to compare results with the traditional

viscous boundary. Boundary conditions are discussed in general with an emphasis on understanding the pros and cons of

each method used. Also, a comparison is drawn between the different types of boundary conditions used for the optimal

solution of physical problems especially the models under seismic loading. Infinite elements can be implemented easily

with lesser computational time. It provides ‘‘quite’’ boundaries to the models and can be used effectively for the accurate

numerical solutions of physical issues. This paper presents the complete details of node setting and numerical computation

for the infinite element boundaries and compares results of a three-dimensional free field soil model and a soil–tunnel

model under seismic loading using infinite boundary, and a similar model using a spring/dashpot system. The results

verified the use infinite element boundary to evaluate the seismic behaviour of the model and suggest that in the time

domain, this method can be combined easily with the finite element and other methods such as boundary element method

directly.
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1. Introduction

There are three methods that can be used to solve physical

problems: empirical method, analytical method and

numerical method. Over time, the numerical method of

solving engineering problems and physical issues has

emerged as the most efficient method, as other methods

involve procedures that are costlier and more time-con-

suming. The procedures involve laboratory and centrifuge

testing, which provide more reliable results. However, they

need proper facilities, adequate time and a skilled work-

force as the level of their proficiency can affect the test

results. On the other hand, numerical simulation is one of

the simplest, fastest and most economical methods, which

is widely adopted by researchers across the globe to solve

complex physical problems that cannot be solved using

analytical and empirical techniques. Problems like filling

earth pressure in large diameter cylinders sunk in the

ground are very complicated, and using finite element

models, this has been validated [1]. Another example

involves the understanding of the mechanical behaviour of

soil rock mixtures (S-RM) using the analytical or the

empirical techniques. This is very complex in nature;

however, through effective use of numerical methods it

was easy to understand both the mechanical behaviour and

the control mechanism [2]. While numerical methods help

in solving complicated engineering problems, the process

itself is very difficult. For achieving accurate results, fac-

tors like boundary conditions, meshing, constitutive models

for materials, and all such parameters, should be accurately

defined.

Earthquakes are a natural phenomenon, which have

wide implications on structures, including risks to human

life and property. It has challenged researchers as it is one

of the most difficult and important physical issues and
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engineering problems. Structures, such as bridges, tunnels

and high-rise buildings are often constructed on active fault

zones, where the risk of earthquake damage is very high.

Failures of such structures have been reported in many

publications over the past many decades [3–5]. Investi-

gating the behaviour of these structures against seismic

forces is inevitable. It is therefore necessary to have a

better understanding of the response of these structures to

such governing forces. As per the recent researches con-

ducted, the response of these structures is affected by the

dynamic behaviour of the individual components and also

the complex soil–structure interactions. During the earth-

quake, the foundation and the surrounding soil interact with

the superstructure through changing stiffness and energy

dissipation. This interacting behaviour is often referred to

as inertial response in the literature [6]. The amount of

energy dissipated and absorbed by the structures needs to

be estimated correctly and used accordingly in the

numerical models. Therefore, the correct use of boundary

conditions, parameters and the values of various coeffi-

cients in the simulation is crucial in understanding the

behaviour of the structures subjected to the earthquake

loading conditions [7].

While working with numerical models and computer

simulations, the first thing to take into account is the

medium to work on. There are two main types of mediums

used in numerical models: continuum and discontinuum.

Based on the medium type, there are different techniques

and methods used for numerical analysis. The most com-

monly used numerical analysis methods for continuum

medium are finite element methods, infinite element

method, finite difference or distinct element method, finite

volume method, finite boundary method and meshless

method. On the contrary, for discontinuum media, the

methods available are discrete element method, discontin-

uous deformation analysis, bonded particle method and

discrete fracture networks [8]. Additionally, there are also

the hybrid methods such as the finite discrete element

method. However, it has been noticed that most of the

literature presented on the continuum materials used finite

element method, and for discontinuum materials, the dis-

crete element methods were used.

