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Abstract: In this research, the height, curvature and velocity of the bubble tip in Rayleigh–Taylor instability at arbitrary

Atwood number with horizontal magnetic field are investigated. To support the earlier simulation and experimental results,

the vorticity generation inside the bubble is introduced. It is found that, in early nonlinear stage, the temporal evolution of

the bubble tip parameters depends essentially on the strength and initial perturbation of the magnetic field, although the

asymptotic nature coincides with the nonmagnetic case. The model proposed here agrees with the previous linear, non-

linear and simulation observations.
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1. Introduction

The Rayleigh–Taylor instability occurs when a lighter

density fluid pushes the heavier one against the gravita-

tional force field. This instability appears in many physical

and astrophysical situations [1–5], such as Inertial Con-

finement Fusion, where the magnetic field provides a sta-

bilizing effect of the two fluid instability [6, 7], overturn of

the outer portion of the collapsed core of massive stars, etc

[8]. In the linear regime, the perturbation grows exponen-

tially with the growth rate
ffiffiffiffiffiffiffiffi

Akg
p

, where A ¼ qh�ql

qhþql
is the

Atwood number, qh and ql are the densities of heavier and

lighter fluid, respectively, k is the perturbation wave

number and g is the interfacial acceleration [9]. In the

nonlinear stage [10, 11], the interface can be divided into

the bubble of the lighter fluid rising into the heavier fluid

and spike of the heavier fluid penetrating into the lighter

fluid. There are several methods for describing the non-

linear effect on this instability. Among them, Layzer [12]

describes a formulation where the interface near the tip of

the bubble is approximated by a parabola and determined

the position, curvature and velocity of the bubble tip.

Extending this model, Goncharov [13] derived the

asymptotic velocity of the bubble tip, which is
ffiffiffiffiffiffiffiffiffiffiffi

2A
1þA

g
3k

q

.

However, the observed simulation and experimental results

[14–16] indicate that nonlinear theory correctly captures

the bubble behavior in the early nonlinear phase, but fails

in the highly nonlinear stage. Betti and Sanz [15] showed

that this occurs due to vorticity accretion inside the bubble,

and the velocity of the bubble tip is slightly higher than the

classical value obtained by Goncharov [13].

In an Inertial Confinement Fusion situation or in the

astrophysical situation, the fluid may be ionized or may get

ionized through laser irradiation in laboratory condition. In

this case, the study of magnetic field effects on Rayleigh–

Taylor instability is needed [17–20]. Under the linear

theory, the influence of magnetic field on Rayleigh–Taylor

instability has been studied in detail by Chandrasekhar [9].

He observed that, when the magnetic field is parallel to the

interface separating of two fluids, the growth rate of the

Rayleigh–Taylor instability is unaffected by magnetic field.

However, using Layzer’s model, Gupta et al. [6] pointed

that the parallel magnetic field becomes a stabilizing factor

of the instability.

The asymptotic growth, curvature and growth rate of the

bubble tip in Rayleigh–Taylor instability, which is one of

the main factors in Inertial Confinement Fusion or in lab-

oratory experiments, have been discussed by analytical and

numerical approaches. In the presence of magnetic field,

the dynamics of the bubble tip has been analyzed by con-

sidering the vorticity accumulation inside the bubble. The

magnetic field is assumed to be parallel to the plane of the
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two fluid interface and acts in a direction perpendicular to

the wave vector. The basic model is based on the Layzer’s

theory.

The structure of this paper is as follows. Section 2

describes the kinematical and dynamical boundary condi-

tions for the temporal nonlinear evolution of the bubble tip

in Rayleigh–Taylor instability for incompressible, inviscid

fluids. Here, the heavier fluid is assumed to be irrotational

where the lower one is rotational. The results and discus-

sions are presented in Sect. 3. Finally, we have concluded

the results in Sect. 4.

2. Basic equations and boundary conditions

We suppose that a fluid of density qh lies in the region

z[ 0 and that a second fluid of density ql lies in the region

z\0. The system is subject to a uniform acceleration g in

the negative direction of z axis (see Fig. 1). The magnetic

field is taken along the direction of y axis, i.e, parallel to

the surface of separation.

B~¼
byBhðx; z; tÞ : z[ 0

byBlðx; z; tÞ : z\0

�

ð1Þ

According to the chosen magnetic field r~:B~¼ 0

everywhere.

Here, we are considering two-dimensional problem.

