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Abstract: We obtained an approximate solution of the Schrodinger equation for the modified Kratzer potential plus
screened Coulomb potential model, within the framework of Nikiforov—Uvarov method. The bound state energy eigen-
values for N,, CO, NO, and CH diatomic molecules were computed for various vibrational and rotational quantum
numbers. Special cases were considered when the potential parameters were altered, resulting into modified Kratzer
potential, screened Coulomb potential, and standard Coulomb potential, respectively. Their energy eigenvalues expressions
and numerical computations agreed with the already existing literatures.

Keywords: Kratzer potential; Screened Coulomb potential; Nikiforov—Uvarov method; Schrodinger equation

PACS Nos.: 03.65. Ge; 03.65. Ca; 03.65.-w

1. Introduction

Researchers have devoted their interest over the years,
towards investigating the bound state solutions of nonrel-
ativistic wave equations for different potentials [1, 2]. A
few of these potentials have been solved exactly [3], while
others can only be solved approximately [4—10], with the
use of different approximation schemes [11-13]. Also,
different methods have been employed to obtain the solu-
tions of the nonrelativistic wave equations with a chosen
potential model. These include the factorization method
[14], functional analysis approach [15—17], supersymmetry
quantum mechanics (SUSYQM) [18-21], asymptotic iter-
ation method (AIM) [22, 23], algebraic approach [24],
exact and proper quantization rules [25, 26], Laplace
transformation [27], Nikiforov—Uvarov method (NU)
[28-34], and others.

The Kratzer potential [35] is mostly applied in atomic
physics, molecular physics, and quantum chemistry [36]. It
is used to describe the interactions of molecular structure in
quantum mechanics. The Kratzer potential is made up of a
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long-range attraction and a repulsive part. The integration
of these parts makes this potential reliable in terms of its
vibrational and rotational energy eigenvalues [37, 38]. The
Kratzer potential is known to approach infinity when the
internuclear distance approaches zero, due to the repulsion
that exist between the molecules of the potential. As the
internuclear molecular distance approaches infinity, the
potential decomposes to zero [39, 40].

The screened Coulomb potential, which is also known as
the Yukawa potential, is greatly important with applica-
tions cutting across nuclear physics and condensed matter
physics [41]. The screened Coulomb potential is used
mostly in short-range interactions [42—44]. The screened
Coulomb potential is known to be the potential of a
charged particle in a weakly non-ideal plasma. It also
describes the charged particle effects in a sea of conduction
electrons in solid-state physics [45].

Recently, Bayrak et al. [38] have presented an exact
analytical solution of the radial Schrodinger equation for
the Kratzer potential using the asymptotic iteration method
(AIM). The exact bound state energy eigenvalues (E,,;) and
corresponding eigenfunctions (R,;) were calculated for
various values of n and / quantum numbers for selected
diatomic molecules. In another development, a noncentral
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modified Kratzer potential was considered and the solu-
tions of the Schrodinger equation obtained using the fac-
torization method [36]. An approximate solution of the
Schrodinger equation interacting with an inversely quad-
ratic Yukawa potential was obtained using SUSYQM [46],
where the screened Coulomb potential was obtained as a
special case by varying the potential strength. Also, an
approximate analytical solution of the radial Schrodinger
equation for the screened Coulomb potential was obtained,
with energy eigenvalues and its corresponding eigenfunc-
tions computed in closed forms [47]. With the above-
mentioned studies on these different potentials and their
lofty importance, we seek to investigate the bound state
solutions of the Schrodinger equation with the combined
modified Kratzer and screened Coulomb potential of the
form:
—or
V(r):De(r—re)z_Ae (1)

r r

where D, is the dissociation energy, 7. is the equilibrium
internuclear separation, A is the depth of the potential, and
o is the range of the potential. It can be deduced that when
D, =0, the above combined potential reduces to the
screened Coulomb potential. When D, = 0 and o — 0, the
potential of Eq. 1 reduces to the Coulomb potential. Also,
when A = 0, Eq. 1 reduces to the modified Kratzer poten-
tial. Using the conventional NU method, we derive the /—
wave bound state solutions and their eigenfunctions of the
Schrodinger equation for the modified Kratzer potential
plus screened Coulomb potential, analytically and numer-
ically. Special cases are also considered, and our results are
compared with existing literatures for confirmation sake.

2. Bound state solution

The radial Schrodinger equation is given as [48]:

Ru(r)  2u oL+ 1)K
dr? 12 2ur?

