
ORIGINAL PAPER

Exact solutions of generalized thermoelastic medium with double
porosity under L–S theory

M A Abdou2, M I A Othman1, R S Tantawi1 and N T Mansour1,3*
1Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt

2Mathematics Department, Faculty of Education, Alexandria University, Alexandria, Egypt

3Basic Sciences Department, Al Safwa High Institute of Engineering, Cairo, Egypt

Received: 18 January 2019 / Accepted: 22 March 2019 / Published online: 22 May 2019

Abstract: In this paper, a general solution to the field equations of a generalized thermoelastic medium with double

porosity has been obtained. To investigate the problem, we use the Lord–Shulman theory in the thermoelasticity. The half-

space of an isotropic homogeneous thermoelastic material is considered. Using the normal mode analysis and the numerical

inversion technique, the analytic expressions of the physical quantities are obtained. Numerically, computed results for

these quantities and its depicted graphically lead to study the effect of porosity. Comparisons in the presence and absence

of double porosity, in two different times, are obtained. Although the problem has been solved theoretically, it is possible

for researchers to benefit from their results in many different sciences, for example, in the field of geophysics, earthquake

engineering, along with seismologist working in the field of mining tremors and drilling into the crust of the earth.
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List of symbols

k, l Lame’ parameters

dij Kronecker delta

ce The specific heat at constant strain

T0 The reference temperature

ri The equilibrated stress corresponding

to v1
si The equilibrated stress corresponding

to v2
b, d, b1, c, c1, c2 The constitutive coefficients

v1 The volume fraction field

corresponding to pores and v2 is the

volume fraction field corresponding to

fissures

W, U The volume fraction fields

corresponding to v1 and v2,

respectively

K1 and K2 The coefficients of equilibrated inertia

T The temperature change measured

form the absolute temperature T0

ui The displacement vector

q The mass density

sij The stress tensor

s0 The relaxation time

K C 0 The thermal conductivity

1. Introduction

The generalized theory of thermoelasticity is one of the

modified versions of classical uncoupled and coupled the-

ory of thermoelasticity. In order to remove the paradox of

physical impossible phenomena of an infinite velocity of

thermal signals in the classical coupled thermoelasticity,

the generalized theory of thermoelasticity has been devel-

oped. The coupled theory of thermoelasticity is explained

in [1]. In [2] generalized thermoelasticity theory involving

one thermal relaxation time is studied. Lord–Shulman has

been applied, in [3], to study the effect of dependence of

the modulus of elasticity on the reference temperature in
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two-dimensional generalized thermoelasticity. Generalized

