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Abstract: In this article, the numerical solution of fractional-order Bloch equations in MRI is obtained using q-homotopy

analysis transform method (q-HATM). The results are compared with those from the existing methods and the exact

solution. The results for fractional values of time derivative are discussed using figures and tables. Figures are made using
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1. Introduction

First references to the fractional-order derivatives were

made in the seventeenth century. In the last few decades,

fractional calculus has developed as a prospective tool in

potential theory, control theory, fluid dynamic traffic, vis-

coelasticity, electromagnetic theory, neurophysiology,

bioengineering, electric technology, plasma physics,

mathematical economy, etc. Normally, we deal with the

real-world processes of fractional order. Heat diffusion into

a semi-infinite solid in which heat flow is half-derivative of

temperature is one of its examples. Mass–energy equation

of Einstein is gained with conjecture of absolute smooth

space–time, but the space–time is congenitally discontin-

uous if it inclines to quantum scale. For discontinuous

space–time, fractal theory is used to explain numerous

phenomenon [1–5]. The cocoon’s heat-proof property

cannot be divulged by advanced calculus. If cocoon wall is

supposed to be a continuous medium, then we cannot

explain why the temperature change on its inner surface, is

very slow, irrespective of environmental temperature [6].

Time becomes discontinuous in microphysics, i.e., fractal

kinetics takes place on a very small timescale [7]. Frac-

tional differential equations (FDEs) [8–23] govern the

systems with memory.

Bloch equations are a set of first-order macroscopic

differential equations that describe the magnetization

behavior under the magnetic fields and relaxation. Bloch,

in 1946, introduced them and used for describing NMR.

They are also used in electron spin resonance spectro-

scopies and MRI. Relaxation of spin system is described

phenomenologically by them, that features the rate of

change of magnetization M of the spin system. In NMR

spectroscopy and imaging, the key idea is solving the

Bloch equations for combinations of gradient magnetic

fields and applied static radio frequency. Bloch equations

[24–27] are

dMx tð Þ
dt

¼ x0My tð Þ �Mx tð Þ
T2

;

dMy tð Þ
dt

¼ �x0Mx tð Þ �My tð Þ
T2

;

dMz tð Þ
dt

¼ M0 �Mz tð Þ
T1

;

ð1Þ

with initial settings Mx(0) = 0 = Mz(0), My(0) = 100.

Here, Mx(t), My(t) and Mz(t) are the system magnetiza-

tion. x0 = 2pf0 is frequency of resonance, B0 ¼ x0

c is static

magnetic field in z-component, M0 is equilibrium*Corresponding author, E-mail: amitmath@nitkkr.ac.in; amit-

math0185@gmail.com
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magnetization while T1, T2 are the spin–lattice and spin–

spin relaxation times, respectively. The exact solution to

Eq. (1) is,

Mx tð Þ ¼ e�t=T2 Mx 0ð Þ cosw0t þMy 0ð Þ sinw0t
� �

;

My tð Þ ¼ e�t=T2 My 0ð Þ cosw0t �Mx 0ð Þ sinw0t
� �

;

Mz tð Þ ¼ Mz 0ð Þe�t=T1M0 1� e�t=T1
� �

:

ð2Þ

To study the heterogeneity, complex structure and

memory effects in relaxation process, Eq. (1) is

generalized to fractional Bloch equations [28] by

extending integer derivative to Caputo’s fractional

derivative. The benefit of having FDEs in physical

models is their non-local property. The fractional

derivative is non-local, while the derivative of integer

order is local. It indicates that the upcoming physical

system state is also dependent on all of its historical states

other than its present state. Hence fractional models are

more realistic. The fractional Bloch equations are:

Da
t Mx tð Þ ¼ x0My tð Þ � Mx tð Þ

T2
;

D
b
t My tð Þ ¼ �x0Mx tð Þ � My tð Þ

T2
;

D
c
t Mz tð Þ ¼ M0�Mz tð Þ

T1
;

9
>>=

>>;
; 0\a; b; c� 1 ð3Þ

subject to the conditions Mx(0) = 0 = Mz(0), My(0) = 100.

