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Fractal study on Saraswati supercluster
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Abstract: The study of galaxies and superclusters is a major field of interest of astrophysicists. With the development of

modern advanced telescopes and data acquisition systems, scientists could gather more information about the universe.

Investigations using Sloan 2.5-m telescope, the multi-fiber spectrograph and the galaxy redshift data recorded enabled the

discovery of Saraswati—an extremely massive and giant supercluster. Fractal analysis is an established powerful math-

ematical technique for the analysis and study of complex systems extending from microcosm to macrocosm. Fractal

dimension is related to the complexity of the system. In the present work, an attempt has been made to analyze the recently

reported supercluster Saraswati by box-counting method. It is found that fractal dimension is very high for the supercluster

and low for the voids. The fractal dimension of 1.75–2 in the Saraswati region suggests a sheet-like morphology to it.

Complexity mapping is carried out by plotting contour plot of fractal dimension and percentage occupancy plot, which

enable greater understanding of the distribution of galaxies in the universe.
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1. Introduction

Clusters of galaxies are the bound system of gravitationally

interacting particles with typical masses ranging from 1014

to 1015 solar masses, which act as a potential tool for the

detailed study of galaxy formation, dark matter, large-scale

structure, cosmology, etc. Until the discovery of super-

clusters in 1980, these galaxy clusters were considered as

the largest known systems in the universe. Superclusters

are large group of galaxy clusters which highlight the

large-scale structure of the universe that reflects the initial

conditions existed in the early universe and gives strong

evidence for the different cosmological models of galaxy

formation [1, 2]. Superclusters usually span around 100

megaparsecs (Mpc) across and can have mass greater than

1016 solar masses [1, 3–7]. The position of superclusters in

the hierarchical formation is above clusters with a differ-

ence in virialization. Superclusters, a collection of clusters

with a spatial density enhancement [8], have not attained a

quasi-equilibrium configuration unlike clusters with equi-

librium configuration. Hence, superclusters are considered

as transition objects reflecting their initial state [1, 2].

Superclusters are surrounded by regions with very low or

zero mass density called voids [9, 10]. The connection

between the dark matter and dark energy is responsible for

the formation of large-scale structures like superclusters in

the universe [11]. Superclusters show both filamentary and

sheet-like morphology, and those with voids are commonly

called cosmic web [12]. The spectroscopic analysis of the

redshift data recorded from different regions of the cosmic

web helps in identifying a supercluster. Friends of Friends

(FoF) algorithm [6, 13] and smoothed density field method

[11] are the two popularly used techniques for the identi-

fication of superclusters. From the literature, it can be seen

that wavelet [14, 15] and minimal spanning tree (MST)

[16, 17] approaches are extensively used in cluster

identification.

The statistical properties of the large-scale structure of

the universe can be analyzed using the data from the red-

shift survey. The galaxy redshift data from the Stripe 82

region of the Sloan Digital Sky Survey (SDSS-III D12)

enabled Bagchi et al. [1] to discover the massive
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superclusters of galaxies with the calculated mass of

approximately 2 9 1016 solar masses, called Saraswati

[1, 18, 19]. The SDSS uses a multi-fiber spectrograph

mounted on the Sloan 2.5 m telescope to record the redshift

data. The redshift data are converted into a plot on

comoving coordinates, and then the Saraswati supercluster

is identified by using the FoF algorithm. Saraswati spans

around 200 Mpc across and is found at a mean redshift

z = 0.28. Saraswati consists of about 43 massive galaxy

clusters, with extremely massive one at the central core

region [1].

A number of quantitative methods are recently intro-

duced to study the distribution of galaxies [20]. Wavelet

transform is one such mathematical tool that can be used in

the analysis of images. Fractal analysis introduced by

Gomory [21] and Mandelbrot [22] is another tool having

the potential to analyze microcosm as well as macrocosm

[12, 23–27]. Hence, the technique is widely used in the

study of galactic distribution and images. Fractals are self-

similar objects having the same details in different scales

[22, 27]. Fractal analysis enables us to measure the com-

plexities and self-similarities of the patterns by a quantity

called fractal dimension. Fractal dimension is a non-integer

value which is greater than the topological dimension and

less than the euclidean dimension of the pattern or the data

under study. The deviation of fractal dimension from this

topological and euclidean dimension features to the com-

plexity and self-similarity of the pattern [28].

Fractal dimension does not change with different

transformations applied to the image like changing the

intensity, adding multiplicative noise and locally scaling

the gray values. In cosmology, fractal analysis enables us

(i) to study the complexities and self-similarities of struc-

tures in the universe, (ii) to identify the morphology of the

structures and (iii) to classify the structures based on their

distribution [12, 29]. The various methods commonly used

for finding the fractal dimension are power spectrum,

walking divider, prism counting, epsilon bracket, correla-

tion and box-counting method [25, 30–32]. Of these

methods, box counting is the most commonly used tech-

nique for finding the fractal dimension of highly complex

structures [33]. Box-counting method is superior to other

fractal dimension-finding techniques in cosmology like

correlation dimension because it does not require any prior

assumption about the homogeneity of the universe [34, 35].