E,—V(r)— Ry(r)=0 (2)
where pu is the reduced mass, E,; is the rotational—
vibrational energy spectra of the diatomic molecules, 7 is
the reduced Planck’s constant, and n and ¢ are the radial
and orbital angular momentum quantum numbers,
respectively (or vibration—rotation quantum numbers in
quantum chemistry) [49]. Substituting Eq. (1) into Eq. (2)
gives:

dang (r)
dr?

n 2uE,;  2uD. n 4uDere 1 2,uDer§ 1
h2 h2 h2 r h2 r2
2pA (e L+ 1)
+h2< ’ > - }’2 Rng(l‘):o.

(3)

We employ the approximation scheme to get rid of the
centrifugal barrier as [50]

1 o
By T —— 4
r2 (1 _ e_%r)2 ( )
1 o
ro (l—er) (3)
Sustituting Eqgs. (4) and (5) into Eq. (3), we have
dan[(r)
dr?
[ 2u 4uDere o |
7 En = D) + ( 12 ) (1 - e*”)
2,uDer62) o?
— R —
- ( i (1 —er)? n(r) =0
2uA [ e " o20(0+ 1)
+ 2 1 —e2r - —ar\2
h e (1 —e7)
(6)

Equation (6) can be simplified into the form
&Ry (1) 1

dr? (1— e,w)z
T S——
Ru(r)=0

(7)
where
2u
& = _h2a2 (Ené - De)
ﬁ - 4I;llz)ere
o
2uA (8)
 Ra
2uD.r?
5= ( h; S+ 40+ 1))
By using the coordinate transformation
s=e %, 9)

we obtain the differential equation of the form
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d*R,e (1 —3) dRyy 1

dszf‘f's(lfs)) dsu—sZ(l—s)z r(s):1—2s—2<\/sn—ﬂ+ —1/%+5>s

X [=(&n +7)s* + (260 +7 — B)s — (&0 — B+ )| Rue(s) =0 NPy ey -
(10)

Referring to Eq. (49), we define the constant A as
Comparing Eqgs. (10) and (41) (see the appendix

section), we have the following parameters 2= —(26—B—) —2+/c — 5 I 5 _1
o (20 =p=7)=2Ven =B+ 0y[{7+0) =3
(s)=1~—s

ols) =s(1—5) —(W—\/i—&-é)

G(s) = —(en +7)5 + 2en+7— B)s — (ea — B+ 0)

(11) (18)
Substituting these polynomials into Eq. (48), we obtain . Substituting Eq. (I8) ‘into Eq. (50) and carrying out
simple algebra, where
n(s) to be
1
n(s):—%:l:\/(a—k)s2+(k+b)s—|—c (12) ‘c’(s):—2—2<\/8n—[3+ _”4_1+5> (19)
where and
1
a:ZJrs,,er o"(s) = -2 (20)
b=p—2e —v (13) We have
c=¢ —pf+9 2
d L[=y—B+o+n+0)
. : tn=—0+F+7 (21)
To find the constant k, the discriminant of the expression 4 (n+0
under the square root of Eq. (12) must be equal to zero. As
such, we have that where
1
1 _ - (1 Vi+4a ) 2
ket = —(26— B—7) £ 2/ — B+ 0 <Z+5> (14) T (Irviddo (22)
Substituting Eqgs. (8) and (22) into Eq. (21) yields the
Substituting Eq. (14) into Eq. (12) yields energy eigenvalue equation of the modified Kratzer
n(s) = —=
(\/78,1 g ,/5+5)s_\/78n BT for ky =—(26— B —9) +2van — B+ 0/ (4 +0) (15)
=+
(Ve = BF0—[14+0)s+ Ve =BT 0 for ko= (20— =) = 2v/en = B7 0,/ (4 +9)

From the knowledge of NU method, we choose the  potential plus screened Coulomb potential in the form
expression 7(s)_ in which the function z(s) has a negative 12e2 [2# D2
— c’e

derivative. This is given by E, = W 2

2 Te 2
n(s):—<;+\/sn—ﬁ+5—,/<i+5)>s n? (n+c)+2”§,)fe+€(“1>—<W)
2 2 2(n+¢
— Ve — B+ (16) g (n+0)

with 1(s) being obtained as

4uD.r,
1) - ’;2“} +D.