electro-magneto-thermo-viscoelastic in the case of 2-D

thermal shock problem in a finite conducting medium with

one relaxation time was studied in [4]. Marin [5] explained

an approach of a heat-flux-dependent theory for micropolar

porous media. The deformation of a rotating two-temper-

ature generalized magneto-thermoelastic medium with

internal heat source due to hydrostatic initial stress was

studied by Said [6]. The weak solutions in elasticity of

dipolar bodies with stretch were studied by Marin and Stan

[7]. In [8], two-temperature generalized magneto-ther-

moelastic medium, for dual-phase-lag model, under the

effect of the gravity field and hydrostatic initial stress, is

studied. Wave propagation in a magneto-micropolar ther-

moelastic medium with two temperatures for three-phase-

lag model was studied by Said [9]. The origin of the linear

theory of elastic materials with double porosity goes back

to papers of Barenblatt et al. [10]. Wilson and Aifantis, in

[11], discussed the theory of consolidation with double

porosity. Khalili and Valliappan, in [12], used the theory of

flow and deformation in double porous media. In [13],

Masters et al. studied coupling temperature to a double-

porosity model of deformable porous media. Berryman and

Wang [14] investigated the elastic wave propagation and

attenuation in a double-porosity dual-permeability med-

ium. In [15], Khalili and Selvadurai studied the fully

coupled constitutive model for thermo-hydro-mechanical

analysis in elastic media with double porosity. Linear

dynamics of double-porosity dual-permeability materials-I

was discussed by Pride and Berryman [16]. Zhao and Chen

[17] introduced the fully coupled dual-porosity model for

anisotropic formations. Svanadze [18] studied the dynam-

ical problems of the theory of elasticity for solids with

double porosity. In [19], Ainouz investigated the homog-

enized double-porosity models for poro-elastic media with

interfacial flow Barrier. Plane waves and boundary value

problems in the theory of elasticity for solids with double

porosity were studied by Svanadze [20]. Straughan [21]

studied the stability and uniqueness in double-porosity

elasticity. The so-called double-porosity model allows the

body to have a double porous structure: macroporosity

connected to pores in the body and a microporosity con-

nected to fissures in the skeleton. Moreover, the general-

ized theory, with the help of Darcy’s law, is established to

obtain the basic equations for elastic materials with double

porosity involve the displacement vector field, a pressure

associated with the pores, and a pressure associated with

the fissures (see [17, 20, 21]). The materials with double

porosity are of interest in geophysics [22, 23] and

mechanics of bone [21]. The theory is established with the

help of Darcy’s law. The basic equations for elastic

materials with double porosity involve the displacement

vector field, a pressure associated with the pores, and

pressure associated with the issues [20–26]. Othman and

Marin [27] studied the effect of thermal loading due to

laser pulse on thermoelastic porous media under G-N

theory. The plane waves in magneto-thermoelastic solids

with voids and microtemperatures due to hall current and

rotation were investigated by Othman et al. [28].

In the present paper, we have studied the equations of

generalized thermoelastic material with double-porosity

structure with one relaxation time. Effect of porosity and

different times is shown graphically.

2. Formulation of the problem and basic equations

Consider a homogeneous thermoelastic half-space with

double-porosity structure in the undeformed state at uni-

form temperature T0. It follows from the description of the

problem that all the considered functions will depend upon

(x, z, t). We thus obtain the displacement vector u of the

form u ¼ ðu1; 0; u3Þ. The field equations and constitutive

relations for a homogeneous isotropic thermo-elastic solid

with double-porosity structure in the absence of incre-

mental body forces and heat source by L–S model are:

Stress–strain equation (see [29])

tij ¼ kerrdij þ 2leij þ bdijUþ ddijW� bdijðT � T0Þ: ð1Þ

In case of isotropic solids, the constitutive equations for

double porosity [29]

ri ¼ a U;i þ b1 W;i: ð2Þ

si ¼ b1 U;i þ c W;i: ð3Þ

The equation of motion in the absence of body force

tij ¼ q€u;i: ð4Þ

Using (1) in (4), we get the equation of motion in the

two dimensions

lr2u1 þ ðkþ lÞ oe
ox

þ b
oU
ox

þ d
oW
ox

� b
oT

ox
¼ q

o2u1

ot2
;

ð5Þ

lr2u3 þ ðkþ lÞ oe
oz

þ b
oU
oz

þ d
oW
oz

� b
oT

oz
¼ q

o2u3

ot2
:

ð6Þ
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Equilibrated stress equations of motion

ar2Uþ b1r2W� be� a1U� a3Wþ c1T ¼ K1

o2U
ot2

;

ð7Þ

b1r2Uþ cr2W� de� a3U� a2Wþ c2T ¼ K2

o2W
ot2

:

ð8Þ

Equation of heat

Kr2T ¼ 1þ s0
o

ot

� �
qC� oT

ot
þ bT0

oe

ot
þ c1T0

oU
ot

þ c2T0
oW
ot

� �
:

ð9Þ

For the purpose of numerical evaluation, we introduce

dimensionless variables

ðx0; z0Þ ¼ x1

c1
ðx; zÞ; ðu01; u03Þ ¼

x1

c1
ðu1; u3Þ;

fr01; s01g ¼ c1

ax1

fr1; s1g; ðt0; s0oÞ ¼ x1ðt; s0Þ;