Physical problems in infinite domains are usually solved

by introducing artificial boundaries (Abs). These bound-

aries simulate the response of the structures under dynamic

loading conditions. The infinite element is a relatively new

technique in numerical modelling; therefore, there is a lack

of clarity about what infinite element is, how boundary

conditions should be used and what results can be expected

from it. While working on ABAQUS, it is important to

understand its limitations. Computer models can map only

a small part of the ground which is influenced by the

earthquake, while the rest must be catered using an

artificial boundary condition (infinite element boundary

condition). For an accurate model, the energy generated by

the dynamic loads entering the model must pass through a

properly defined artificial model which can allow propa-

gation of waves through them [9]. As per Saint-Venant’s

principle, the effect of this artificial boundary is likely to

lessen as the distance increase. Therefore, the boundary

conditions should be modelled in a way that allows energy

dissipation. The development of transmitting boundaries

has seen new heights in the past few decades [10]. For

absorption of energy, the spring/dashpot system as a vis-

cous boundary [11] is usually used. Experiments show that

the viscous spring boundary for the permeability values is

more precise [12]. The use of infinite elements around the

model is another method of energy absorption. Unlike a

dashpot element, an infinite element does not require cal-

culations of coefficients, which require knowledge of

detailed material properties and mesh geometry.

This paper in general discusses the boundary conditions

under seismic loading with an emphasis on infinite element

boundary conditions and the dynamic analysis. A summary

of previous works in the area is presented for the better

understanding of the boundary conditions and details of

infinite element boundary conditions, including the node

structure for solid mediums and numerical computation of

the energy absorbing boundary conditions. Further, a

comparison is drawn between the infinite boundary con-

ditions and the traditional spring/dashpot system for the

models. For comparison reasons, the results are derived

from a 3D free field model (soil model without tunnel) and

a soil model with a tunnel, which are in an infinite domain

under seismic loading. The software used for the model is

ABAQUS, and the spring/dashpot system studied by [13] is

used for the comparison. Summary of the comparison and

results are also discussed.

2. Literature review

In numerical analysis, all parameters need to be properly

defined in order to achieve logical results. Boundary con-

ditions are an important factor affecting the results of the

model. They are extensively used in numerical modelling

as they are simple and cost-effective [14]. The simplest

form of boundaries that can absorb energy is viscous

boundaries, which were first used by [15]. In these

boundaries, the dashpots are organized in a series, which

are placed normally at the boundary nodes [16]. It is

observed that in these boundary conditions, the optimal

absorption is achieved only when the waves are perpen-

dicular [16]. Therefore, when computing models in large

domains, these boundaries should be placed at a distance
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from the source so that reasonable solutions can be

achieved [17].

The standard viscous boundaries at low frequencies

produce permanent displacements. This is another major

drawback of the use of standard viscous boundaries, and

several techniques have been developed to overcome this

problem. An example of this is the cone boundary devel-

oped by [18]. It comprises of a spring and dashpot con-

nected in parallel with each other and placed at the

boundary nodes both normally and tangentially. The

mechanism in this boundary is simple; the dashpot governs

the absorbing potential, while the spring stiffness controls

the deformation.

Another sub-structuring approach for the dynamic

analysis was developed by [19]. It is called the domain

reduction method (DRM). As the name suggests, this

procedure primarily aims to reduce the domain by chang-

ing the variables. The dynamic analysis is carried about

introducing the seismic loading directly into the compu-

tational domain, while the standard viscous boundaries or

the dashpots are introduced to cater for the scattered energy

of the system only. While this method was originally

developed to deal with the problems of drained and

undrained systems, [20] extended it further and used it for

dynamic analysis.

A technique of using infinite boundary conditions for

dynamic analysis was introduced by [21]. They developed

an absorbing boundary element (BE) using integral equa-

tions based on Green’s theorem. This method has been

successfully applied to numerical integration in the fre-

quency domain [22] as well as for solving the volume

integral (VI) equation via a velocity-weighted wave field,

also formulated in the frequency domain [23–25]. This

technique can be used to solve the Green’s function-based

integral equations for wave propagation simulation in both

2D and 3D domains and can be used for both elastic and

acoustic analyses. The experiments performed show that

the method can absorb almost all unwanted waves. The

approach is better than many typical absorbing boundary

conditions and utilizes less memory and computing time.

A technique presented by [26] involves the use of the

master–slave in ABAQUS, a contact surface that models

the soil–structure interaction. This method divides the

model into two distinct models: one called the master and

the other slave. A user-defined contact surface is created to

be used by the sub-models. The models eventually use this

contact surface to trap wave scattering energy, as the

structural element and the soil element independently

handle the energy dissipation. Moreover, the nonlinear

behaviour of the soil–structure interface can also be cap-

tured by the model. The analysis shows that the results

achieved through this technique are accurate and confer the

result of other commercially used programs.

