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Abstract: The approximate analytical solutions of the radial Schrodinger equation have been obtained with a newly
proposed potential called Hellmann—Kratzer potential. The potential is a superposition of Hellmann potential and modified
Kratzer potential. The Hellmann—Kratzer potential actually comprises of three different potentials which include Yukawa
potential, Coulomb potential and Kratzer potential. The aim of combining these potentials is to have a wide application.
The energy eigenvalue and the corresponding wave function are calculated in a closed and compact form using the
Nikiforov—Uvarov method. The energy equation for some potentials such as Kratzer, Hellmann, Yukawa and Coulomb
potentials has also been obtained by varying some potential parameters. Our results excellently agree with the already
existing literature. Some numerical results have been computed. We have plotted the behaviour of the energy eigenvalues

with different potential parameters and also reported on the numerical result.
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1. Introduction

The study of the bound-state process is very fundamental
when trying to understand molecular spectrum of diatomic
molecules since the beginning of quantum mechanics. The
bound-state solutions to the Schrodinger equation (SE) are
only possible for some potentials of real interest [1, 2].
Quite recently, numerous researchers have tried to solve
the problem of obtaining exact or approximate solutions to
the Schrodinger equation for some potential of interest
[3, 4]. The exact or approximate solutions of these equa-
tions with the central potential play an important role in
quantum mechanics [5-9].

The analytical solution with / =0 and / # 0 for some
potentials has been addressed by many researchers in
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nonrelativistic quantum mechanics and relativistic quan-
tum mechanics for bound and scattering states [10-15].
Some of these potentials include: Deng—Fan potential [16],
Morse potential [17], Hellmann potential [18], hyperbolic
molecular potential [19], Manning—Rosen potential [20]
and the Poschl-Teller-like potential [21]. Also, different
methods have been employed to obtain the solutions of the
nonrelativistic wave equations with a chosen potential
model.

These include: the factorization method [22-24], mod-
ified factorization method [25, 26], supersymmetry quan-
tum mechanics (SUSYQM) [27-29], asymptotic iteration
method (AIM) [30-32], algebraic approach [33], exact
quantization rule [17], Nikiforov—Uvarov method (NU)
[10, 11], etc.

The Hellmann potential [34-36] is a superposition of
Yukawa and Coulomb potentials, which is given as:

© 2019 IACS


http://orcid.org/0000-0001-7762-731X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-019-01467-x&amp;domain=pdf
https://doi.org/10.1007/s12648-019-01467-x

244

C O Edet et al.

() ()

where V) and V are the potential strength of Coulomb and
Yukawa potentials, respectively, o is the screening
parameter and r is the distance between the two particles.
The Hellmann potential was first studied by Hellmann
[34-36]. Thereafter, various researchers worked on the
potential, e.g. [37], used the supersymmetric approach to
study the approximate analytic solutions of the three-di-
mensional Schrodinger equation with this potential by
applying a suitable approximation scheme to the centrifu-
gal term. [38] obtained approximate eigensolutions of the
DKP and Klein—Gordon equations with the Hellmann
potential. [39] solved the approximate bound-state solu-
tions of the Hellmann potential using the generalized
parametric Nikiforov—Uvarov method. The Hellmann
potential found its applications in the field of atomic and
condensed matter physics, e.g. electron core [40, 41],
electron—ion [42] inner-shell ionization problem, alkali
hydride molecules and solid-state physics [43, 44]. In like
manner, the modified Kratzer potential is given as:

Vi) =D (") )

r

where D, is the dissociation energy and r, is the equilib-
rium inter-nuclear distance.

The Kratzer potential [45] is mostly applied in atomic
and molecular physics and quantum chemistry [46]. It is
used to describe the interactions of molecular structure in
quantum mechanics. The Kratzer potential is made up of a
long-range attraction and a repulsive part. The integration
of these parts makes this potential reliable in terms of its
vibrational and rotational energy eigenvalues [32, 47, 48].
The Kratzer potential approaches infinity as the inter-nu-
clear distance approaches zero, due to the repulsion that
exists between the molecules of the potential. As the inter-
nuclear molecular distance approaches infinity, the poten-
tial decomposes to zero [47, 48]. [32] presented an exact
analytical solution of the radial Schrodinger equation for
the Kratzer potential using the asymptotic iteration method
(AIM). The exact bound-state energy eigenvalues (E,;) and
corresponding eigenfunctions (R,;) were calculated for
various values of n and / quantum numbers for selected
diatomic molecules.

