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Electrical conductivity and an approximate mean square displacement
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2National Institute of Science and Technology for Complex Systems, CNPq, Rio de Janeiro 22290-180, Brazil

3National Institute of Science and Technology for Complex Fluids, CNPq, São Paulo 05508-090, Brazil

Received: 11 August 2018 / Accepted: 21 December 2018 / Published online: 12 March 2019

Abstract: Measurements of electrical properties of materials are of interest in diffusion experiments, where the mean

square displacement of charge carriers plays a distinctive role. Here, an approximation of the mean square displacement is

explored as a route to investigate dynamical aspects of systems from electrical conductivity, independently of the number

of types of charge carriers. Within this framework, based on Kubo’s linear response theory, we focus on the variance of the

center of charges displacement. As an application of this approach, firstly we considered the impedance spectroscopy of a

liquid crystal sample at specific experimental conditions. In a second employment of the approach, we discussed the use of

the approximate (effective) mean square displacement in relation to an equivalent circuit modeling. Our analysis high-

lighted the sensitivity of the method in different situations. In addition, these situations are discussed in connection with

anomalous diffusion. From a theoretical point of view, the results obtained here offer a basis for making use of effective

models that assume the presence of anomalous diffusion.
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1. Introduction

Electrical properties and their measurements are significant

in several areas of science. In particular, the experimental

technique of impedance spectroscopy (IS) plays an

important role in the investigation of several materials.

With the availability of commercially made impedance

bridges covering wide frequency ranges, impedance (con-

ductivity) studies became popular among electrochemists

and materials scientists [1]. For instance, one can examine

in semiconducting materials how electrically active foreign

atoms influence the electrical conductivity. For example, in

ion-conducting materials with negligible electronic con-

duction, one can inspect the conductivity results in con-

nection with the hopping motion of ions. For such materials

and many others, the measurement of the electrical con-

ductivity is an indispensable quantity in order to investigate

charge carrier diffusion.

Commonly, the diffusive behavior is classified in terms

of the mean square displacement (MSD), hr2ðtÞi. The MSD

is frequently related to random walks of particles and, in

the Brownian (normal or usual) case, Einstein’s relation,

hr2ðtÞi / t, is valid; otherwise, an anomalous diffusion is

present. For instance, in the field of solid-state ionics,

hr2ðtÞi refers to the MSD of charge carriers [2–5] and may

not be proportional to t. In fact, in ion-conducting materi-

als, if the charge carriers perform simple random walks, the

subsequent motion of them are uncorrelated and hr2ðtÞi
increases linearly with t; if there is a correlation, hr2ðtÞi can
be proportional to t only for very small and very large times

[6]. When there is only one type of mobile ion, a way to

obtain hr2ðtÞi is through frequency-dependent electrical

conductivity, rðxÞ, via Kubo’s linear response theory

[7–9]. Such approach has been successfully employed in

the discussion of charge carrier diffusion in a variety of

systems [5, 10–19]. Also, note that the MSD can be viewed

as a key function to understand the dynamics of ions as it

connects experimental spectra with model considerations

[20, 21].

*Corresponding author, E-mail: renatofisuem@gmail.com

Indian J Phys (November 2019) 93(11):1437–1443

https://doi.org/10.1007/s12648-019-01414-w

� 2019 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-019-01414-w&amp;domain=pdf
https://doi.org/10.1007/s12648-019-01414-w


Typically, rðxÞ is obtained directly from impedance

spectroscopy (IS) [22–24] measurements. This procedure,

which provides the electrical response of a system through

the application of a small external voltage V, is largely

used to investigate a great diversity of materials, for

instance, solids [25–27], liquids [28–32], fuel cells [33–35]

and biomaterials [36–38]. In general, to investigate the

dynamics of ion transport in materials, where more than

one type of charge carrier might be relevant, rðxÞ is a

pivotal object to achieve a better understanding of charge

carrier behavior [6], including the most diverse experi-

mental conditions that can be imposed on a system. It is

also important to mention that in many substances several

types of ions may contribute to rðxÞ [39]. For example, a

well-documented case is the so-called mixed alkali effect,

in which the conductivity dramatically decreases in alkali

oxide glasses when some of the alkali ions are replaced by

ions of another species [40, 41]. In spite of that, when a

relatively simple measurement like IS is applied to dif-

ferent types of materials, one does not have any additional

information about each type of ion and their precise rele-

vance or contribution to rðxÞ as well as the specific

influence of the experimental conditions in several cases.