3. Absorbing boundary element

3.1. Infinite element boundary conditions

Infinite elements are important for the dynamic analysis of

the conditions, especially for the soil models where the

surrounding medium is very large and the region of interest

is comparatively small [27]. The infinite elements are

generally used along with the finite elements [28, 29] in a

way that the region of interest is modelled using finite

element and the surrounding medium is modelled using

infinite element making use of ‘‘quite’’ boundary condi-

tions [30]. In dynamic analysis, when a fixed boundary

condition is used, it traps the energy inside and causes

reflection of the waves. A solution suggested by [31] is to

maximize the domain enough so that the reflected waves

cannot return to the region of interest. Infinite elements

generally have linear behaviour and provide ‘‘quiet’’

boundaries to such models in unbounded domains and

therefore can be ideally used for the dynamic analysis.

Kagawa et al. [32] presented a method of infinite ele-

ment boundary discretization for the dynamic analysis in

unbounded domains. In that, the entire unbounded zone

was broken into smaller zones and the zone matrices were

written in the form of the nodal quantities at the finite

element nodes by using a series of numerical and analytical

integration. This procedure is adopted to make solutions

efficient as, during the coupling procedures, it conserves

the banded nature of finite element matrices. Subsequently,

the conditions for continuity and the compatibility of the

zones are formulated. The boundary elements are formu-

lated by eliminating all variables except the potentials.

Finally, the equation for the potential is derived, which is in

the form of a stiffness matrix–load vector. The procedures

implemented to assemble the finite element are used to

assemble this matrix into the global equation of finite

element [33].

Infinite elements are typically used to perform three

distinct analysis in ABAQUS, namely direct integration

implicit dynamic response analysis, steady-state dynamic

frequency-domain analysis and explicit dynamic analysis

[34]. A direct integration implicit dynamic response anal-

ysis is used to study nonlinear dynamic response, dynamic

response involving minimal energy dissipation, moderate

energy dissipation and quasi-static responses. Steady-state

dynamic frequency-domain analysis is used for linearized

response of the system to harmonic excitation, in which the

load is applied at different frequencies, and then, the

response is then recorded. An explicit dynamic analysis is

carried out to analyse large models with short dynamic

response times. It can also be used for quasi-static analysis

and adiabatic stress analysis.
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In each of the dynamic analyses discussed above, infi-

nite elements provide ‘‘quite’’ boundaries, through the

effect of dumping matrix, to the models created using finite

elements. The static force on the boundary at the start of

the dynamic response remains unchanged. As a result,

during the dynamic response, the displacement of the far-

field nodes does not take place. During the dynamic steps,

the infinite elements produce additional normal and shear

traction on the finite element boundary. These tractions are

proportionate to the normal components and shear com-

ponents of the velocity. To minimize reflection, boundary

damping constants are introduced. It is imperative to

understand that the infinite elements do not provide any

stiffness while keeping the stress constant during the

dynamic response. Therefore, a small effect of the rigid

body motion may be experienced in the modelled regions.

3.2. Defining nodes for the solid medium infinite

elements

Since infinite elements work in conjunction with the finite

element, the node numbers should be organized in such a

manner that the face connected to the finite element in the

mesh should be the first face. It is done because the nodes

on the first phase are generally located in the mesh and all

other nodes are positioned away from the mesh in the

infinite domain. All such nodes located in infinite domains

are unimportant and treated differently during the analysis.

It is for this reason that loads and other boundary condi-

tions are not applied on them.

However, in the infinite direction the position of the

node plays a vital role in the solution. Each node in the

infinite direction is concentrated about a pole (origin). For

example, when a point load is applied to the boundary, the

location of the pole would be exactly at the point of the

application.

The distance of the node on the same edge of the

boundary between the finite and the infinite elements is

used as a standard for the second node. Ideally the distance

of the second node from the pole on this boundary should

be twice the distance of the first node. Few examples are

illustrated in Figs. 1, 2 and 3.

Moreover, while positioning the second node, it should

be ensured that the element edges in the infinite direction

should not merge with each other. Such crossovers can

result into nonunique mappings, and ABAQUS would stop

working (Fig. 4).

To avoid nonunique mapping, an easy way to handle

these second nodes is to project the original nodes from the

pole node (Fig. 5). The benefit of this technique would be

that each new node created would be equidistant from the

pole node and the old node. It is pertinent to mention that in

Fig. 1 Point load on elastic half space

Fig. 2 Strip footing on infinitely extended layer of soil

Fig. 3 Quarter plate with square hole
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such cases the pole node should be located at the centre of

the far-field solution.