Total order of system is (a, b, c).
Mx, My, Mz are sufficiently differentiable functions.

Parameters x0, T1, T2 possess units of s-a that keep a

steady set of units for magnetization.

Time-fractional equations depict particle motion with

memory in time. Space-fractional derivatives take place for

heavy-tailed variations. They refer to the particle motion

that explains variation in flow field over the complete

system. The fraction in time derivative suggests the mod-

ulation of memory of the system. It is apparent that mag-

netization behavior and relaxation of the spin system are

influenced by memory. This fact marks fractional modeling

suitable for such systems. So, the study of time-fractional

Bloch model given by Eq. (3) is very important.

The physical sense of Eq. (3) goes back to the basic

formulation of fractional-order Schrödinger’s equation in

quantum mechanics. It is obvious that the fractional-order

derivative is highly reliant on initial conditions therefore a

proper fractional derivative must be selected for handling

them. Initial state of system in NMR is detailed by mag-

netization components so they need to be visibly recog-

nized. Stability of these equations is already examined and

proved in [29]. The mathematical model of Eq. (3) is

solved by homotopy perturbation method (HPM) [30],

predictor–corrector method [31], operational matrix

method [32], implicit alternating direction method [33],

Galerkin finite element method [34], and fractional

variational iteration method (FVIM) [35], etc. This model

has not yet been studied by the q-HATM.

Physically, it is reasonable to have fractional-order

derivative of a constant equal to zero. However, for Caputo

fractional operator [36], C
a D

a
t c ¼ 0, c is a constant. One of

its great advantages is that it permits traditional boundary

and initial conditions to be involved in formulation of the

problem. Now, consider the following IVP involving

Caputo’s operator:

Day tð Þ � ky tð Þ ¼ 0; t[ 0; n� 1\a\n;

yk 0ð Þ ¼ bk; k ¼ 0; . . .; n� 1;

Here, usual initial conditions in terms of derivatives of

integer order are used. These conditions have obvious

physical explanation as an initial position y(a) at point a,

initial velocity y0(a), initial acceleration y00(a), and so on.

To compute Caputo’s fractional derivative of a function,

existence of its nth-order derivative is required. Luckily,

most functions that appear in applications fulfill this

prerequisite. Caputo’s fractional derivative is defined for

differentiable functions only, and we have taken Mx(t),

My(t) and Mz(t) as sufficiently differentiable functions in

this paper.

Most nonlinear FDEs do not possess exact solutions so

some numerical techniques are required for their approxi-

mate numerical solution. The reliability of solution

schemes is also a very important aspect than modeling the

dimensions of equations [37, 38]. The q-homotopy analysis

method (q-HAM) is an improvement of parameter q [ [0,

1] in HAM [39] to q 2 0; 1
n

� �
, n C 1. The presence of 1

n

� �m

in the solution provides faster convergence than HAM. It is

obvious that linking of method with a transform [40–42]

escapes time consuming concerns and requires less CPU

time to examine numerical solutions to nonlinear problems.

The q-HATM [43–45] is an elegant union of q-HAM and

transform of Laplace. Its advantage is its potential of

assimilating strong computational methodologies for

probing FDEs. It gives a simpler way to control conver-

gence region of the series solution in a large allowable

domain by proper selection of �h. It offers more accept-

able results for the same grid point and the order of series

solution. The validity of solution in convergent region is

witnessed by �h and n-curves. The q-HATM has the quali-

ties that it does not need discretization, linearization, per-

turbations or any restrictive assumptions, reduces

mathematical calculations significantly, promises large

convergence region, offers non-local effect, and is free

from computing complicated polynomials, integrations,

and physical parameters.

The objective of this paper is to attain the numerical

solution of Eq. (3) using the q-HATM and compare results

with other existing techniques and the exact solution. This
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paper is structured in the following manner. Section 1 is

introduction. In Sect. 2, a brief review of preliminary

descriptions of Caputo fractional derivative and some other

results helpful for learning FDEs are given. In Sect. 3, the

basic plan of the q-HATM is shown. In Sect. 4, the q-

HATM is implemented on an example to find the numer-

ical solution. Section 5 deals with discussion of gained

results using table and figures. In Sect. 6, we recapitulate

outcomes and draw inferences.