(23)

The corresponding wave functions can be evaluated by
substituting 7(s)_and o(s) from Egs. (15) and (11),
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respectively, into Eq. (44) and solving the first-order
differential equation. This gives

B(s) = sV TI(1 — gyt Vatho (24)

The weight function p(s) from Eq. (46) can be obtained
as

,O(S) _ S2 s,l+(3(1 _ S)Z\/%JrﬁJré (25)

From the Rodrigues relation of Eq. (45), we obtain

)’n(s) — anfzx/z:,ﬁé(l
_ S)72\/§+B+5d_n [Sn+2\/sn_+5(1 _ s)"+2v %+l3+5}
ds”
(26)
Ve +0, \/l 3
yu(s) = B”Pn(2 2/EF) (1—2s) (27)
where PE,"“” is the Jacobi polynomial.

Substituting @(s) and y,(s) from Egs. (24) and (27),
respectively, into Eq. (42), we obtain

2\/4:,,+(3,2G71)

W(s) = BusVo (1 — s)GP,S (1—2s) (28)

where

1 1
G=5+/g+B+0 (29)

From the definition of the Jacobi polynomials [51],
p((h'ﬂ)(w)

I'lh+0+1
_4@ )2F1(

onlr0+1) 2

(30)

1_
P N 0+1;—“’)

In terms of hypergeometric polynomials, Eq. (28) can
be written as

cT(n+2ve, +0+1) F
ar(2Ve, to+1) 2

(—n, 2V e +04+2G+n, 24/e, + 0+ 1; s).

W(s) = Bus¥Vo (1 — )

(31)

3. Special cases

In this section, we make some adjustments of constants in
Eq. (1) to have the following cases:

3.1. Screened Coulomb potential

If D. = 0 in Eq. (1), we can obtain the screened Coulomb
potential of the form

V(r) = - (32)

From Eq. (23), the energy eigenvalue equation for the
screened Coulomb potential reduces to

o200+ 1)
nl = A~

2p
1202 [—(2u Af2o) + 00+ 1) + (n+ £+ 1)°]
2u 2(n+L+1)

(33)

Equation (33) is in full agreement with the results in
Ref. [46, 47].

3.2. Standard Coulomb potential

We can rewrite Eq. (23) to have

2
En;——h 2uePDer 4,uocDere] D.

+o<2£(e+1)—7

_ﬂ 7’12
o rz DT 2
1 [an ) B al(C+ 1) — (L)
2u 2 2(n+¢)

(34)

As o — 0and D. =0, Eq. (1) reduces to the standard
Coulomb potential of the form

V(r)=—— (35)

Its energy eigenvalue equation can be deduced from
Eq. (34) as
,UA2

2R (n+ 0+ 1) (36)

E, =
The result of Eq. (36) is very consistent with the result
obtained in Eq. (101) of Ref. [52]. Also, comparing our
work with the result obtained in Eq. 33 of Ref. [46], it is
worthy to note here that the authors in Ref. [46] failed to
set the screening parameter (i.e. J in Eq. (1) of Ref. [46])
equal to zero. If that is done, then there would be a clear
consistency in the energy eigenvalue equation obtained in
Eq. (36) of our computation and Eq. (33) of Ref. [46].

3.3. Modified Kratzer potential

When the parameter A is set to zero, Eq. (1) reduces the
potential to the modified Kratzer potential of the form

V(r) = D (r - r“‘)2 (37)

r

And its energy eigenvalue equation can also be deduced
from Eq. (23) as
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E. = h;—f 2“therg + L+ 1) —4’;5;“} +D
e [ 2 - (2]
2u 2 (n + C)
(38)
Rewriting Eq. (38), we have
B, — %2 2uther3 o) - 4u?ere} D,
[ M- ()
2u 2 2(n+70)
(39)

Table 1 Spectroscopic parameters of the molecules used in this work

Molecule re (A) 1 (amu) de (cm™1)

N, 1.0940 7.00335 96288.03528
Cco 1.1282 6.860586 87471.42567
NO 1.1508 7.468441 64877.06229
CH 1.1198 0.929931 31838.08149

As o — 0, we obtain the energy eigenvalue for the
modified Kratzer potential to be

E.o = D,

4puDere
& (%)

21 (1 +2n+\/1 +4(2"D’e+£(£+ )))

(40)

2

The result in Eq. (40) is very consistent with result of
Eq. (14) in Ref. [53].