Therefore, the goal here is to work around this limitation

by exploring the possibility of considering a mean square

displacement approximation that assumes the presence of

several types of charge carriers. As a first application of

this approximate MSD, we considered a liquid crystal.

After obtaining IS data for the liquid crystal, we used the

relationship between the MSD and rðxÞ to identify

anomalous and normal diffusion regimes. Lastly, our

approximate MSD was employed in connection with well-

known equivalent circuits models used for the analysis of

impedance spectroscopy data, where we also identified

anomalous and normal diffusive regimes.

In the following section, we present the theoretical

aspects concerning the approximate mean square dis-

placement. In Sect. 3, we apply the approximate MSD to a

liquid-crystalline sample, and we also employ the

approximate MSD in connection with equivalent circuits

models. In the last section, we present the conclusions.

2. Methods

Supported by Kubo’s linear response theory [7], Roling

and co-workers showed how to obtain hr2ðtÞi of the ionic

diffusion directly from rðxÞ if only one type of charge

carrier in a bulk sample is present [8, 42, 43]. The resulting

expression is

hr2ðtÞi ¼ 12kBTV

q2Np

Z t

0

dt0
Z 1

0

Re½rðxÞHRðxÞ�
x

sinðxt0Þdx;

ð1Þ

where kB is the Boltzmann constant, T is the absolute

temperature, V is the volume of the sample, q is the ionic

charge, N is the number of charges and HRðxÞ is the

generalized Haven ratio. In several situations, HRðxÞ can

be approximated by a constant, HR [44]. Essentially, HR

indicates the degree of ionic dissociation [6, 28, 45, 46] and

is defined as D=Dr, where D is the self-diffusion

coefficient and Dr is the diffusion coefficient. Generally,

D is acquired via nuclear resonance measurements, while

Dr is obtained from conductivity measurements [47].

Another quantity that can be obtained is proportional to the

mean square displacement of the center of charge of mobile

ions, hR2ðtÞi [5, 7, 10, 11], given by

hR2ðtÞi ¼ 12kBTV

q2Np

Z t

0

dt0
Z 1

0

Re½rðxÞ�
x

sinðxt0Þdx; ð2Þ

where R is defined as

R ¼
ffiffiffiffi
N

p 1

N

XN
i¼1

ri

 !
; ð3Þ

with ri being the position of the ith charge and N being the

number of charge carriers. If HRðxÞ is constant, a

comparison between Eqs. (1) and (2) enables us to write

hr2ðtÞi ¼ HR hR2ðtÞi: ð4Þ

In general, since HR is not known for several materials,

it is assumed as constant [48], and hR2ðtÞi is used instead of
hr2ðtÞi, given their proportionality. This framework has

been successfully employed in discussions of systems

involving only one type of charge carriers [5, 10–19]. Here,

we are going to consider a generalization of this scheme for

when there may be multiple types of charge carriers.

In this generalization, we employ the center of charge

displacement,

R ¼
ffiffiffiffi
N

p PN
i¼1 qiriPN
i¼1 qi

 !
: ð5Þ

Note that if only one type of charge carrier is present,

qi ¼ q, Eq. (3) is recovered. From Eq. (5), and adopting the

procedure of Roling and co-workers [8], we can obtain the

generalized mean square displacement of the mobile ions

center of charge as a function of time in a similar way as in

Eq. (2). This leads to

hR2ðtÞi ¼ 12NVkBTPN
i¼1 qi

� �2
p

Z t

0

Z 1

0

RefrðxÞg
x

sinðxt0Þdxdt0;

ð6Þ
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which is the approximate mean square displacement to be

employed here.