2. Preliminaries

Definition 2.1 Consider a real function h(v), v[ 0. It is

called in

a. space Cf; f 2 R if ] a real number b ([ f), s.t.

h(v) = vb h1(v), h1 2 C 0;1½ Þ. It is clear that Cf �
Cc if c B f.

b. space Cm
f ;m 2 N [ 0f g if h mð Þ 2 Cf.

Definition 2.2 Caputo fractional derivative [36] of h(t),

h 2 Cm
�1;m 2 N [ 0f g is

Db
t h tð Þ ¼ Im�bh mð Þ tð Þ

� �
; m� 1\b\m; m 2 N;

dm

dtm
h tð Þ; b ¼ m:

(

a.

Ift h x; tð Þ ¼ 1

Cf

Z t

0

t � sð Þf�1
h x; sð Þds f; t[ 0:

b.

Dm
sV x; sð Þ ¼ Im�m

s
omV x; sð Þ

otm
; m� 1\m�m:

c.

Df
t I

f
t h tð Þ ¼ h tð Þ; m� 1\f�m; m 2 N:

d.

Ift D
f
t h tð Þ ¼ h tð Þ �

Xm�1

1

hk 0þð Þ t
k

k!
;

m� 1\f�m; ;m 2 N:

e.

Ivtf ¼ C fþ 1ð Þ
C vþ fþ 1ð Þ t

vþf:

Definition 2.3 Laplace transform of Caputo’s fractional-

order derivative [36] is

L Dag tð Þ½ � ¼ paF pð Þ �
Xn�1

k¼0

pa�k�1g kð Þ 0ð Þ; n� 1\a� n:

3. Analysis of the q-HATM for time-fractional Bloch

equations

Ponder over a nonlinear fractional nonhomogeneous PDE:

Da
t Mx tð Þ þ R1Mx tð Þ þ N1Mx tð Þ ¼ g1 tð Þ

D
b
t My tð Þ þ R2My tð Þ þ N2My tð Þ ¼ g2 tð Þ

D
c
t Mz tð Þ þ R3Mz tð Þ þ N3Mz tð Þ ¼ g3 tð Þ

9
=

;
;

‘� 1\a; b; c� ‘;

ð4Þ

where Da
t ;D

b
t ;D

c
t are Caputo fractional operators of orders

a, b, and c, respectively. R1, R2, R3 and N1, N2, N3 are

linear and nonlinear differential operators, respectively.

g1(t), g2(t), and g3(t) are the source terms. Mx(t), My(t), and

Mz(t) are the sufficiently differentiable functions.

Applying transform of Laplace on each side of Eq. (4)

and then simplifying, we acquire

L Mx tð Þ½ � � 1

pa

X‘�1

k¼0

pa�k�1Mk
x t; 0ð Þ

þ 1

pa
fL½R1Mx tð Þ þ N1Mx tð Þ � g1 tð Þ�g ¼ 0;

L My tð Þ
� �

� 1

pb

X‘�1

k¼0

pb�k�1Mk
y t; 0ð Þ þ 1

pb
fL½R2My tð Þ

þ N2My tð Þ � g2 tð Þ�g ¼ 0;

L Mz tð Þ½ � � 1

pc

X‘�1

k¼0

pc�k�1Mk
z t; 0ð Þ

þ 1

pc
fL½R3Mz tð Þ þ N3Mz tð Þ � g3 tð Þ�g ¼ 0:

ð5Þ

The nonlinear operators are formulated as

N u1 t; qð Þ½ � ¼ L u1 t; qð Þ½ � � 1

pa

X‘�1

k¼0

pa�k�1uk
1 t; qð Þ 0þð Þ

þ 1

pa
fL½R1u1 t; qð Þ þ N1u1 t; qð Þ�g � 1

pa
L g1 tð Þ½ �f g;