½U0;W0� ¼ K1x2
1

a1
½U;W�; c21 ¼

kþ 2l
q

;

x1 ¼
qc�c21
K

; r2 ¼ x2
1

c21
r02; c ¼ ð3kþ 2lÞat;

t0ij ¼
1

bT0

� �
tij; T 0 ¼ T

T0
:

Using the above dimensionless quantities, Eqs. (5)–(9)

become:

kþ l

qc21

� �
oe

ox
þ l

qc21

� �
r2u1 þ a1

oU
ox

þ a2
oW
ox

� a3
oT

ox

¼ o2u1

ot2
;

ð10Þ
kþ l

qc21

� �
oe

oz
þ l

qc21

� �
r2u3 þ a1

oU
oz

þ a2
oW
oz

� a3
oT

oz

¼ o2u3

ot2
;

ð11Þ

a4r2Uþ a5r2W� a6e� a7U� a8Wþ a9T ¼ o2U
ot2

;

ð12Þ

a10r2Uþ a11r2W� a12e� a13U� a14Wþ a15T ¼ o2W
ot2

;

ð13Þ

a16r2T ¼ 1þ s0
o

ot

� �
oT

ot
þ a17

oe

ot
þ a18

oU
ot

þ a19
oW
ot

� �
:

ð14Þ

where

a1 ¼
ba1

qc21K1x2
1

; a2 ¼
da1

qc21K1x2
1

; a3 ¼
bT0
qc21

; a4 ¼
a

K1c
2
1

;

a5 ¼
b1

K1c
2
1

; a6 ¼
b

a1
;

a7 ¼
a1

K1x2
1

; a8 ¼
a3

K1x2
1

; a9 ¼
c1T0
a1

; a10 ¼
b1

c21K2

;

a11 ¼
c

c21K2

; a12 ¼
dK1

a1K2

;

a13 ¼
a3

x2
1K2

; a14 ¼
a2

x2
1K2

; a15 ¼
c2T0K1

a1K2

;

a16 ¼
Kx1

qc�c21
; a17 ¼

b
qc�

; a18 ¼
c1a1

qc�K1x2
1

;

a19 ¼
c2a1

qc�K1x2
1

:

Define displacement potentials /1 and w1 that relate to

displacement components u1 and u3 as,

u1 ¼
o/1

ox
� ow1

oz
; u3 ¼

o/1

oz
þ ow1

ox
: ð15Þ

Using Eq. (15) in Eqs. (10)–(14), to obtain:

r2/1 þ a1Uþ a2W� a3T ¼ o2/1

ot2
; ð16Þ

l

qc21

� �
r2w1 ¼

o2w1

ot2
; ð17Þ

a4r2Uþ a5r2W� a6r2/1 � a7U� a8Wþ a9T ¼ o2U
ot2

;

ð18Þ

a10r2Uþ a11r2W� a12r2/1 � a13U� a14Wþ a15T ¼ o2W
ot2

;

ð19Þ

a16r2T ¼ 1þ s0
o

ot

� �
oT

ot
þ a17r2 o/1

ot
þ a18

oU
ot

þ a19
oW
ot

� �
:

ð20Þ

Dimensionless variables of the stress components take the

form,

sxx ¼
k

bT0

� �
eþ 2l

bT0

� �
ou1

ox
� T þ ba1

K1x2
1bT0

� �
U

þ da1
K1x2

1bT0

� �
W; ð21Þ

szz ¼
k

bT0

� �
eþ 2l

bT0

� �
ou3

oz
� T þ ba1

K1x2
1bT0

� �
U

þ da1
K1x2

1bT0

� �
W; ð22Þ
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sxz ¼
2l
bT0

� �
exz: ð23Þ

3. Normal mode analysis

The solution of the considered physical variables can be

decomposed in terms of normal mode as the following

form

½u1; u3; e; T ;/1;w1;U;w; tij�ðx; z; tÞ
¼ ½u�1; u�3; e�; T�;/�

1;w
�
1;U

�;w�; t�ij�ðzÞ exp ½iðxt þ axÞ�:
ð24Þ

where x is the complex time constant (frequency), i is the

imaginary unit, and a is the wave number in the x-direction.