If there are several types of ions and one of them is the

most relevant in a diffusive process, we may think, as a first

approximation, that hR2ðtÞi obtained from Eq. (2) could be

seen as the MSD. However, when there are several relevant

types of charge carriers, we propose to use hR2ðtÞi given in
Eq. (6) to investigate the MSD instead of employing

Eq. (2). Considering the sample holder as a whole in an IS

measurement, rðxÞ captures, in addition to bulk effects,

wall effects on electrodes among possible others. Similarly,

because of Eq. (6), hR2ðtÞi encompasses an analogous

amount of aspects. Interestingly, similar effective approa-

ches were considered before [6, 49], although not as

directly applicable as hR2ðtÞi proposed here. In fact, by

putting the experimentally obtained rðxÞ in Eq. (6), we can
promptly investigate the behavior of hR2ðtÞi. Also, note
that hR2ðtÞi essentially has the same contents as RefrðxÞg
since there is basically an inverse Fourier transform in

Eq. (6). These facts and the microscopic interpretation of

hR2ðtÞi point toward the use of it as a possible framework

to investigate systems by using IS data.

Observe that if there is only one type of charge carrier in

Eq. (6), qi ¼ q 8 i, Eq. (2) is recovered. Similarly, if

rðxÞ ¼ r (constant), it is verified that

hR2ðtÞi ¼ 6VkBTRefrgPN
i¼1 qi

� �2
N

 !
t; ð7Þ

i.e., the usual Brownian regime for hR2ðtÞi is obtained.
The way r depends on x is of considerable interest for

different materials [22, 50]. One of the first works on this

issue was the one published by Jonscher [51], who showed

that different kinds of conductors exhibit a threshold fre-

quency (approximate) from which rðxÞ is not constant

anymore. Nowadays, the presence of interactions and,

consequently, correlations in the ions diffusion have been

used to explain such type of frequency dependence on

conductivity [22].

In view of this, the ionic conductivity has been com-

monly expressed as [2, 3, 22, 52]

rðxÞ ¼ r0 1þ x
x0

� �p� �
; with 0\p\1; ð8Þ

in which r0 is the portion frequency—independent of rðxÞ
and x0 is a dispersion frequency. From Eq. (8), when

x.x0, RefrðxÞg � r0 ¼ constant; therefore, the diffusion

is usual (Eq. 7). On the other hand, if xJx0, the diffusion

is anomalous. In order to further understand this aspect, we

consider the integrals in Eq. (6) with RefrðxÞg / xp. In

this way, we have

hR2ðtÞi /
Z t

0

Z 1

0

xp

x
sinðxt0Þdxdt0 / t1�p: ð9Þ

This last proportionality can also be visualized via

dimensional analysis. Indeed, as sinðxtÞ is dimensionless,

we have x� t�1 and consequently the integrals (9) in terms

of t. As high (low) frequencies are related to short (long)

times, by using the full Eq. (8), we obtain normal diffusion

at long times and anomalous diffusion at short times as

indicated by Eq. (9).

Particularly in anomalous diffusion, one usually has the

power law

hr2ðtÞi ¼ A ta; ð10Þ

with A constant. If a[ 1, the process is superdiffusive; if

a\1, the process is subdiffusive; and a ¼ 1 refers to

normal diffusion [53–55]. As pointed out before, in many

cases hr2ðtÞi ¼ HRhR2ðtÞi and Eq. (2) has been success-

fully used to investigate diffusion in solid materials when

there is only one type of charge carrier. In particular, it was

found that the dynamics of mobile ions is subdiffusive in

short timescales, approaching normal diffusion in long

timescales [5, 8, 11–18, 42, 48, 56–58].

After the theoretical extension conducted along this

section, we are considering the possibility of using Eq. (6)

and, consequently, Eq. (2) as special case, as an effective

mean square displacement to investigate situations related

to electrical conductivity. In the next section, we discuss

the application of the approximate mean square displace-

ment hR2ðtÞi to a liquid-crystalline sample and we also

employ the approximate MSD in connection with equiva-

lent circuits models.