N u2 t; qð Þ½ � ¼ L u2 t; qð Þ½ � � 1

pb

X‘�1

k¼0

pb�k�1uk
2 t; qð Þ 0þð Þ

þ 1

pb
fL½R2u2 t; qð Þ þ N2u2 t; qð Þ�g � 1

pb
L g2 tð Þ½ �f g;

N u3 t; qð Þ½ � ¼ L u3 t; qð Þ½ � � 1

pc

X‘�1

k¼0

pc�k�1uk
3 t; qð Þ 0þð Þ

þ 1

pc
fL½R3u3 t; qð Þ þ N3u3 t; qð Þ�g � 1

pc
L g3 tð Þ½ �f g:

ð6Þ

Here q 2 0; 1
n

� �
is embedding parameter. ui(t; q); i = 1,

2, 3 are real-valued functions.
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Now, we build the homotopy as:

1� nqð ÞL u1 �Mx0 tð Þ½ � ¼ �hqHN u1½ �;
1� nqð ÞL u2 �My0 tð Þ

� �
¼ �hqHN u2½ �;

1� nqð ÞL u3 �Mz0 tð Þ½ � ¼ �hqHN u3½ �;
ð7Þ

Here, L is the Laplace transformation operator, n C 1.

H(t) = 0 is an auxiliary function. �h = 0 is an auxiliary

parameter. Mx0(t), My0(t) and Mz0(t) are the initial

approximations. ui(t; q); i = 1, 2, 3 are unknown

functions. For q = 0 and q ¼ 1
n
, the subsequent results hold:

u1 t; 0ð Þ ¼ Mx0 tð Þ;u2 t; 0ð Þ ¼ My0 tð Þ;u3 t; 0ð Þ ¼ Mz0 tð Þ;

u1 t;
1

n

� 	
¼ Mx tð Þ;u2 t;

1

n

� 	
¼ My tð Þ;u3 t;

1

n

� 	
¼ Mz tð Þ:

Consequently, as q grows from 0 to 1
n
, n C 1, ui(t; q),

i = 1, 2, 3 swift from initial approximation Mx0(t), My0(t),

Mz0(t) to solutions Mx(t), My(t), and Mz(t), respectively.

Applying Taylor’s theorem on ui(t; q), i = 1, 2, 3 to

expand it about q in series form, we find

Table 1 Comparison of approximate solution by existing and proposed methods with the exact solution

M t Exact

solution

q-HATM

solution

Operational matrix method solution [32] HPM solution [30] Iterative method solution [29]

Mx(t) 0.1 9.9335 9.9335 9.9245 9.9335 9.2237

0.3 29.1120 29.1120 29.1080 29.1034 29.0937

0.5 46.7588 46.7588 46.7732 46.6823 46.7507

0.7 62.2060 62.2062 62.2180 61.8762 62.1921

0.9 74.8859 74.8863 74.8814 73.8911 74.8806

My(t) 0.1 99.0042 99.0042 99.0213 99.0187 99.0051

0.3 94.1113 94.1113 94.1645 94.1837 94.1166

0.5 85.5915 85.5914 85.5689 85.5518 85.5942

0.7 73.8536 73.8530 73.7886 73.1630 73.8635

0.9 59.4258 59.4258 59.3782 57.0572 59.4296

Mz(t) 0.1 0.0952 0.0952 0.0952 0.0952 0.0952

0.3 0.2592 0.2592 0.2592 0.2592 0.2590

0.5 0.3935 0.3935 0.3935 0.3935 0.3934

0.7 0.5034 0.5034 0.5034 0.5034 0.5033

0.9 0.5934 0.5934 0.5934 0.5934 0.5934

Fig. 1 Comparison of exact

and approximate solutions for

Mx(t) at n = 1 and �h = - 1
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u1 ¼ Mx0 tð Þ þ
X1

m¼1

Mxm tð Þqm;

u2 ¼ My0 tð Þ þ
X1

m¼1

Mym tð Þqm;

u3 ¼ Mz0 tð Þ þ
X1

m¼1

Mzm tð Þqm;

ð8Þ

where

Mxm tð Þ ¼ 1

m!

omu1

oqm






q¼0;

Mym tð Þ ¼ 1

m!

omu2

oqm






q¼0;