Recently, there has been great interest in combination of
two or more potentials in both the relativistic and nonrel-
ativistic regime. The essence of combining two or more
physical potential models is to have a wider range of
applications [49]. For example, Hellmann [34] studied
Schrodinger equation with a superposition of Coulomb
potential and Yukawa potential; this potential named as
Hellmann potential. His result is applicable in the area

where both Coulomb potential and Yukawa potential,
respectively, find applications. Bearing this in mind, we
attempt to study the Schrodinger equation with a newly
proposed potential obtained from a combination of Hell-
mann potential [Eq. (1)] and modified Kratzer potential
[Eq. (2)]. The proposed potential is of the form:

V(r) = —(?) + (Vler) w0, (F) 3)

If D, =0, Eq. (3) reduces to the Hellmann potential, if
Vo = Vi = 0, the potential reduces to the modified Kratzer
potential, if Vo =D, =0, it reduces to the Yukawa or
modified Coulomb potential, and if V| = D, = 0, it reduces
to the Coulomb potential.

This paper is organized as follows: in Sect. 2, we shall
briefly introduce the basic concept of the Nikiforov—
Uvarov method. Section 3 is focused primarily on the
approximate solution of the Schrodinger equation for the
Hellmann—modified Kratzer potential system using the NU
method. In Sect. 4, we shall discuss special cases of the
potential under consideration. In Sect. 5, we discuss results
and in Sect. 6, we give a brief concluding remark.

2. Review of the Nikiforov—Uvarov method

The Nikiforov—Uvarov (NU) method [10, 11] is based on
solving the hypergeometric-type second-order differential
equations by means of the special orthogonal functions
[50]. The main equation which is closely associated with
the method is given in the following form [51]
V(9 + 20 + S =0 @
where a(s) and G(s) are polynomials at most second-de-
gree, 7(s) is a first-degree polynomial, and (s) is a
function of the hypergeometric type.

The exact solution of Eq. (4) can be obtained by using
the transformation

U(s) = ¢(s)y(s) (5)
This  transformation reduces Eq.(4) into a

hypergeometric-type equation of the form

a(s)y"(s) + 1(s)y'(s) + 4y(s) = 0 (6)

The function ¢(s) can be defined as the logarithm
derivative

¢'(s) _mls)
#5) ~a0) 7
where 7(s) = % [t(s) — 7(s)] (8)

with 7(s) being at most a first-degree polynomial. The
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second Y (s) being y,(n) in Eq. (5) is the hypergeometric
function with its polynomial solution given by Rodrigues
relation

() = S () ©)

where N, is the normalization constant and p(s) is the
weight function which must satisfy the condition

(a(s)p(s)) = a(s)(s) (10)
1(s) = 7(s) + 27(s) (11)

It should be noted that the derivative of t(s) with respect
to s should be negative. The eigenfunctions and
eigenvalues can be obtained using the definition of the
following function 7(s) and parameter A, respectively:

"(s) — (s o (s) — 7(s)\ 2

(12)
where k = 4 — 7'(s) (13)

The value of k can be obtained by setting the
discriminant of the square root in Eq. (12) equal to zero.
As such, the new eigenvalue equation can be given as:

n(n — 1) 1"

Jn = —nt'(s) — 5 ° (s) n=0,1,2,..., (14)

3. Bound-state solutions

The radial Schrodinger equation [52, 53] can be given as:

d®Ru | 2u R0+ 1)
B = V() -
dr? + n? ! (r) 2ur?

Ry=0 (15)

where p is the reduced mass, E,; is the energy spectrum, 7
is the reduced Planck’s constant, and »n and [ are the radial
and orbital angular momentum quantum numbers,
respectively (or vibration-rotation quantum number in
quantum chemistry). Substituting Eq. (3) into Eq. (15)
gives:

dang(r)+ 2uE, 2,uDe+ 4uD,r,\ (1
dr2 h2 h2 h2

,
2uD,r? 1 2uVy (1 2uVy [e™*"

_ el = Z) - 16
7))+ 0) - T () o
00+1)

— r2 :|R,15(r):0

The radial Schrodinger equation for this potential can be
solved exactly for / = 0 (s-wave) but cannot be solved for
this potential for / # 0. To obtain the solution for I # 0,
we employ the approximation scheme proposed by Greene

and Aldrich [54] to deal with the centrifugal term, which is
given as:

1 o?