Using (24) in Eqs. (16)–(20), we obtain

ðD2 � n1Þ/�
1 þ a1U

� þ a2W
� � a3T

� ¼ 0; ð25Þ

ðD2 � m2Þw�
1 ¼ 0; ð26Þ

ða4D2 � n2ÞU� þ ða5D2 � n3ÞW� � ða6D2 � n4Þ/�
1 þ a9T

�

¼ 0;

ð27Þ

ða10D2 � n5ÞU� þ ða11D2 � n6ÞW� � ða12D2 � n7Þ/�
1

þ a15T
�

¼ 0;

ð28Þ

ða16D2 � n8ÞT� þ n9ðD2 � a2Þ/�
1 þ n10U

� þ n11W
� ¼ 0:

ð29Þ

where

D ¼ o

oz
; m2 ¼ a2 þ x2qc21

l
; n1 ¼ a2 � x2;

n2 ¼ a4a
2 þ a7 � x2; n3 ¼ a5a

2 þ a8;

n4 ¼ a6a
2; n5 ¼ a10a

2 þ a13; n6 ¼ a11a
2 þ a14 � x2;

n7 ¼ a12a
2; n8 ¼ a16a

2 þ ixð1þ is0xÞ;
n9 ¼ �ixa17ð1þ is0xÞ; n10 ¼ �ixa18ð1þ is0xÞ;

n11 ¼ �ixa19ð1þ is0xÞ:

Put the above Eqs. (25), (27), (28), (29) in the matrix, we

find that the differential equation takes the form:

[D8 � AD6 + BD4

� CD2þE�f/�
1ðzÞ;U

�ðzÞ;w�ðzÞ;w�
1(z),T

�g ¼ 0. ð30Þ

where

The solution of Eq. (30) has the form

U� ¼
X4
n¼1

Mne
�knz; ð31Þ

A ¼ a11ða4n8 þ a4a16n6 þ a16n2 � a1a6a16 þ a4a16n1 � a4a3n9Þ þ a16ða10a2a6 � a10a5n1 � a10n3 � a5n5 � a4a2a12Þ þ a5ða1a12n16 þ a10a3n9Þ
ða4a11a16 � a10a5a16Þ

;

B ¼

n8ða4n6 þ a11n2 � a10n3 þ n5a5 þ a1a5a12 � a1a11a6Þ þ a16ðn5n3 þ n2n6 þ a1a12n3 þ a1a5n7 � a1a6n6 � a1a11n4Þ

þn11ð�a4a15 þ a10a9Þ þ n10ð�a15a5 þ a11a9Þ � a1ða5a15n9 þ a11a9n9Þ � a4ða2a12n8 þ a2a16n7 � a2a15n9 � a11n1n8

�a3a11n9n8 � a16n1n6 þ a3n6n9 � a3n11a12Þ � n2ða2a16a12 � a16a11n1 þ a11a3n9Þ þ n10ða5a3a12 � a11a3a6Þ

þa10ða2a6n8 þ a2a16n4 � a2a9n9 � a5n1n8 þ a5a3n9n8 � a16n1n3 þ a3n9n3 � a6a3n11Þ þ n5ða2a6a16 � a5a16n1 � a5a3n9Þ
a16ða4a11 � a10a5Þ

;

C ¼

n2ðn6n8 � n11a15Þ þ n10ðn3n15 � a9ð�a11n1 þ a9 þ a2a12Þ � a2n2ða12n8 � a16n7 � a15n9Þ þ a15ða6a2 þ a5n1Þ