Therefore, we approximate the perturbed interface by a

parabola, given by

z ¼ gðx; tÞ ¼ g0ðtÞ þ g2ðtÞx2 ð2Þ

where, for a bubble, g0ðtÞ[ 0 and g2ðtÞ\0.

The kinematical boundary conditions satisfied by the

interfacial surface z ¼ gðx; tÞ are

og
ot

þ vhx

og
ox

¼ vhz ð3Þ

og
ox

ðvhx � vlxÞ ¼ vhz � vlz ð4Þ

where ðvh;lÞx;z are the velocity components of the heavier

and lighter fluids, respectively.

The fluid motion is governed by the ideal magnetohy-

drodynamic equations

q
ov~

ot
þ ðv~ � r~Þv~

� �

þr~ðpþ gqzÞ

¼ 1

l
ðr~ � B~Þ � B~

¼ 1

l
ðB~ � r~ÞB~� 1

2l
r~ðB2Þ ¼ � 1

2l
r~ðB2Þ

ð5Þ

[1
l ðB~ � r~ÞB~ ¼ 0, as B~ðx; z; tÞ is taken along the y axis]

oB~

ot
¼ r~ � ðv~� B~Þ ð6Þ

Under the Layzer-type approximation [12, 21], the velocity

potential /hðx; z; tÞ of the heavier fluid can be written as

/hðx; z; tÞ ¼ aðtÞ cosðkxÞe�kðz�g0ðtÞÞ ð7Þ

with vh~ ¼ �r~/h.

Since r~ � vh~ ¼ 0, the equation of motion of the upper

incompressible fluid leads to the following integral [16]:

qh � o/h

ot
þ 1

2
r~/h

� �2

þgz

� �

þ ph þ
1

2lh

B2
h ¼ fhðtÞ ð8Þ

For the lighter fluid, the motion inside the bubble is

assumed rotational [15] with vorticity x~ ¼ ðovlz

ox
� ovlx

oz
Þŷ.

The motion is described by the stream function Wðx; z; tÞ,
given by

Wðx; z; tÞ ¼ b0ðtÞxþ ½b1ðtÞekðz�g0Þ þ x0ðtÞ=k2� sin ðkxÞ
ð9Þ

with vlx ¼ � oW
oz

and vlz ¼ oW
ox

.

Hence

r2W ¼ �x ð10Þ

Let vðx; z; tÞ be a function such that

r2v ¼ �x ð11Þ

Hence ðW� vÞ is a harmonic function as r2ðW� vÞ ¼ 0.

Let Uðx; z; tÞ be its conjugate function

oU
ox

¼ oW
oz

� ov
oz

oU
oz

¼� oW
ox

þ ov
ox

ð12Þ

Thus, the velocity components of the lighter fluid are
Fig. 1 Schematic diagram of the model
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vlx ¼� oW
oz

¼ � oU
ox

� ov
oz

vlz ¼
oW
ox

¼ � oU
oz

þ ov
ox

ð13Þ

Using Eqs. (10)–(13), the first integral of the equation of

motion of the lighter fluid is given by

ql � oU
ot

þ 1

2
ðv~lÞ2 � xWþ gz

� �

þ
Z

ql W
ox
oz

� o _v
oz

� 	

dxþ W
ox
ox

þ o _v
ox

� 	

dz

� �

þ pl þ
1

2ll

B2
l ¼ flðtÞ

ð14Þ

Here, we set

vðx; z; tÞ ¼ x0ðtÞ sin ðkxÞ=k2 ð15Þ

Therefore, Eq. (13) gives

Uðx; z; tÞ ¼ �b0ðtÞyþ b1ðtÞ cos ðkxÞekðz�g0Þ ð16Þ

From Eqs. (8) and (14), we obtain our dynamical boundary

condition:

qh � o/h

ot
þ 1

2
ðr~/hÞ

2 þ gz

� �

� ql � oU
ot

þ 1

2
ðr~UÞ2 � xWþ gz

� �

�
Z

ql W
ox
oz

� o _v
oz

� 	

dx

�

þ W
ox
ox

þ o _v
ox

� 	

dz

�

þ ðph � plÞ þ
1

2lh

B2
h �

1

2ll

B2
l

� 	

¼ fhðtÞ � flðtÞ

ð17Þ

satisfied at the interface z ¼ gðx; tÞ.
Now, we turn to our magnetic field equations. In virtue