4. Numerical computation

What follows here is a review of the theory, adapted from

Infinite Boundary Element Absorbing Boundary for Wave

Propagation developed by [22].

The author has used an infinite BE approach to solve

problems in frequency domain. Consider Fig. 6b, where X1

and X2 are the two homogeneous sub-domains having an

interface TAB which can be defined by A\ x\B (Fig. 7).

This interface TAB is further illustrated in Fig. 8a, which

is similar to linear elements. As shown by the figure, r1 and

r2 are the node position vectors located at the two ends of

the element. The local coordinate n has a range of -1 to 1.

The equation of the shape function can be written as:

M1 nð Þ ¼ 1� nð Þ=2
M2 nð Þ ¼ 1þ nð Þ=2:

ð1Þ

There is a linear variation in the element within a range

of - 1 to 1 (shown in Fig. 8b). The coordinates,

displacements and stresses at any point of the element

can be given by:

r nð Þ ¼ M1 nð Þr1 þ M2 nð Þr2
u nð Þ ¼ M1 nð Þu1 þ M2 nð Þu2

t nð Þ ¼ M1 nð Þt1 þ M2 nð Þt2:
ð2Þ

For X1 and X2, respectively, the integral equation can be

discretized at all node on TAB using Eq. (2). The

discretized equations can then be assembled into the

global matrix equation under the continuity of

displacement and stress across the interface TAB.

Displacement and stresses across all the nodes of the

interface can be obtained by solving this matrix. Numerical

integration on TAB can be used to compute the seismic

response at any location. However, it is noted that the

endpoints will yield strong diffractions in the computed

seismic response. This can be resolved by extending them

to infinity using an infinite boundary element. Figure 9a

illustrates an infinite boundary element which is stretching

from point A to infinity, where r0 represents a position

vector at A and r1 represents a reference position vector.

The coordinates at any point in this infinite boundary can

be shown by:

r nð Þ ¼ M1
1 nð Þr1 þ M1

2 nð Þr0; ð3Þ

where M1
?(n) and M2

?(n) are the infinite shape functions

and can be shown by the equation:

M1
1 nð Þ ¼ 1� nð Þ= 1þ nð Þ

M1
2 nð Þ ¼ 2n= 1þ nð Þ:

ð4Þ

There is a vivid nonlinear change (0 to - 1) in these

infinite shape functions, which is shown in Fig. 9b. From

the above equation, it is apparent that r(n) = r0 at n = 1,

r(n) = r1 at n = 0 and r(n) = ? at n = -1. However, the

previous discussions suggest that the unknowns

(displacement and stress) at infinity are assumed to be

null. Therefore, it can be concluded that in the infinite

element they differ in the form of a damping exponential.

Figure 9a shows an infinite boundary element where the

displacement and stress are assumed to vary from node r0
as follows:

Fig. 4 Example of a nonunique mapping

Fig. 5 Projecting existing nodes from pole node
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u nð Þ ¼ u r0ð Þfu n; kð Þ
t nð Þ ¼ t r0ð Þfu n; kð Þ;

ð5Þ

where f is decay function with respect to the local

coordinate n and the frequencies. They specify the

variation of the unknowns in the infinite direction from

their values at node r0. For any specific problem,

suitable damping functions can be chosen using empirical

methods. However, numerical methods suggest that the

optimal damping function for a 2D function is given by:

Fig. 6 Two adjoined half-space

models. (a) Model consisting of

the interface TAB and two

artificial boundaries T’? and

T’’?. (b) Model after boundary

transform

Fig. 7 Two-layer models.

(a) Model consisting of the free

surface TAB, the interface TCD

and two artificial boundaries

denoted by dashed lines.

(b) Model after the boundary

transform

Fig. 8 Regular linear element

for the frequency-domain BE

scheme. Geometry of the

element. (b) Shape functions

Fig. 9 Infinite boundary element for artificially ending point A in Fig. 1b. (a) Geometry of the element. (b) Infinite shape functions. (c) Damping

functions for the unknowns (displacement and stress) in the infinite boundary element
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fu n; kð Þ ¼ H
1ð Þ
0 Kr nð Þð Þ

�
�
�

�
�
�

ft n; kð Þ ¼ H
1ð Þ
1 Kr nð Þð Þ

�
�
�

�
�
�;