�a3ða5n7 þ a12n3 þ a11n4 þ a6n6ÞÞ þ a1n8ða5n7 þ a12n3 � a11n4 � a6n6 � a5a15n9 þ a11a9n9Þ

þa1ða16n7n3 � a15n9n3 � a16n4n6 þ a9n6n9 þ a6n11a6 � a9n11a12Þ � a4n8ða2n7 þ a2a15n9 þ n6 n1 � a3n6n9 � a15n11n1Þ

þn8ðþa3n7n11 þ a11n2n1 � a3a11n2n9 þ a10a2n4 � a10a2a9n9 � a5n1n5 � a3a5n5n9 � a10n3n1 þ a10a3n3n9 þ a2a6n5Þ

þn2n6ða16n1 � 2a3n9Þ þ n11ða3a12n2 þ a10ða9n1 � a3n4ÞÞ þ n5ða16a2n4 � a2a9n9 � a16n3n1 � a3n3n9 þ a3a6n11 þ n3n8 � n11n9Þ
a16ða4a11 � a10a5Þ

;

E ¼

�a1ð�a9n11n7 � a15n11n4 � n8ðn3n7 þ a15n9n3 þ n6n4

�a9n9n6ÞÞ � n2ðn11ða15n1 þ a3n7Þ þ n9n8ða2a15 � a3n6ÞÞ

þn8n5ða2n4 � n3n1 � a2a9n9 þ a3n3n9Þ þ n11n5ða9n1 �3 n4Þ

�n10ða2ða15n4 þ a9n7Þ � n3ða15n1 þ a3n7Þ þ n6ða9n1 � a3n4ÞÞ
a16ða4a11 � a10a5Þ

:
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W� ¼
X4
n¼1

H1nMne
� knz; ð32Þ

/�
1 ¼

X4
n¼1

H2nMne
�knz; ð33Þ

T� ¼
X4
n¼1

H3nMne
�knz; ð34Þ

w�
1 ¼ M5e

�mz: ð35Þ

After substituting Eqs. (33)–(35) into (15), the

displacements take the form:

u1 ¼
X4
i¼1

iaH2nMne
�knzeiðxtþaxÞ þ mM5e

�mzeiðxtþaxÞ; ð36Þ

u3 ¼
X4
i¼1

�knH2nMne
�knzeiðxtþaxÞ þ iaM5e

�mzeiðxtþaxÞ:

ð37Þ

In addition, substituting from Eqs. (34) and (36–37) into

(21)–(23), the stress displacements become

sxx ¼
X4
i¼1

H4nMne
�knzeiðxtþaxÞ þ H5M5e

�mzeiðxtþaxÞ; ð38Þ

szz ¼
X4
i¼1

H5nMne
�knzeiðxtþaxÞ � H5M5e

�mzeiðxtþaxÞ; ð39Þ

sxz ¼
X4
i¼1

H6nMne
�knzeiðxtþaxÞ � H7M5e

�mzeiðxtþaxÞ: ð40Þ

Dimensionless variables for the components of ri, si

r3 ¼ g1U;z þ g2W;z; ð41Þ

s3 ¼ g3U;z þ g4W;z: ð42Þ

where g1 ¼ a1
k1x2

1

; g2 ¼ g3 ¼ b1a1
ak1x2

1

; g4 ¼ ca1
ak1x2

1

:
Moreover, substituting from Eqs. (31), (32) into (41)

and (42), we get the solution of r3 and s3, as:

r3 ¼
X4
n¼1

H9nMne
�knzeiðxtþaxÞ; ð43Þ

s3 ¼
X4
n¼1

H8nMne
�knzeiðxtþaxÞ: ð44Þ

where

4. Boundary conditions

We apply five boundary conditions for present problem at

the plane surface z = 0.