3. Results and discussion

3.1. Application of hR2ðtÞi to a liquid crystal

When analyzing the liquid crystal sample studied here, it

was observed that a bit modified Jonscher’s expression

seems to be more suitable for rðxÞ data, namely

rðxÞ ¼ r0 1þ x
x0

� �q� �p=q
; with 0\p\1 and q ¼ 2:

ð11Þ

This equation has the same asymptotic behavior observed

in Jonscher’s formula (Eq. 8) and, when p ¼ 0, one has

normal diffusion, since rðxÞ ¼ r0. In comparison with

Eq. (8), one advantage of Eq. (11) is it fits better to data

that present a more pronounced increase in rðxÞ after the
dispersion frequency.
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Regarding the experimental procedures, a Solartron SI

1296 A impedance–gain phase analyzer was used to carry

out impedance spectroscopy measurements. The frequency

range employed was 103 Hz to 5MHz, with the external

voltage amplitude fixed at V ¼ 10mV. The sample was

placed between two stainless steel circular electrodes with

an area of 3:14 cm2, separated by a distance d ¼ 1:0mm,

with the total volume of m ¼ 0:314ml. In advance of

starting the measurements, the surface of the electrodes

was decontaminated in two steps: first, by washing with

detergent and deionized water and second, by an ultrasonic

bath in acetone (C3H6O, molar mass = 58:08 gmol�1) for

10min.

The first step is to perform the fit of rðxÞ obtained via IS
by using Eq. (11). Figure 1 shows rðxÞ as a function of x
for the investigated sample, a thermotropic liquid crystal

E7, with temperature fixed at 52 �C. This figure also shows

the fit with Eq. (11).

The values of the parameters from the best fit (adjusted

R2 ¼ 0:99) are r0 ¼ 0:0948X�1 cm�1 [0.0947; 0.0949]95%,

x0 ¼ 1:0241� 106 Hz [0:9855� 106; 1:0628� 106]95%
and p ¼ 0:1747 [0.1698; 0.1796]95%, where the values

between brackets are the 95% confidence interval. By using

hR2ðtÞi as an effective (approximate) mean square dis-

placement, its calculation and comparison with Eq. (10)

show a subdiffusion for xJx0 (or short times) with the

proportionality constant A ¼ 0:0060 [0.0059; 0.0061]95%
and exponent a ¼ 0:827 [0.826; 0.829]95%, as shown in

Fig. 2 (green dotted line). This behavior is probably

because the charge carriers in the E7 sample find large

molecular clusters [59] as they move through the material.

For large times (x.x0), the hR2ðtÞi behavior approaches
the usual regime, in which the fit parameters are A ¼ 0:047

[0.045; 0.050]95% and a ¼ 0:978 [0.974; 0.983]95% (Fig. 2,

red dashed line).

This type of diffusive behavior has also been found

when Eq. (2) is applied to solid samples. For example, for

silver phosphate glasses, the silver ion migration presents

hR2ðtÞi / t1�p at short times, where the exponent p varies

between 0.65 and 0.68 for different temperatures and

compositions, while at large times hR2ðtÞi approaches the

normal diffusive regime [12] (/ t). Also, for silver ion

dynamics in molybdophosphate glasses, hR2ðtÞi / t0:40 at

short times, approaching the normal diffusive regime at

large times [13]. For ions in lithium phosphate, bismuth

borate and borotellurite glasses, a similar behavior was

observed, as hR2ðtÞi / t1�p, with p ¼ 0:64� 0:70

depending on the composition of the glasses [15–18].

Thereof, our results reveal that an anomalous diffusion

of the charge carriers, at least when one considers hR2ðtÞi,
may be present in the liquid crystal investigated here.

Specifically, the exponent found for the anomalous case is

smaller than one, which represents subdiffusive processes.

This is an indication that the employment of hR2ðtÞi can be
useful in the study of liquid materials.