Fractal analysis is employed by many scientists to

understand the large-scale structures in the universe such as

galaxies, clusters and superclusters [29, 36–39]. Jones et al.

[27] effectively used box-counting and multifractal meth-

ods to characterize the large-scale clustering of the uni-

verse. Klypin et al. [12] used the box-counting and cluster

analysis technique to find the fractal dimension of the

Virgo supercluster. They have reported a fractal dimension

of about 1.3 in the inter-Virgo-Coma supercluster, which is

assigned to the filamentary morphology, and a fractal

dimension of 1.9 in the Virgo supercluster which is

assigned to the sheet-like morphology. The fractal studies

carried out by Conde-Saavedra et al. [28] revealed a high

fractal dimension in the low redshift region and low fractal

dimension in the high redshift region.

In the present work, the recently reported Saraswati

supercluster is subjected to fractal analysis and also an

attempt has been made to classify regions of identical

complexities. The data used for the study are obtained from

the galaxy redshift data provided by the Sloan Digital Sky

Survey (SDSS-III DR12). This is obtained by combining

the photometric data of the galaxies taken from

‘‘LEGACY,’’ ‘‘BOSS’’ and ‘‘SOUTHERN’’ (LBS) pro-

grams of the SDSS-III DR12 database [1, 40, 41]. The

Stripe 82 region which spans along the celestial equator

with right ascension (RA) values between 310� and 59� and

declination between - 1.25� and 1.25� is explored. The

galaxies which give clean spectra with redshift errors\
1% are selected. The magnitudes of the galaxies are

k-corrected using K-CORRECT version 4.3 software for

converting them into comoving coordinates [42]. The

sample is volume limited by using the cModel r-band

absolute magnitude Mr B-21.53 and the redshift z B 0.33

[43]. Fractal analysis is done on a volume-limited region

from the central part of Stripe 82 that contains about 3016

galaxies, the span of which can be described with RA

ranging from 336� to 16�, declination ranging from

- 1.25� to 1.25� and redshift data ranging from 0.23 to

0.33. The cosmological parameters used for the data col-

lection and analysis are based on the 5-year Wilkinson

Microwave Anisotropy Probe (WMAP) results [44]. The

parameters used are Hubble constant H0 = 70.1 km s-1 -

Mpc-1, matter density parameter XM = 0.279, dark energy

density parameter XK = 0.721, the radiation density

parameter XR = 8.493 9 10-15 and the state of the dark

energy x0 = -1 [1].

2. Fractal analysis

Among the various methods for calculating the fractal

dimension, the simplest and widely used technique is the

box-counting method. In this method, the pattern to be

analyzed is superimposed by grids (boxes) of side 2 and

the number of boxes N(2) required to cover the fractal

pattern is counted. The process of counting N(2) is repe-

ated for different values of box size 2. The number of

boxes is related to the box size by the following equation:

N 2ð Þ /2�d ð1Þ

where d is the fractal dimension; taking logarithm, we get
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lnN 2ð Þ ¼ d ln
1

2

� �
þ constant ð2Þ

such that lim
2!0

ln N 2ð Þð Þ
ln 1=2ð Þ = d.

The slope of the plot of log(N(2)) versus the log(1/2)
corresponds to the fractal dimension (d) of the pattern

[23, 31]. Since fractal analysis is based on the principle of

self-similarity and scale invariance of fractal dimension,

one can determine the fractal dimension by taking any set

of box sizes 2. Since the choice of maximum and mini-

mum value of 2 does not change the slope of the straight

line fitted, the fractal dimension remains unchanged.

The data used for the fractal analysis are the 2D pro-

jection of the 3D data, which is obtained by suppressing the

small depth of 2.5� in the declination direction. The depth

of the sample used is very small compared to the RA value

(45�), and it can be approximated to a laminar 2D structure.

This transformation of the 3D into 2D equivalence does not

affect the information derived from the sample under study.

The mathematical theorem about projection of a 3D object

into 2D and the estimation of fractal dimension say that the

fractal dimension of 2D photograph of a 3D object and that

of the 3D object are related. Thus, if the dimension of the

3D object is greater than two, then its 2D picture will have

dimension of two and if the dimension of the 3D object is

less than two, then the dimension of the 2D photograph will

be the same as that of 3D object [32, 45].