27 (1 — ey’

(17)

It is noted that for a short-range potential, the relation
Eq. (17) is a good approximation to rlz, as proposed by
Greene and Aldrich [55, 56]. This implies that Eq. (17) is
not a good approximation to the centrifugal barrier when
the screening parameter o becomes large. Thus, the
approximation is valid when o < 1. Substituting the
approximation Eq. (17) into Eq. (16), we obtain an
equation of the form:

dan@(r)

dr?
2 4uD,r, 5 2uD, 12 2
ﬁ_g(Eﬂl - De) + ( thr ) (l—é’”) - ( ”ﬁz > ((I,g—u)z)

2uVo o N e W (4R))
+ 72 (l—e"”) 72 (l—e*“) (],efwf

J’_

Rn[(}’) =0
(18)

Equation (18) can be simplified by introducing the
following dimensionless abbreviations

=5 (Ené - De)

V=T (19)

o= (2% u(e+ 1))
d’R(r) 1
dr2 T (1 _ efacr)z
(a1 = e P +B(1 =) + 41 — =)
— e ) — §]Ru(r) = 0

(20)

+ye *"(1

Using a transformation s = ¢~ * so as to enable us to

apply the NU method as a solution of the hypergeometric
type
d’R d’R, dR,¢

o(7) — o252 10) o2s 0(s)

= 21
dr? ds? + ds ’ (21)

we obtain the differential equation
d’R,; (1 —s) dR,, 1
ds?2  s(l—s) ds = 2(1—5)°
[—(En+7)5 4+ Qe —B— 1 +7)5s— (&a — B— 1+ )]
Rn[(s) =0

(22)

Comparing Eq. (22) and Eq. (4), we have the following
parameters
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T(s)=1-—s
{ a(s) =s(1—ys) }
&(S):_(8n+V)sz+(23n_B_X+7)s_(8t1_ﬂ_}f"'(s)
(23)

Substituting these polynomials into Eq. (12), we get n(s)
to be

n(s):—%:l:\/(a—k)s2+(b+k)s+c (24)
where
a=i+e+y
b=-2e,+p+y1—7 (25)

C=8n—/3—%+5

To find the constant k, the discriminant of the expression
under the square root of Eq. (24) should be equal to zero.
As such, we have that

kb =—(26—1—B—9)£2\/a —f—1+0 ‘lﬁ&
(26)
Substituting Eq. (26) into Eq. (24) yields
n= —%i { E\/Zﬂ—\/a?gS—\/ﬁT; for ky = —(02)+2\/E\/a‘3}

Vay —/az)s + \Jay;  for ko = —(ay) — 2/ar /a3
(27)
where
ag :8n_ﬁ_x+5
a=20—y—pF- (28)

az = (3 +9)

From the knowledge of NU method, we choose the
expression 7(s)_ in which the function 7(s) has a negative
derivative. This is given by

ke=—(2—7-B—y)—2Ven—B—z+9 %4‘5
(29)
with 7(s) being obtained as
(o) = 1 —2s—2<m— ﬂ?a)
+2Ven —f—y+0 (30)

Referring to Eq. (13), we define the constant 4 as

1 1
L_—_ - - - in_ — - -

(vemrrTe- i)
(31)

Taking the derivative of Eq. (30) with respect to s, we
have

f/<s>=—2—z< jTot sn—ﬁ—x+5> (32)

And also taking the derivative of ¢(s) with respect to s
from Eq. (23), we have

a’(s) =2 (33)
Substituting Egs. (29) and (30) into Eq. (14), we obtain

/1

By comparing Egs. (31) and (34), the exact energy
eigenvalue equation is obtained as
2

3 Ly B+’
m=p-o+y+y w10 (35)
g:%(um) (36)

Substituting Eq. (23) and Eq. (36) into Eq. (35) yields
the energy eigenvalue equation of the Hellmann potential
plus modified Kratzer potential in the form

K202 5 4uD,r,
2u 2o
4D, ro+20Vo—21V)
o [(#52) 20 g

T 2u 2(n+9) 2 (37)

E, =

—:l — Voo + D,
2

The corresponding wave functions can be evaluated by
substituting 7(s)_anda(s) from Eq. (27) and Eq. (23),
respectively, into Eq. (7) and solving the first-order
differential equation. This gives

B(s) = sVor P _ gtV (38)