Although not explored here, another application of

hR2ðtÞi could be in the study of phase transitions. Con-

ductivity as a function of frequency is constant for a fre-

quency range, such as the initial plateau in Fig. 1. In

general, the value of r corresponding to this plateau is

called rdc (dc conductivity) [22]. In Eq. (7), we saw that, in

a general way, hR2ðtÞi ¼ Dt when rðxÞ ¼ rdc ¼ constant.

Along with the temperature dependence T in D, rdc also

has a temperature dependence given by the Arrhenius

relation [15]. In a first-order phase transition, for instance,

rdc may present a jump in its value as the temperature

varies, which will directly correspond to a jump in the

diffusion constant value D. In this way, phase transitions
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could also be investigated by employing the scenario of the

approximate mean square displacement hR2ðtÞi.
In the next subsection, we theoretically discuss the

usage of the effective mean square displacement in

equivalent circuits models used in impedance spectroscopy

analysis.

3.2. Approximate mean square displacement

in connection with equivalent circuits

Another approach widely used in connection with IS

measurements is to fit the data by using equivalent circuits.

These circuits are commonly composed by resistors and

capacitors [22]. The simplest RC (resistor–capacitor) cir-

cuit is shown in Fig. 3.

This circuit provides a fairly simplified approximation

of an electrolytic cell. Typically, the resistance represents

the sample, and the capacitance corresponds to the elec-

trodes. The connection with hR2ðtÞi is made by obtaining

the equivalent impedance Zeq. For the RC circuit in Fig. 3,

the association between the resistor with resistance R and

the capacitor with capacitance C leads to

1

Zeq
¼ 1

ZR
þ 1

ZC
¼ 1

R
þ ixC; ð12Þ

in which was used that the resistive and capacitive

impedance are ZR ¼ R and ZC ¼ 1=ðixCÞ, respectively.

In turn, the conductivity is given by

rðxÞ / 1

Zeq
; ð13Þ

therefore, RefrðxÞg / Ref1=Zeqg ¼ 1=R ¼ constant.

Thus, by means of Eq. (6), a system that is well represented

by the RC circuit presents only the normal diffusion (see

Eq. (7)).

Generally, the modeling of experimental data requires

more elaborate equivalent circuits. An example is a Ran-

dles circuit, which is one of the simplest and most common

models used for many aqueous, conductive and ionic

solutions [60]. It includes only a solution resistance RSOL, a

parallel combination of a double-layer capacitor CDL and a

charge transfer or polarization resistance RCT (Fig. 4).

The details of current distribution in the Randles circuit

are largely similar to those in the RC circuit, with the

necessary correction for the presence of the additional

series resistor RSOL. The simplified Randles model is often

the starting point for other more complex models, mainly

for charge-transfer kinetic analysis in highly conductive

solution systems not impeded by migration and diffusion

mass-transport effects [60]. The circuit analysis results in

the expression for total impedance of the circuit as

Zeq ¼ RSOL þ
RCT

1þ ðxRCTCDLÞ2
� i

xR2
CTCDL

1þ ðxRCTCDLÞ2
:

ð14Þ

From this, the real part of conductivity can be evaluated as

RefrðxÞg / Re
1

Zeq

	 

¼ RSOL þ B

½RSOL þ B�2 þ D2
; ð15Þ

where B ¼ RCT=½1þ ðxRCTCDLÞ2� and D ¼ xRCTCDLB.