ð6Þ

where H0
1() and H1

(1) () are Hankel’s functions of the first

kind with zeroth order and first order, respectively, and

r(n) = |r0 - r(n)|.
The decay performance of fu(n,k) in the infinite bound-

ary element for four different frequencies is illustrated in

Fig. 9c. Different curves shown in the figure correspond to

different frequencies. Figure suggests that the damping is

faster once the frequency is high. Figure 10a shows the

infinite boundary element for the end point at x = B. The

element direction is the positive x-direction which means

that the functions need to modified and that can be written

as

M1
1 nð Þ ¼ �2n= 1� nð Þ

M1
2 nð Þ ¼ 1þ nð Þ= 1� nð Þ:

ð7Þ

The performance of the above equation is illustrated in

Fig. 10b. The formulas for coordinates, displacements and

stresses at a point in the infinite boundary element have

different decay functions as illustrated in Fig. 10c

primarily because of the reverse element direction. These

formulas can be practically applied to solve a 3D problem;

however, it will require minor modification. Below is an

example of a quadrilateral infinite boundary element which

is used for the calculation of 3D BE problem.

Figure 11 shows a curved interface extending to infinity.

A and B are nodes located at the end edge of the curved

interface. The position vector at any point on this interface

can be given by

rðnÞ ¼
X4

ði¼1Þ
riMi1ðnÞ: ð8Þ

In the equation above, M1
i nð Þ are 2D infinite shape

functions. These functions can be created by:

M1
1 nð Þ ¼ n 1� n2ð Þ= n1 � 1ð Þ

M1
2 nð Þ ¼ 1þ n1ð Þ 1� n2ð Þ=2 1� n1ð Þ

M1
3 nð Þ ¼ 1þ n1ð Þ 1� n2ð Þ=2 1� n1ð Þ

M1
4 nð Þ ¼ n1 1þ n2ð Þ== n1 � 1ð Þ:

ð9Þ

5. Results and discussion

One of the problems in the dynamic soil–structure analysis

is the selection of an accurate boundary conditions that

could resist the loads. In dynamic analysis, when a fixed

boundary condition is used, it traps the energy inside and

cause reflection of the waves. It is because the source of the

earthquake is very deep, and the energy created due to

wave propagation dissipates into infinity. Therefore, we

require suitable boundary conditions capable of free field

response in the vicinity of the boundaries. The standard

boundary conditions that are used in static analysis (zero

force and displacement) cannot simulate energy dissipation

through them [18, 35]. A solution suggested by [31] is to

maximize the domain large enough so that the reflected

waves cannot return to the region of interest.

To understand the response of infinite element bound-

aries, a comparison is made between the results obtained

from a three-dimensional free field soil model and a soil–

tunnel model under seismic loading using an infinite

boundary, and a similar model using a spring/dashpot

system, studied by [13]. The time history of the earthquake

Fig. 10 Infinite boundary element for the artificially ending point. (a) Geometry of the element. (b) Infinite shape functions. (c) Damping

functions for the unknowns (displacement and stress)

Fig. 11 Quadrilateral infinite boundary element for 3D problems
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imposed into the model is presented in Fig. 12. Figure 13a,

b illustrates the spring/dashpot system and the infinite

element as energy absorbing boundaries, respectively.

Infinite element (CIN3D8 elements) has been used for

the boundaries of the models in order to deter spurious

reflection of waves to get real responses, while the rest

were modelled using finite element (eight-node volume

C3D8R elements). The length of the infinite elements was

kept more than half of the model width.

The diameter of the circular tunnel used in the soil–

tunnel model is 6 meters, concrete thickness is 30 cm, and

the height of the soil overburden on the tunnel is 15 meters.

The length and overall height of the external boundaries

used in the model are 600 m and 40 m, respectively.

Detailed properties of the soil and concrete used in the

model are tabulated in Table 1. Soil and tunnel are mod-

elled using finite element, while infinite element is used to

model the region around the tunnel [36].

To calculate the Rayleigh damping coefficients for soil

in the model, frequency analysis was performed before the

seismic analysis. Based on the damping ratio, ni can be

calculated from Eq. (10).

Fig. 12 Time history of earthquake imposed into the model

Fig. 13 Boundary conditions:

(a) spring/dashpot system,

(b) infinite element

Table 1 Properties of material used in the model

Soil type Density (Kg/m3) Elastic modulus (Pa) Damping ratio a Damping ratio b Poisson’s ratio m n

Clay 1937 3.024E8 0.484 0.005138 0.4 0.05

Concrete 2400 2.5E10 2.2518 0.000905 0.2 0.05

914 M S Asheghabadi and Z Ali



ni ¼
1

2xi

aM þ xi

2
bK; ð10Þ

where xi (rad/s) is the natural frequency of mode i.