of Eqs. (1) and (6), the magnetic fields are assumed to be

Bhðx; z; tÞ ¼ bh0ðtÞ þ bh1ðtÞe�kðz�g0Þ cos ðkxÞ ð18Þ

Blðx; z; tÞ ¼ bl0ðtÞ þ bl1ðtÞekðz�g0Þ cos ðkxÞ ð19Þ

Substituting gðx; tÞ, vhx, vhz, vlx and vlz in Eqs. (3) and (4)

and expanding in powers of the transverse coordinate x and

neglecting terms OðxiÞ (i� 3), we obtain the following

equations [21]

dn1

ds
¼n3 ð20Þ

dn2

ds
¼� 1

2
ð6n2 þ 1Þn3 ð21Þ

kb0
ffiffiffiffiffi

kg
p ¼ 6n2ð2n3 � XÞ

ð6n2 � 1Þ ð22Þ

k2b1
ffiffiffiffiffi

kg
p ¼� ð6n2 þ 1Þn3 � X

ð6n2 � 1Þ
ð23Þ

where n1 ¼ kg0, n2 ¼ g2

k
and n3 ¼ k2a

ffiffiffiffi

kg
p are the nondimen-

sionalized bubble height, curvature and velocity, respec-

tively, s ¼ t
ffiffiffiffiffi

kg
p

is the nondimensionalized time and

X ¼ x0
ffiffiffiffi

kg
p is the nondimensionalized vorticity.

Next, substituting for the velocity components vhx, vhz,

vlx, vlz and Bhðx; z; tÞ, Blðx; z; tÞ in the Eq. (6) and equating

coefficients of xi for i ¼ 0 and 2 we obtain the following

four equations

_bh0 þ _bh1 ¼ 0 i.e, bh0 þ bh1 ¼ Bh0 (say) ð24Þ

dn4

ds
¼ n3n4

2n2 � 1

2n2 þ 1
ð25Þ

and

_bl0 þ _bl1 ¼ 0 i.e, bl0 þ bl1 ¼ Bl0 (say) ð26Þ

dn5

ds
¼ n5

n3ð2n2 þ 1Þð6n2 þ 1Þ þ 2Xð2n2 � 1Þ
ð2n2 � 1Þð6n2 � 1Þ ð27Þ

where n4 ¼ bh1

Bh0
and n5 ¼ bl1

Bl0
.

Again, the fluid pressures together with the magnetic

pressures on both sides of the interface are equal [6], i.e.,

ph þ
B2

h0

2lh

¼ pl þ
B2

l0

2ll

ð28Þ

Using Eqs. (28) in (17), the coefficient of x2 of Eq. (17)

gives the following equation for n3.

dn3

ds
¼ 1

Dðn2; rÞ
�Nðn2; rÞ

n2
3

ð6n2 � 1Þ þ 2ðr � 1Þð6n2 � 1Þn2

�

þX2 � 5ð6n2 þ 1ÞXn3

ð1 � 6n2Þ
þ _X

�

� 6n2 � 1

Dðn2; rÞ
rV2

hn4ð2n2 þ 1Þ þ V2
l n5ð2n2 � 1Þ


 �

ð29Þ

where

Nðn2; rÞ ¼36ð1 � rÞn2
2 þ 12ð4 þ rÞn2 þ ð7 � rÞ ð30Þ

Dðn2; rÞ ¼12ð1 � rÞn2
2 þ 4ð1 � rÞn2 þ ðr þ 1Þ ð31Þ

r ¼ qh

ql
and VhðlÞ ¼

kB2
h0ðl0Þ

qhðlÞlhðlÞg
is the normalized Alfven

velocity.

Thus, the magnetic field-affected Rayleigh–Taylor

instability-induced growth of the bubble tip is determined

by the parameters n1ðtÞ, n2ðtÞ, n3ðtÞ as also the magnetic

induction perturbation n4ðtÞ and n5ðtÞ given by Eqs. (20),

(21), (29), (25) and (27).

Nonlinear Rayleigh–Taylor instability 929



3. Results and discussions

The system of equations given by Eqs. (20), (21), (29), (25)

and (27) for the fluid parameters shows that the complete

understanding of the Rayleigh–Taylor instability is not

possible without knowing the dependence of the vorticity

XðsÞ on s. According to the simulation results obtained by

Snaz and Betti [15], we chose the XðsÞ in the following

form so that the time dependence of XðsÞ has approximate

qualitative agrement with the simulation results.