4. Results and discussion

In our study, the energy eigenvalues of the modified
Kratzer potential plus the screened Coulomb potential are
computed for N,, CO, NO, and CH diatomic molecules
using Eq. (23), with the aid of the spectroscopic parameters
given in Table 1. The explicit values of these energies for
different vibrational and rotational quantum numbers are
presented in Table 2. For validity purposes, we have also
computed the energy eigenvalues of the modified Kratzer
potential for the selected diatomic molecules, using the
reduced energy equation given in Eq. (40) as a special

Table 2 Energy eigenvalues (in eV) of modified Kratzer potential plus screened Coulomb potential for different values of n and ¢ for different

diatomic molecules

n l N, CcO NO CH

0 0 9.474983970 8.541820252 6.303864689 3.124280611
0 9.474953820 8.541790206 6.303836703 3.124022422
1 9.474959637 8.541796145 6.303842142 3.124061521
0 2 9.474923928 8.541760426 6.303808986 3.123774225
1 9.474929746 8.541766365 6.303814426 3.123813539
2 9.474941385 8.541778244 6.303825311 3.123892189
0 3 9.474894291 8.541730906 6.303781534 3.123535425
1 9.474900111 8.541736847 6.303786975 3.123574942
2 9.474911752 8.541748729 6.303797863 3.123653997
3 9.474929214 8.541766552 6.303835965 3.123772630
0 4 9.474864907 8.541701644 6.303754342 3.123305474
1 9.474870728 8.541707586 6.303759786 3.123345183
2 9.474882372 8.541719470 6.303770676 3.123424620
3 9.474899837 8.541737298 6.303787009 3.123543823
4 9.474923125 8.541761068 6.303808788 3.123702849
0 5 9.474835771 8.541672636 6.303727408 3.123083866
1 9.474841594 8.541678579 6.303732853 3.123123755
2 9.474853240 8.541690466 6.303743746 3.123203553
3 9.474870708 8.541708297 6.303760084 3.123323296
4 9.474894001 8.541732072 6.303781868 3.123483035
5 9.474923116 8.541761790 6.303809097 3.123682842
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Table 3 Energy eigenvalues (in eV) of modified Kratzer potential for different values of n and ¢ for N, and CO diatomic molecules

n 14 N, N, [53] (60) CO [53]

0 0 0.054436810 0.054430 0.050829440 0.050823
0 0.162077140 0.162057 0.151304930 0.151287
1 0.162565720 0.162546 0.151773620 0.151755
0 2 0.268261600 0.268229 0.250384040 0.250354
1 0.268743590 0.268711 0.250846240 0.250816
2 0.269707440 0.269675 0.251770530 0.251744
0 3 0.373016320 0.372972 0.348092540 0.348051
1 0.373491830 0.373447 0.348548350 0.348507
2 0.374442740 0.374398 0.349459880 0.349418
3 0.375868810 0.375823 0.350826870 0.350785
0 4 0.476366850 0.476313 0.444455580 0.444403
1 0.476836010 0.476779 0.444905140 0.444852
2 0.477774200 0.477717 0.445804140 0.445751
3 0.479181190 0.479124 0.447152360 0.447099
4 0.481056650 0.480999 0.448949420 0.448895
0 5 0.578338180 0.578269 0.539497750 0.539434
1 0.578801090 0.578732 0.539941160 0.539877
2 0.579726790 0.579658 0.540827870 0.540764
3 0.581115060 0.581046 0.542157650 0.542093
4 0.582965540 0.582896 0.543930150 0.543865
5 0.585277800 0.585208 0.546144910 0.546082

Table 4 Energy eigenvalues (in eV) of modified Kratzer potential for different values of n and ¢ for NO and CH diatomic molecules

n L NO NO [53] CH CH [53]

0 0 0.041123195 0.041118 0.083224184 0.083214
0 0.122325849 0.122311 0.241151503 0.241123
1 0.122738863 0.122724 0.244409838 0.244381
0 2 0.202298791 0.202274 0.389591425 0.389547
1 0.202705567 0.202681 0.392656024 0.392611
2 0.203518990 0.203494 0.398769202 0.398722
0 3 0.281066733 0.281033 0.529288943 0.529229
1 0.281467399 0.281434 0.532174862 0.532115
2 0.282268597 0.282235 0.537931848 0.537870
3 0.283470085 0.283436 0.546530346 0.546467
0 4 0.358653765 0.358611 0.660917327 0.660844
1 0.359048434 0.359006 0.663638196 0.663565
2 0.359837651 0.359795 0.669066127 0.668992
3 0.361021173 0.360978 0.677173658 0.677098
4 0.362598630 0.362555 0.687920044 0.687842
0 5 0.435083367 0.435032 0.785086272 0.785001
1 0.435472163 0.435421 0.787654439 0.787569
2 0.436249637 0.436198 0.792777921 0.792692
3 0.437415549 0.437364 0.800431163 0.800343
4 0.438969538 0.438917 0.810576230 0.810487
5 0.440911128 0.440858 0.823163305 0.823071
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Fig. 1 Shape of modified Kratzer potential plus screened Coulomb
potential for different diatomic molecules
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Fig. 2 Energy eigenvalues variation with dissociation energy for
various vibrational quantum numbers
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Fig. 3 Energy eigenvalues variation with equilibrium bond length for
various vibrational quantum numbers