The weight function p(s) from Eq. (10) can be obtained
as

pls) = $VHTPIR (1 - g2V (39)
From the Rodrigues relation of Eq. (9), we obtain
\ en—PB—y+0,2+/146
yu(s) = N,,JP,S2 pruvoz 4+o)(1 —2s) (40)
where P*) is the Jacobi polynomial.
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Substituting &(s) and y,(s) from Eq. (38) and Eq. (40),
respectively, into Eq. (5), we obtain
W(s) = Nuss F««‘*’"""XM(I B s)%ﬂ/%—éprgm fen—F—7+6.2:/543) (1 25)
(41)
From the definition of the Jacobi polynomials [57],
24/% r 2 1
VIR (| gy Tt 20+ 1)

T ar2p+1) ’

1
F1<—n, 217+2\/Z+5+n+1,217+1;s>

Ny B @)

In terms of hypergeometric polynomials, Eq. (41) can
be written as

(42)

1 sl (n+2 1
Y(s) = Nuys"(1 — s)zﬂ/ﬁ_é%

1 (44)
F (—n, 27]+2\/Z+5+n+1,27/+1;s>

Using the normalization condition, we obtain the
normalization constant as follows:

2

o]

/an(r) X Ryo(r)dr=1 (45)
0
1 ; d.
2ds
R E =1 s = 46
RS =15 = (46)
1
1 2 2
3 / |Rue(2)] 0 _ZdZ— l,z=1-2s (47)

-1

Substituting Eq. (41) into Eq. (47), we have

1
NZ [ 1=\ 14\ 2
25/( 2Z> ( 2Z> [P @) =1,
1

(48)

1 1
5+ Z+5, (49)
n=ven—p—y+9o (50)

Comparing Eq. (48) with the integral of the form

-1

/ (l%p> X (#)y [pggx,zy—l)( p)} ®

_2x+n+1I'(y+n+1)
 on!lxT(a+p+n+1)

We have the normalization constant as
Nné’ =

n2(ve, —B— 7 +0)al 2(Ven —B— 1 +0) +V1+40+n+2)
IF2(Ven—PF—1+0)+n+1)I(n+2+V1+45)

(52)

4. Special cases

In this section, we take adjustments of some potential
parameters in Egs. (3) and (37) to have the following cases

4.1. Hellmann potential

If D, = 0, Eq. (3) reduces to the Hellmann potential

V(r) = —(?) + (Vler”) (53)

and the energy equation (Eq. 37) becomes
R0l + 1
E, = {M _ VOOC}
2u )
2 (%) —al(l+1) —a(n+L+1)
2u 2(n+L+1)

(54)

Equation (54) is in full agreement with the results in
Refs. [37, 39, 52, 53].

4.2. Yukawa potential

Vo = D, =0, Eq. (3) reduces to the Yukawa or modified
Coulomb potential

V —or
Vir) === (55)

r

and the energy equation (Eq. 37) becomes

2.2
E,— [h a (¢ + 1)]
2p
2
72 (2’;’#) —al(l+1)—a(n+L+1)*
C2u 2(n+L+1)

(56)

Equation (56) is in full agreement with the results in
Refs. [52].
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4.3. Kratzer potential

If Vo =V; =0 and o — 0, the potential reduces to the
modified Kratzer potential

V(r) = D, (r - re)2 (57)

r

and the energy equation (Eq. 37) becomes

hz (4/!}?257}3)
E.o=D,——

2n+1+\/1+4(%;’3+£(£+1))

(58)

Equation (58) is in full agreement with the results in
Eq. (14) of Ref. [58] and Eq. (125) of Ref. [59]

4.4. Coulomb potential

If Vi = D, =0, Eq. (3) reduces to the Coulomb potential
Vi
V(r) = — (0) (59)

r

and the energy equation (Eq. 37) becomes

HPo20(0 + 1
E, = {M—Voa}

2u ,
R (ZZYO) —al(l+1) —a(n+£+1)
- 60
2u 2(n+L+1) (60)
foa—0
2
Enlf = 'uVO (61)

2R (n+ L+ 1)

The result of Eq. (61) is very consistent with the result
obtained in Eq. (101) of Ref. [59].

5. Results and discussion

In order to test the accuracy of our work, we compute
numerical values for energy spectrum and graphical solu-
tions. The energy eigenvalues of the Hellmann potential
plus modified Kratzer potential are computed using
Eq. (37). The explicit values of these energies for different
vibrational and rotational quantum numbers are given in
Table 1.