XðsÞ ¼ Xc

1 þ 2 tanhðs0Þ
tanhðs0Þð1 þ tanhðsÞÞ½

þ tanhðs� s0Þ�
ð32Þ

Here, Xc is the asymptotic value of the nondimensionalized

vorticity and s0 is a nondimensionalized time parameter.

Clearly, XðsÞ increases from 0 and tends to an asymptotic

value Xc as s ! 1. The constants s0 and Xc are adjusted

accordingly to Ref. [15]. The plot for XðsÞ is shown in

Fig. 2. It is clear from the figure that the s0 ¼ 8 and Xc ¼ 2

give a good approximation of the simulation results.

To integrate the system of equations numerically, it is

necessary to know the initial value of the parameters. The

initial interface is assumed to be z ¼ g0ðt ¼ 0Þ cosðkxÞ. The

expansion of the interfacial function gives ðn2Þinitial ¼
� 1

2
ðn1Þinitial where ðn1Þinitial is the arbitrary perturbation

amplitude. As the perturbation starts from rest, we may

consider ðn3Þinitial ¼ 0. The initial values of ðn4Þinitial and

Fig. 2 Vorticity XðsÞ plotted against s with asymptotic value Xc ¼ 2

and parameter s0 ¼ 8
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ðn1Þinitial ¼ 0:1, ðn2Þinitial ¼ �0:05 and ðn3Þinitial ¼ 0; Vh ¼ 0,
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Vh ¼ 1, ðn4Þinitial ¼ �0:1 (Large dash line); Vh ¼ 1:5, ðn4Þinitial ¼
0:1 (Dash line); Vh ¼ 1:5, ðn4Þinitial ¼ �0:1 (Dot-dash line)
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ðn5Þinitial depend upon the initial magnetic induction

perturbation.

To describe the steady flow in Rayleigh–Taylor insta-

bility, we first consider Bh0 6¼ 0, Bl0 ¼ 0. This situation

may happen when the heavier fluid is magnetized and the

lighter is nonmagnetic. In this case, n5 ¼ 0 and Vl ¼ 0. The

numerical results of the bubble dynamics are presented in

Fig. 3. Figure 3 demonstrates that, in early nonlinear stage

the growth (n1), curvature (n2) and velocity (n3) depend on

the magnetic field and initial magnetic induction pertur-

bation. More precisely, the growth of the bubble tip redu-

ces for large Bh0 and ðn4Þinitial\0. These observations are

supported by blue (Vh ¼ 1, ðn4Þinitial ¼ �0:1) and dot-dash

(Vh ¼ 1:5, ðn4Þinitial ¼ �0:1) lines in Fig. 3. This happens

as the instability driving pressure differences term 2ðr �
1Þð6n2 � 1Þn2 together with the vorticity term
X2�5ð6n2þ1ÞXn3

ð1�6n2Þ þ _X is lowered or enhanced by rV2
hn4ð2n2 þ

1Þð6n2 � 1Þ according to n4\ or [ 0. However, the

asymptotic values of the growth rate and curvature are

unaffected by the magnetic field as n4 ! 0 as s ! 1. The

asymptotic values are given by setting dn2

ds ¼ 0 and dn3

ds ¼ 0.

n2jasymptotic ¼� 1

6
ð33Þ

n3jasymptotic ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

A

1 þ A
þ X2

c

4

1 � A

1 þ A

s

ð34Þ

Thus, the asymptotic growth rate and curvature become the

same as in the nonmagnetic case [15, 16]. This result

agrees the nonlinear result obtained by Gupta et al. [6].

Next, we consider the reverse situation of the above

case, i.e., Bh0 ¼ 0, Bl0 6¼ 0. This circumstance may happen

when the heavier fluid is nonmagnetic and the lighter is

ionized. It is clear from the Eq. (29) that the instability

driving pressure difference term 2ðr � 1Þð6n2 � 1Þn2

together with the vorticity term
X2�5ð6n2þ1ÞXn3

ð1�6n2Þ þ _X is now

lowered or enhanced by V2
l n5ð2n2 � 1Þð6n2 � 1Þ (note that

� 1
6
� n2\0) according to n4 [ or \0. This conclusion is

supported by the Fig. 4, where the growth of the bubble tip
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Fig. 4 Variation of n1, n2, n3, n5 with s for r ¼ 1:5, Vh ¼ 0, Xc ¼ 2,