Mzm tð Þ ¼ 1

m!

omu3

oqm






q¼0:

ð9Þ

For suitable selection of auxiliary linear operator,

Mx0(t), My0(t), Mz0(t), �h, n, H, the series (8) converges at

q ¼ 1
n
and we get,

Fig. 2 Comparison of exact

and approximate solutions for

My(t) at n = 1 and �h = - 1

Fig. 3 Comparison of exact

and approximate solutions for

Mz(t) at n = 1 and �h = - 1
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Mx tð Þ ¼ Mx0 tð Þ þ
X1

m¼1

Mxm tð Þ 1

n

� 	m

;

My tð Þ ¼ My0 tð Þ þ
X1

m¼1

Mym tð Þ 1

n

� 	m

;

Mz tð Þ ¼ Mz0 tð Þ þ
X1

m¼1

Mzm tð Þ 1

n

� 	m

;

ð10Þ

Express vectors as

M~ xm ¼ Mx0 tð Þ;Mx1 tð Þ; . . .;Mxm tð Þf g: ð11Þ

Differentiating Eq. (7) m-times w.r.t. ‘q’, then dividing

by m! and finally taking q = 0, we develop the ensuing

mth-order deformation Eq.:

L Mxm tð Þ � kmMxm�1 tð Þ½ � ¼ �hH �m M~ xm�1

� �
;

L Mym tð Þ � kmMym�1 tð Þ
� �

¼ �hH �m M~ ym�1

� �
;

L Mzm tð Þ � kmMzm�1 tð Þ½ � ¼ �hH �m M~ zm�1

� �
:

ð12Þ

Taking inverse transform:

Mxm ¼ kmMxm�1 þ �hL�1 H �m M~ xm�1

� �� �
;

Mym ¼ kmMym�1 þ �hL�1 H �m M~ ym�1

� �� �
;

Mzm ¼ kmMzm�1 þ �hL�1 H �m M~ zm�1

� �� �
:

ð13Þ

In Eq. (13), we express �m M~ nm�1

� �
in a new manner as:

Fig. 4 Plot of Mx(t) (n = 1 and

�h = - 1) solution for different

value of a

Fig. 5 Plot of My(t) (n = 1 and

�h = - 1) solution for different

value of b
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�m M~ nm�1

� �
¼ LMnm�1 tð Þ � 1� km

n

� 	

1

pa

X‘�1

k¼0

pa�k�1Mk
n t; 0ð Þ þ 1

pa
L g1 tð Þ½ �

 !

þ 1

pa
L½R1Mnm�1 tð Þ þ Pm�1�;

ð14Þ

and km is presented as

km ¼ 0; m� 1;
n; m[ 1:

�
ð15Þ

In Eq. (14), Pm is homotopy polynomial [46, 47]

expressed as:

Pm ¼ 1

m!

om/ t; qð Þ
oqm

� 

jq¼0; ð16Þ

and

/ ¼ /0 þ q/1 þ q2/2 þ � � � : ð17Þ

Employing the results of Eq. (14) in Eq. (13), we get

Fig. 6 Plot of Mz(t) (n = 1 and

�h = - 1) solution for different

value of c

Fig. 7 �h-curves drawn for

Mx(t) solution when t = 0.01,

n = 1 for various values of a
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Mnm tð Þ ¼ km þ �hð ÞMnm�1 tð Þ � �h 1� km

n

� 	
L�1

1

pa

X‘�1

k¼0

pa�k�1Mk
n t; 0ð Þ þ 1

pa
L g1 tð Þ½ �

 !