We have plotted the shape of the Hellmann potential
plus modified Kratzer potential in Fig. 1. This figure gives
an insight into the behaviour of the combined potential.
Also, the variation of the energy eigenvalues with different
parameters of the combined potential such as D,, r,, V,, V;

Table 1 Energy eigenvalues (in eV) of Hellmann potential plus
modified Kratzer potential for different values of n and /. We choose

h=upu=1,a=01,D,=5and r,=0.5

n l En/ Enl Eﬂ/
Vo =1, Vo =2, Vo =1,
Vi=2 V=1 Vi=1
0 1 3.6098162360 2.2796306770 3.0643666800
1 4.0680211760 3.3626175540 3.8022514920
2 4.2584808060 3.8223529290 4.1132507880
3 4.3500319940 4.0539643880 4.2674991130
0 2 4.0719078040 3.3067322330 3.7811328920
1 4.2748679510 3.8144702010 4.1198274230
2 4.3695016860 4.0623536930 4.2827117330
3 4.4158953190 4.1965038950 43681882100
0 3 4.3280575940 3.8742497370 4.1776921370
1 4.4125722780 4.1128007210 4.3302170000
2 4.4526026280 4.2399312150 4.4087038460
3 4.4693698690 4.3106957100 4.4493119800
0 4 4.4727133300 4.1936321330 4.4011779700
1 4.5019773290 4.3048219030 44661193210
2 45119882390 4.3653425830 4.4981264210
3 4.5103332090 4.3970090220 4.5109823540
T
5000 - !
|
| = «=0.01
4000 : ——a=01
[
3000 !
CEERT
’
20004 |
1
i
10004 |
\
\
0 - \ N — — — — — —
0o 2 4+ 6 8 10
r

Fig. 1 Shape of Hellmann potential plus modified Kratzer potential
for different values of the screening parameter (o). We choose V = 1,
V,=2,D,=5,and r, = 0.5

and o is shown in Figs. 2, 3, 4, 5 and 6, respectively, for
various values of n and /. In Fig. 2, it is seen that there is
increase in energy eigenvalues as the dissociation energy
(D,) increases. In Figs. 3, 4, 5 and 6, it is seen that energy
eigenvalues decrease as parameters (r., Vp, Vi and o)
increase. In Figs. 4, 5 and 6, the decrease in energy tends to
spread out from zero position down for different
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Fig. 2 Energy eigenvalues variation with dissociation energy for
various vibrational quantum numbers
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Fig. 3 Energy eigenvalues variation with equilibrium bond length for
various vibrational quantum numbers. We choose i = pu=Vy =1,
V,=2,D,=5 and o = 0.1

vibrational quantum numbers. We have also observed a
uniform increase in energy as the dissociation energy (D,)
increases for the different vibrational quantum numbers.

6. Conclusion

In this paper, we obtained solutions of the Schrodinger
equation with a combination of three different potentials

T
TN
LN -
-100 NN
AN \ ~
B N
-200 A \
N\
\
S -3001 \
b \
B
Ry -400 | \
-5004
----- [0,1>
-600 1 —— |1,1>
2,1>
- — = B.1>
_;00_

Fig. 4 Energy eigenvalues variation with parameter “V,” for various
vibrational quantum numbers. We choose i = u=1,V, =2, = 0.1,
D,=5and r,=0.5

0
T
. \\\
NN
-100 - NN
N\ N
\
N
-200
\
0 \
D 300 A
El \
53]
-400
=500 [+ 0,1>
—— 1>
21>
sl == B>
0 20 40 60 80 100
"

Fig. 5 Energy eigenvalues variation with parameter “V,” for various
vibrational quantum numbers. We choose h =u=Vy =1, a = 0.1,
D,=5and r,=0.5

(Coulomb potential, Yukawa potential and modified Krat-
zer potential) which we called Hellmann—Kratzer potential
using Nikiforov—Uvarov method. The eigensolutions are
obtained for Hellmann—Kratzer potential and other useful
potentials like the Coulomb potential, Yukawa potential
and modified Kratzer potential. Our results find applica-
tions where the component potentials are useful.
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Fig. 6 Energy eigenvalues variation with screening parameter (o) for
various vibrational quantum numbers. We choose i =u="Vy =1,
Vi=2,D,=5and r, = 0.5
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