case. Our results shown in Tables 3 and 4 are in good
agreement with the results given in Ref. [53].

We have plotted the shape of the modified Kratzer
potential plus screened Coulomb potential for the different
diatomic molecules considered, as shown in Fig. 1. This
figure gives an insight into the behaviour of the combined
potential when r = r.. Also, the variation in the energy
eigenvalues with different parameters of the combined
potential such as D, r., o, and A is shown in Figs. 2-5,
respectively, for various values of n and / quantum num-
bers. In these figures, there is an increase in energy
eigenvalues as the various parameters increase. In Figs. 2
and 3, there exists an asymptotic convergence at zero
energy. In Fig. 4, the increase in energy tends to spread out
from zero position for different vibrational quantum num-
bers. We also observe a uniform increase in energy as the
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Fig. 4 Energy eigenvalues variation with screening parameter for
various vibrational quantum numbers
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Fig. 5 Energy eigenvalues variation with parameter “A” for various
vibrational quantum numbers
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parameter “A” increases for the different vibrational
quantum numbers.

5. Conclusion

In this study, the approximate bound state solutions of the
Schrodinger equation with the modified Kratzer molecular
potential plus screened Coulomb potential model were
obtained, via the Nikiforov—Uvarov method. The energy
eigenvalues of the selected diatomic molecules (N,, CO,
NO, and CH) were computed, and a special case was
considered. Our results are consistent with the results in
available literatures. The shape of the combined potential
model for the diatomic molecules was plotted, and this
gives a better understanding to the behaviour of the
selected diatomic molecules when the equilibrium bond
length equals the interatomic distance of the molecules.
The variation in the combined energy eigenvalue with the
potential parameters (D., r., &, and A) was also plotted. It
was discovered that the energy eigenvalues increase as the
various potential parameters increase. This study can be
extended even to the relativistic regime using other meth-
ods [54-56]. Recently, there has been investigation into
areas covering vibrational partition function [57-59] and
thermochemical properties of diatomic molecules [60—-62].
Worth mentioning is the current research done on the
prediction of enthalpy and entropy of gaseous dimers
[63, 64].

Appendix: Review of Nikiforov—Uvarov (NU) method

The NU method was proposed by Nikiforov and Uvarov
[65] to transform Schrodinger-like equations into a second-
order differential equation via a coordinate transformation
s = s(r), of the form

)+ () + 2Dy (s) =0 (@)

a(s) a*(s)

where 6(s), a(s) are polynomials, at most second degree
and 7(s) is a first-degree polynomial. The exact solution of
Eq. (41) can be obtained by using the transformation

W(s) = @(s)yn(s) (42)

This transformation reduces Eq.(41) into a
hypergeometric-type equation of the form
7 ()5, (5) + 7(5)y,(5) + Aya(s) =0 (43)

The function ®(s) can be defined as the logarithm
derivative [65]

F(s) nls)
() o) 44)

with 7(s) being at most a first-degree polynomial. The
second part of (s) being y,(s) in Eq. (42) is the
hypergeometric function with its polynomial solution
given by Rodrigues relation

B" d n
S 7R (45)

Here, B, is the normalization constant and p(s) is the
weight function which must satisfy the condition

yn(s) =

2 fo(s)n(s)] = <()ols) (46)
with
w(s) = 7(s) + 27(s) 47)

It should be noted that the derivative of t(s) with respect
to s should be negative. The eigenfunctions and
eigenvalues can be obtained using the definition of the
following function 7(s) and parameter A, respectively:

)= 7O 4 (TN

(48)

and
A=k+7(s) (49)

The value of k can be obtained by setting the
discriminant of the square root in Eq. (48) equal to zero.
As such, the new eigenvalue equation can be given as

nn—1)

)\1 !
+nt'(s) + 5

d'(s)=0, (n=0,1,2,...)  (50)
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