From this result, the first analysis that can be conducted is

to consider the limit case of RSOL ! 0, which corresponds

to the RC circuit case. At this limit, one obtains

RefrðxÞg / 1=RCT ¼ constant; therefore, the diffusion is

normal as expected. In a second analysis, the full Eq. (15)

is considered and the integral in Eq. (6) can be numerically

performed in order to obtain hR2ðtÞi. The result is illus-

trated in Fig. 5 with RSOL ¼ 20X, RCT ¼ 350X and

CDL ¼ 30 lF.
The system presents two separated normal diffusive

regimes, which are mainly caused by the values of the

resistances. For example, the inset in Fig. 5 shows hR2ðtÞi
calculated with RSOL ¼ 350X, RCT ¼ 20X and

CDL ¼ 30 lF. For this set of values, it is difficult to visu-

alize another diffusive regime than the normal one. In

general, equivalent circuits with more resistive and

capacitive elements present a richer scenario for hR2ðtÞi.
Another common equivalent circuit that has been used is

the one with RSOL replaced by a constant phase element

(CPE), as shown in Fig. 6. In this type of circuit, the RC

part represents the bulk of the sample, and the CPE rep-

resents the effects on the electrodes surfaces [22, 61].

The impedance of the CPE element is [60]

ZCPE ¼ ~TðixÞ�m; with 0\m\1; ð16Þ

R

C

Fig. 3 Resistor–capacitor (RC)

circuit

CDL

RCT

RSOL

Fig. 4 Randles circuit
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where ~T and m are real phenomenological parameters that

depend on the electrodes type and the solution, for the case

of liquid samples. It can be noted that, when m ! 0

(m ! 1), ZCPE is reduced to a resistance (capacitance). In

general, the CPE element interpolates resistive and

capacitive behaviors.

Instead of analyzing rðxÞ for this full circuit, for sim-

plicity’s sake, suppose that it comes down to just the CPE

element. In this simplified scenario,

RefrðxÞg / Re
1

ZCPE

	 

¼

cos mp
2

� �
~T

xm: ð17Þ

Therefore, as done in Eq. (9), the CPE element corresponds

to a subdiffusion of the charge carriers with a time expo-

nent 1� m. This result indicates that systems which are best

described by equivalent circuits with CPE elements pre-

sent, to some degree, a subdiffusive aspect.

In general, following the line of reasoning shown above,

we can connect rðxÞ to hR2ðtÞi for any equivalent circuit.

However, a difficulty in using these circuits is the lack of a

more detailed interpretation of the relation between the

circuit elements and the physical system elements under

consideration [22]. Note that, despite this difficulty, the use

of RefrðxÞg / Ref1=Zeqg enables us to write the MSD for

the system via Eq. (6).

4. Conclusions

To put the subject matter in its proper perspective, and to

make clear the nature of our study about the dynamics of

charge carriers, we have highlighted some aspects. From

Eq. (6), the impedance spectroscopy data can be directly

translated into an approximate (effective) mean square

displacement for charge carriers. Also, the electrical con-

ductivity, rðxÞ, is basically connected with hR2ðtÞi via a

Fourier transform. Furthermore, after using a general

equation as in Eq. (10), the a exponent may quantitatively

inform, at least approximately, the diffusive behavior of the

full system. Thus, as an alternative of using only infor-

mation from rðxÞ to investigate materials, we also indicate

the employment of hR2ðtÞi, mainly motivated by two

attributes: hR2ðtÞi is interpreted as a microscopic feature of

the random walk of the charge carriers and, when the use of

an Eq. (10) like is suitable, the properties of rðxÞ are

mapped into only two parameters, A and a. It must also be

pointed out that the adequacy of hR2ðtÞi to investigate the

dynamics of charge carriers is supported by several

experimental results on solids and glasses

[5, 8, 10–19, 42, 48, 56–58], where it was possible to

assume one type of charge carrier, and by our present

investigation on a liquid crystal, considering the possibility

of many types of charge carriers and several experimental

effects on the sample holder. Concerning equivalent cir-

cuits, and the sometimes complex interpretation of their

elements, we verified that the hR2ðtÞi approach gives a

very direct information regarding the diffusion, i.e., if it is

normal or anomalous. From a theoretical point of view,

these achievements give rise to the possibility of employ-

ing simple effective models assuming that anomalous dif-

fusion is present or not. These facts enable us to claim that

the effective anomalous diffusion approach explored here

may be a simple, direct and concise route to investigate

charge carrier dynamics in general, together with electrical

properties of matter, from impedance spectroscopy data.
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