þ �hL�1 1

pa
L½R1Mnm�1 tð Þ þ Pm�1�

� 

:

ð18Þ

Hence from Eq. (18), the components Mxm(t), Mym(t)

and Mzm(t) for m C 1 can be computed. The q-HATM

solution is presented in subsequent form

Mx tð Þ ¼
X1

m¼0

Mxm tð Þ 1

n

� 	m

;

My tð Þ ¼
X1

m¼0

Mym tð Þ 1

n

� 	m

;

Mz tð Þ ¼
X1

m¼0

Mzm tð Þ 1

n

� 	m

:

ð19Þ

We mention that in the q-HATM, we have freedom to

fix the initial approximation, �h, H and n. For n = 1 in

Eq. (10), it reduces to HAM. The �h plays a vital role in

controlling the convergence region and rate. The valid

convergence region for �h is horizontal segment of each �h-

Fig. 8 �h-curves drawn for

Mx(t) solution when t = 0.01,

n = 2 for various values of a

Fig. 9 �h-curves drawn for

Mx(t) solution when t = 0.01,

n = 3 for various values of a
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curve. The value of �h is chosen corresponding to arbitrary

n(n C 1) from the range of convergence. We can see from

�h-curves that convergence range is directly proportional to

n. The �h- and n-curves show the validity of q-HATM for

infinitely many acceptable solutions. The middle point of

�h-curve interval, i.e., �h = -n is an appropriate choice. For

n = 1, �h = -1 is the proper choice to get the optimum

solution.

Theorem [43] If Aa constant 0\ b\ 1 s.t.

xmþ1 tð Þj jj j � b xm tð Þj jj j V m and if truncated seriesPr
m¼0 xm tð Þ 1

n

� �m
is used as an approximate solution x(t),

then max. absolute truncation error is found as

x tð Þ �
Xr

m¼0

xm tð Þ 1

n

� 	m



























� brþ1

nr n� bð Þ x0 tð Þj jj j:

4. Numerical example

By using initial conditions, we may initialize with Mx0 = 0,

My0 = 100 and Mz0 = 0 and applying Laplace transform to

Eq. (3), we get

Fig. 10 �h-curves drawn for

My(t) solution when t = 0.01,

n = 1 for various values of b

Fig. 11 �h-curves drawn for

My(t) solution when t = 0.01,

n = 2 for various values of b
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L Mx½ � þ 1

pa
L �x0My þ

Mx

T2

� 

¼ 0;

L My

� �
� 100

p
þ 1

pb
L x0Mx þ

My

T2

� 

¼ 0;

L Mz½ � þ 1

pc
L �M0 �Mz

T1

� 

¼ 0:

ð20Þ

We state the nonlinear operators as:

N u1½ � ¼ L u1½ � þ 1

pa
L �x0u2 þ

u1

T2

� 

;

N u2½ � ¼ L u2½ � � 1� km

n

� 	
100

p
þ 1

pb
L x0u1 þ

u2

T2

� 

;

N u3½ � ¼ L u3½ � þ 1

pc
L �M0 � u3

T1

� 

;

ð21Þ

and thus �m Mxm�1ð Þ; �m Mym�1

� �
and�m Mzm�1ð Þ are

represented as:

Fig. 12 �h-curves drawn for My(t) solution when t = 0.01, n = 3 for various values of b

Fig. 13 �h-curves drawn for Mz(t) solution when t = 0.01, n = 1 for various values of c
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�m Mxm�1ð Þ ¼ L Mxm�1 tð Þ½ � þ 1

pa
L �x0Mym�1 þ

Mxm�1

T2

� 

;

�m Mym�1

� �
¼ L Mym�1 tð Þ

� �

� 1� km

n

� 	
100

p
þ 1

pb
L x0Mxm�1 þ

Mym�1

T2

� 

;

�m Mzm�1ð Þ ¼ L Mzm�1 tð Þ½ � þ 1

pc
L �M0 �Mzm�1

T1

� 

:

ð22Þ

Now, taking initial approximation Mx0 = 0, My0 = 100,

Mz0 = 0, and scheme (13), we find following

approximations q-HATM solution:

Mx1 ¼ � 100x0�ht
a

C 1þ að Þ ;My1 ¼
100�htb

T2C 1þ bð Þ ;Mz1 ¼ � M0�ht
c

T1C 1þ cð Þ ;

Mx2 ¼ � 100x0�hnt
a

C 1þ að Þ � 100x0�h
2ta

C 1þ að Þ � 100x0�h
2t2a

T2C 1þ 2að Þ �
100x0�h

2taþb

T2C 1þ aþ bð Þ ;