Thus, aM and bK can be used to find any damping ratio

of any modes. The damping amount of other modes can

also be computed from Eq. (10).

Geostatic stress is usually the first step of a geotechnical

analysis, followed by a coupled pore fluid diffusion/stress

or static analysis procedure to verify that the initial geo-

static stress field is in equilibrium with applied loads and

boundary conditions. So, in the first step, these stresses

were computed by application of gravity loading. Equa-

tion (11) was used for earth pressure or lateral coefficient

at rest.

k0 ¼ 1� sin/: ð11Þ

Depending on the soil thickness and the earthquake

frequency content that passes through the soil, the intensity

of the seismic waves may increase or decrease. Figure 14

shows the comparison of the maximum acceleration

response across the soil in free field model for both

infinite element and the spring/dashpot system analyses.

The graph shows that the acceleration increases, as the

wave propagates through the soil and reaches its peak on

the soil surface. It can also be observed that the graph does

not show much variation in the results for the infinite

element boundaries and the spring/dashpot model.

Acceleration response of seismic loading introduced at

the base of the model will have a different behaviour. At a

certain depth, the acceleration increases to its peak value

and then variates till it reaches the soil surface. Figure 15

shows the comparison of the maximum acceleration

response at various points in soil–tunnel model. It can be

seen that the results are similar for both infinite element

and the spring/dashpot system models.

In order to evaluate the behaviour of the materials, it is

important to investigate the stress and strain created in the

structures. For this purpose, the maximum principal stres-

ses and strains created around the tunnel in the infinite

element model are compared with the model using
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spring/dashpot system. Comparison of the maximum

principal stress and strain in both models is shown in

Figs. 16 and 17, respectively.

It is evident from the graphs that the values of maximum

principal stress and stains are same for the both the models.

Hence, it can be concluded that infinite elements can be

used as energy absorbing boundaries, which are as effec-

tive as the spring/dashpot boundaries.

6. Conclusions

The paper presented the infinite element boundary condi-

tions for the dynamic analysis of structures under seismic

loading and compared the results with a standard dashpot/

spring boundary system. The viscous boundary is one of

the most commonly used techniques for dynamic analysis,

which uses dashpots in series arrangement. The boundary

absorbs energy optimally when the waves are perpendic-

ular to the dashpots. At low frequencies, these boundaries

produce permanent displacements. A technique to

overcome this problem is the use of cone boundary, where

the spring and dashpot are connected to each other in

parallel. This arrangement helps the dashpot to absorb the

energy, while the spring stiffness controls the deformation.

In domain reduction method (DRM), the dynamic analysis

is carried by introducing the seismic loading directly into

the computational domain, while the dashpots only absorb

the scattered energy in the unbounded domain.

The infinite element boundary in ABAQUS is used for

several types of dynamic analysis, i.e. direct integration

implicit dynamic response analysis, steady-state dynamic

frequency-domain analysis and explicit dynamic analysis.

In each of the dynamic analysis discussed above, infinite

elements provide ‘‘quite’’ boundaries to the models. The

static force on the boundary at the start of the dynamic

response remains unchanged; as a result, during the

dynamic response the displacement of the far-field nodes

does not take place. This technique minimizes the hitches

faced in the use of conventional techniques and utilizes

lesser space and lesser computational time. The method

was used in the paper to compare results of a three-
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Fig. 16 Comparison of the maximum principal stresses in both models
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Fig. 17 Comparison of the maximum strains in both models
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dimensional free field soil model and a soil–tunnel model

under seismic loading using infinite boundary, and a sim-

ilar model using a spring/dashpot system.

The results of the maximum acceleration response and

the maximum principal stress and strain show similarity in

both the systems, which is an indication of the fact that

infinite element boundaries can be used effectively as

absorbing boundaries. The verification of seismic beha-

viour of the tunnel using the infinite element boundary

condition shows that the method suggested is successful,

and in the time domain, it can be combined with the finite

element. The results demonstrated a very good perfor-

mance of the scheme and validity of the present formula-

tion. The paper finds that the method can be conveniently

applied for dynamic analysis. It takes lesser computational

time and can also be used in conjunction with the boundary

element method.
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