szz ¼ P1e
iðxtþaxÞ; ð45Þ

sxz ¼ 0; ð46Þ
s3 ¼ 0; ð47Þ
r3 ¼ 0; ð48Þ

T ¼ P2e
iðxtþaxÞ: ð49Þ

Applying Eqs. (45–49) in (39), (40), (43), (44) and (34), we

get

X4
n¼1

H5nMn � H5M5 ¼ P1; ð50Þ

X4
n¼1

H6nMn � H7M5 ¼ 0; ð51Þ

H1n ¼

½a1a9 þ a3ða4k2n � n2Þ�½a15n9ðk2n � a2Þ � ða12k2n � n7Þða16k2n � n8Þ�

�½a9ðk2n � n1Þ � a3ða6k2n � n4Þ�½n10a15 þ ða10k2n � n5Þða16k2n � n8Þ�
½a9ðk2n � n1Þ � a3ða6k2n � n4Þ�½ða11k2n � n6Þða16k2n � n8Þ þ n11a15�

�½a2a9 þ a3ða5k2n � n3Þ�½a15n9ðk2n � a2Þ � ða12k2n � n7Þða16k2n � n8Þ�

;

H2n ¼
½n10a15 þ ða10k2n � n5Þða16k2n � n8Þ� þ H1n½ða11k2n � n6Þða16k2n � n8Þ þ n11a15�

½�a15n9ðk2n � a2Þ þ ða12k2n � n7Þða16k2n � n8Þ�
;

H3n ¼
½H2na9ðk2n � a2Þ þ n10 þ H1nn11�

ða16k2n � n8Þ
:

H4n ¼
k

bT0
ðk2n � a2Þ � 2la2

bT0

� �
H2n � H3n þ

ba1
k1x2

1bT0

� �
þ da1

k1x2
1bT0

� �
H1n; H5 ¼

2iaml
bT0

� �

H6n ¼
�2iaknl
bT0

H2n; H7 ¼ m2 þ a2; H8n ¼ �g3kn � g4knH1n; H9n ¼ �g1kn � g2knH1n:
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X4
n¼1

H8nMn ¼ 0; ð52Þ

X4
n¼1

H9nMn ¼ 0; ð53Þ

X4
n¼1

H3nMn ¼ P2: ð54Þ

We can put Eqs. (50)–(54) in matrix and using MATLAB

program to get M1;M2; . . .::;M5,

M1

M2

M3

M4

M5

0
BBBB@

1
CCCCA ¼

H51 H52 H53 H54 �H5

H61 H62 H63 H64 �H7

H81 H82 H83 H84 0

H91 H92 H93 H94 0

H31 H32 H33 H34 0

0
BBBB@

1
CCCCA

�1
P1

0

0

0

P2

0
BBBB@

1
CCCCA:

ð55Þ

5. Special cases

Case (i) when we neglect the presence of double porosity,

the problem turns into a generalized thermoelastic medium.

Case (ii) If s0 = 0 in Eq. (9),the corresponding expres-

sions for thermoelastic medium with double porosity in the

context of the coupled theory of thermoelasticity were

yielded.

6. Results and discussion

To discuss, numerically, the effect of double porosity, the

copper is considered as the thermoelastic material for

which we take the following values of the different phys-

ical constants as Othman et al. [30].

k ¼ 7:7� 1010 NM�2; l ¼ 3:86� 1010 Nm�2;

K ¼ 3:86� 103 N s�1 K�1; x ¼ 0:01;

at ¼ 1:78� 10�5 K�1; q ¼ 8954 kgm�3;

C� ¼ 383:1 J kg�1 K�1; T0 ¼ 293K, a ¼ 1; s0 ¼ 0:7;

x ¼ 0:5; n ¼ �1; p1 ¼ 1� 10�2; p2 ¼ 10� 10�2:

Following Khalili [31], the double porous parameters are

taken as

a ¼ 1:3� 10�5 N; b1 ¼ 0:12� 10�5 N;

c ¼ 1:1� 10�5 Nm�2; c1 ¼ 0:16� 105 Nm�2;

c2 ¼ 0:219� 105 Nm�2; d ¼ 0:1� 1010 Nm�2;

b ¼ 0:9� 1010 Nm�2; K2 ¼ 0:1546� 10�12 Nm�2;

K1 ¼ 0:1456� 10�12 Nm�2:

The numerical technique, outlined above, was used for the

distribution of the real part of the temperature T, the dis-

placement components u1, u3 the stress components sxx, sxz,
szz the components of double porosity r and s for the

problem. All the variables are taken in non-dimensional

form from the result.