ðn1Þinitial ¼ 0:1, ðn2Þinitial ¼ �0:05 and ðn3Þinitial ¼ 0; Vh ¼ 1,

ðn5Þinitial ¼ 0 (Solid line); Vl ¼ 1, ðn5Þinitial ¼ 0:1 (Dotted line);

Vl ¼ 1, ðn5Þinitial ¼ �0:1 (Large dash line); Vl ¼ 1:5, ðn5Þinitial ¼ 0:1
(Dash line); Vl ¼ 1:5, ðn5Þinitial ¼ �0:1 (Dot-dash line)
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reduces for large Vl with ðn5Þinitial [ 0. It is clear from

Fig. 4 that bubble parameters depend on the magnetic field

and initial magnetic perturbation. However, in asymptotic

stage, i.e., as s ! 1, n5 ! 0 and the dependency reduce

strongly. This has the consequence that the asymptotic

growth rate of the bubble tip becomes the same as in the

nonmagnetic case.

Finally, we consider the situation when both liquids are

magnetic, i.e., Bl0 6¼ 0 and Bh0 6¼ 0. Figure 5 shows that in

early nonlinear stage, the growth of the bubble tip (n1)

strongly reduces due to both magnetic fields for

ðn4Þinitial\0 and ðn5Þinitial [ 0. This happens as the pres-

sure difference term 2ðr � 1Þð6n2 � 1Þn2 in Eq. (29)
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Fig. 5 Variation of n1, n2, n3, n5 with s for r ¼ 1:5, Xc ¼ 2,

ðn1Þinitial ¼ 0:1, ðn2Þinitial ¼ �0:05 and ðn3Þinitial ¼ 0; Vh ¼ 0, Vl ¼ 0,
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ðn4Þinitial ¼ �0:1 ðn5Þinitial ¼ 0:1 (Large dash line); Vh ¼ 0:5,

Vl ¼ 0:5, ðn4Þinitial ¼ 0:1, ðn5Þinitial ¼ �0:1 (Dash line); Vh ¼ 1,

Vl ¼ 1, ðn4Þinitial ¼ 0:1 ðn5Þinitial ¼ �0:1 (Dot-dash Dash);
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together with the vorticity effect
X2�5ð6n2þ1ÞXn3

ð1�6n2Þ þ _X is

suppressed by the magnetic effect ð6n2 � 1Þ½rV2
hn4ð2n2 þ

1Þ þ V2
l n5ð2n2 � 1Þ� for ðn4Þinitial\0 and ðn5Þinitial [ 0 (as

� 1
6
� n2\0). In asymptotic stage, growth rate (n3) and

curvature (n2) of the bubble tip do not depend on the

magnetic field and magnetic perturbation.

Thus, in the presence of horizontal magnetic field, which

is perpendicular to the plane of motion, the parameters of

the bubble tip such as growth, curvature and growth rate

depend on the strength of the magnetic filed and the initial

magnetic perturbation at the early nonlinear stage. How-

ever, the asymptotic values coincide with the nonmagnetic

case. Previously, [6] nonlinear results show that the

asymptotic growth rate depends upon Alfven velocity of

the lower fluid only by considering irrotational motion in

both fluids. However, due to vorticity accretion inside the

bubble, here we observed that the asymptotic growth rate

does not depend upon the Alfven velocity of the both

fluids.

4. Conclusions

We have described a two-dimensional nonlinear model of

the Rayleigh–Taylor Instability in the presence of hori-

zontal magnetic field with vorticity accretion inside the

bubble. This model can be applied to investigate the non-

linear evolution of the Rayleigh–Taylor Instability in

Inertial Confinement Fusion or in formation of core col-

lapsed supernova. The effect of upper magnetic field

(Bh0 6¼ 0, Bl0 ¼ 0), lower magnetic filed (Bh0 ¼ 0, Bl0 6¼ 0)

and total magnetic field (Bh0 6¼ 0, Bl0 6¼ 0) has been dis-

cussed separately. It is found that, in the early nonlinear

stage, the structure of the bubble is effected by the mag-

netic field, but, as time goes, the effect is reduced and

coincides with the nonmagnetic case. Furthermore, the

nonlinear growth of the bubble saturates when the bubble

reaches a constant velocity and this stage does not depend

upon the Alfven velocity.

Our results agree with the results observed by Gupta

et al. [6] for irrotational motion. But the obtained

simulation and experimental results [14–16] note that

results for irrotational motion fail in highly nonlinear stage

due to vorticity accumulation inside the bubble. We hope

our theoretical model will help the experimental research in

future.
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