My2 ¼
100�hntb

T2C 1þ bð Þ þ
100�h2tb

T2C 1þ bð Þ �
100x2

0�h
2taþb

C 1þ aþ bð Þ þ
100�h2t2b

T2
2C 1þ 2bð Þ ;

Mz2 ¼ � M0�hnt
c

T1C 1þ cð Þ �
�h 1þ �hð ÞM0t

c

T1C 1þ cð Þ � M0�h
2t2c

T2
1C 1þ 2cð Þ :

Persisting this way, we can compute rest components of

Fig. 14 �h-curves drawn for Mz(t) solution when t = 0.01, n = 2 for various values of c

Fig. 15 �h-curves drawn for Mz(t) solution when t = 0.01, n = 3 for various values of c
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Mxm, Mym, and Mzm, m[ 1 of the q-HATM solution. Then,

solution can be written as:

Mx tð Þ ¼ lim
N!1

XN

m¼0

Mxm tð Þ 1

n

� 	m

;

My tð Þ ¼ lim
N!1

XN

m¼0

Mym tð Þ 1

n

� 	m

;

Mz tð Þ ¼ lim
N!1

XN

m¼0

Mym tð Þ 1

n

� 	m

:

ð23Þ

5. Results and discussion

We performed the numerical simulations for fractional

Bloch Eq. (3) for various values of t, a, b and c. Table 1

depicts the comparison of values of Mx(t), My(t) and

Mz(t) at a = 1; t = 0.1, 0.3, 0.5, 0.7, and 0.9 found by the q-

HATM with exact solution and those from existing meth-

ods. The numerical results show that the q-HATM per-

forms very well for the solution of Eq. (3) among others

existing methods, even when it is applied with a lower

order approximate solution. However, its accuracy can be

improved using higher order approximate solutions.

Fig. 16 n-curves drawn for Mx(t) solution when t = 0.01, �h = - 1 for various values of a

Fig. 17 n-curves drawn for

My(t) solution when t = 0.01,

�h = - 1 for various values of b
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Figures 1, 2, 3 depict the behavior of numerical solutions

Mx(t), My(t) and Mz(t) vs. t at �h = - 1, n = 1, a = b =

c = 1, as well as its comparison with the exact solution

obtained by the q-HATM. It is clear from Figs. 1, 2, 3 that

the approximate solutions Mx(t), My(t) and Mz(t) of Eq. (3)

gained by using the q-HATM is in complete agreement

with the exact solution. The numerical results for different

specific cases of a, b, c, �h and n are presented in Figs. 4, 5

and 6. They exhibit the behavior of solutions for diverse

Brownian motions a = 0.5, 0.75; b = 0.5, 0.75; c = 0.5,

0.75 and the standard motion a = b = c = 1, at �h = - 1,

n = 1. From Figs. 4 and 6, it is clear that Mx(t) and

Mz(t) increases with increase in time t for diverse values of

a = c = 0.5, 0.75 and converges to the exact solution at

a = c = 1, while in Fig. 5, My(t) decreases with increase in

time t for diverse values of b = 0.5, 0.75 but again con-

verges to the exact solution at b = 1. In Figs. 7, 8, 9, 10,

11, 12, 13, 14, and 15, different values of convergence

control parameter �h are selected to curtail residual errors

for Mx(t), My(t) and Mz(t) respectively. From Figs. 7, 8, 9,

10, 11, 12, 13, 14, and 15, it can also be observed that

convergence range depends positively on value of n. Fig-

ures 16, 17, and 18 display n-curves for distinct order of

fractional derivative.

6. Conclusions

In this article, the q-HATM is successfully applied to solve

fractional model of Bloch equations. It is clearly seen from

illustrative example that the q-HATM is easy to implement

and powerful numerical method to find an approximate

solution than from the existing methods. It must be noted

that the q-HATM is used directly without using perturba-

tion, linearization, Adomian polynomials, or other restric-

tive assumptions. The results of fractional-order Bloch

Eq. (3) by the q-HATM are closer to the exact solution in

comparison with the other existing techniques. Hence, the

q-HATM is more efficient, convenient, and easier than

other existing methods.
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