Figures 1 and 2 explain the comparison of the stress

component sxx in the presence and absence of double

porosity at two different times. We find that in Figs. 1 and

2 the stress sxx increases a small shift in the presence of

double porosity and then decreases at two different values

of time in the presence and absence of double porosity and

take the form of the wave and try to return to zero. Fig-

ures 3 and 4 show the comparison of the stress component

szz in the presence and absence of double porosity at two

different times. We find that in Fig. 3 the stress szz
increases to a maximum value at t = 1 and then decreases

to a minimum value at t = 2 in the presence of double

porosity and take the form of a wave and try to return to
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zero. Figure 4 explains that the stress szz decreases to a

minimum value in the absence of double porosity at two

different times and then decays until it returns to zero.

Figures 5 and 6 demonstrate the comparison of the stress

component sxz in the presence and absence of double

porosity at two different times. We find that in Fig. 5 the

stress sxz decreases and then increases to a maximum value

at t = 2 in the presence of double porosity and take the

form of the wave and try to return to zero. Figure 6 shows

that the stress sxz increases to a maximum value at z = 0.5

in the absence of double porosity at two different times and

then decreases until it returns to zero. Figures 7 and 8

explain the comparison of the temperature T in the pres-

ence and absence of double porosity at two different times.

We find that in Figs. 7 and 8 the temperature T decreases in

the two cases (with and without double porosity) at two

different times and then decays to zero. Figures 9 and 10

show the comparison of the displacement u1 in the pres-

ence and absence of double porosity at two different times.

We find that in Fig. 9 the displacement u1 decreases at

t = 0.5 more than at t = 1.5 and then decreases until it

decays to zero in the positive direction of z, but in Fig. 10

the displacement u1 decreases to minimum value at t = 1.5

more than at t = 0.5 and takes the form of the wave until it

decays to zero. Figures 11 and 12 illustrate the comparison

of the displacement u3 in the presence and absence of

double porosity at two different times. We find that in

Fig. 11 the displacement u3 increases a small shift in the

begging at t = 0.5 more than at t = 1.5 and then begins to

decrease until it decays to zero, but in Fig. 12 the dis-

placement u3 increases at t = 0.5 more than at t = 1.5 and

then begins to decrease until it decays to zero. Figures 13

and 14 demonstrate the comparison of the equilibrated

stresses r and s in the presence of double porosity at two

different times. We find that in Figs. 13 and 14 the equi-

librated stresses r and s increase with the increase in time

to a minimum value at 1 and then begin to decrease and

take the form of the wave and try to return to zero.
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7. Conclusion

From the figures obtained by comparing the functions in

the presence and absence of double porosity at two dif-

ferent times, important phenomena are observed:

Analytic solutions based upon normal mode analysis of

the thermoelastic problem in solids have been developed,

which used in the present article is applicable to a wide

range of problems in hydrodynamics and thermoelasticity.

There are significant differences in the presence and

absence of double porosity under two different times.

All the physical quantities satisfy the boundary condi-

tions. The value of all the physical quantities converges to

zero, and all the functions are continuous. Though the

problem is theoretical, it can provide useful information for

experimental researchers working in the field of geo-

physics, earthquake engineering, along with seismologist

working in the field of mining tremors and drilling into the

crust of the earth. The numerical treatment of the general

system of equations and conditions governing the phe-

nomenon may be useful in getting rid of the limitations of

the method of normal modes’ technique, and this task is in

progress.
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