3. Results and discussion

The recently discovered massive large supercluster Sar-

aswati found in the central part of Stripe 82 region is shown

in Fig. 1 (plotted using the data from SDSS III DR 12

database [18, 19]) which is subjected to fractal analysis

using box-counting method. Figure 1 is then divided into

783 grids with sides 18.5 Mpc, which is comparable to the

linking length used in Friends of Friends algorithm

(19 Mpc) by Bagchi et al. [1]. For analyzing the variation

of fractal dimension over this region, box-counting method

is applied to each grid by varying the box size from 0.6 to

9.8 Mpc as described in Sect. 2. The portion of Fig. 1

occupying one such grid of 18.5 Mpc 9 18.5 Mpc size is

shown in the inset of its log N(2) vs log 1/2 plot shown in

Fig. 2. The log N(2) and log 1/2 show a strong correlation

with R2 value equal to 0.9995. For complexity mapping,

the fractal dimension of each grid is determined and the

contour surface plot of the fractal dimension in the XY

plane is plotted as shown in Fig. 3a. The contour plot gives

information about the regions of identical complexity.

From the contour plot, it is observed that the fractal

dimension of the grids varies between zero and two. The

central part spanning around 200 Mpc is found to show a

high fractal dimension indicating a higher level of com-

plexity or high-density clustering of galaxies. This high

fractal dimensional area in the contour plot at the center

region is the same as the position of the Saraswati super-

cluster obtained by FoF algorithm reported by Bagchi et al.

[1]. Thus, the fractal analysis provides a means for com-

plexity analysis giving information regarding clustering of

galactic points.

In the contour plot, there are regions with very low

fractal dimension (\ 0.25). The position of voids in the

comoving data is characterized by fractal dimensions with

low value and evident from Fig. 3a. Also, it is observed

that while going radially outward from any void, the fractal

dimension is increasing which is an indication of the

increase of complexity and greater crowding of galaxies in

that region. Most of the regions in the contour plot have a

fractal dimension ranging from 1.5 to 1.75. It is evident

from Fig. 3a that the majority of regions in the Stripe 82

region show similar complexities and self-similarities with

the same number density of galaxies. The variation of

fractal dimension across the Saraswati supercluster is

shown in Fig. 3b. The percentage occupancy plot is

another way of expressing the complexity of the system.

The percentage occupancy of each grid is calculated by

finding the percentage of area occupied by the image in a

Fig. 1 Central part of Stripe 82 containing Saraswati supercluster Fig. 2 Log N(2) vs log 1/2 plot of one representative grid
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grid to the area of one grid. Figure 4 shows the contour plot

of the percentage area occupancy of each grid across the

central part of Stripe 82. From this plot (Fig. 4), a higher

percentage occupancy ([ 50%) can be observed in the

region called Saraswati. The lower value of percentage

occupancy indicates voids or lower number of galactic

points. This helps in understanding the nature of the dis-

tribution of galaxy points and morphology. From the

literature, it can be seen that in the low redshift region, the

fractal dimension will be high [28]. The present study is in

agreement with the literature showing a fractal dimension

of 1.75–2 in the Saraswati region having a low redshift

value of * 0.28. Klypin et al. [12] reported sheet-like

morphology for the Virgo supercluster with a fractal

dimension of 1.9. Since the fractal dimension of Saraswati

Fig. 3 (a) Contour plot of
fractal dimension in central part

of Stripe 82 and (b) variation of

fractal dimension across the

Saraswati supercluster

Fig. 4 Percentage area

occupancy of the central part of

Stripe 82
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supercluster also is found to be about 1.75–2, we propose a

sheet-like morphology to it.

4. Conclusion

The results of the study reveal that fractal analysis using

box-counting method can be used as a potential tool for

studying the distribution of galaxies in the universe. High

fractal dimension is related to the presence of the clustered

distribution of galaxies, and low fractal dimension is

attributed to low mass density distributions called voids.

The results of the study are in agreement with original

report, and the region Saraswati shows a fractal dimension

of 1.75–2. The study reveals sheet-like morphology to the

Saraswati supercluster in comparison with the Virgo

supercluster. The Saraswati region at a low redshift value

of * 0.28 shows a higher fractal dimension which is also

in agreement with the literature. The distribution of

galactic points is also analyzed by plotting contour plot of

fractal dimension and percentage occupancy plot.
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Astrophys. 462 811 (2007)

[4] M Einasto, J Einasto, E Tago, G B Dalton, and H Andernach

Mon. Not. R. Astron. Soc. 269 301 (1994)

[5] C Park, Y-Y Choi, J Kim, J R Gott III, S S Kim, and K-S Kim

Astrophys. J. Lett. 759 L7 (2012)

[6] V J Martinez and E Saar Statistics of the Galaxy Distribution

(London: Chapman and Hall/CRC) (2001)

[7] M Einasto, H Lietzen, E Tempel, M Gramann, L J Liivamägi,
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L5 (1999)

[30] J Feder Fractals (New York: Springer Science & Business

Media) (2013)

[31] S Soumya, M S Swapna, V Raj, V P Mahadevan Pillai, and S

Sankararaman Eur. Phys. J. Plus 132 551 (2017)

[32] K Falconer Fractals: A Very Short Introduction (Oxford: OUP)

(2013)

[33] A Annadhason IRACST—International J. Comput. Sci. Inf.

Technol. Secur. 2 166 (2012)

[34] R Murdzek Rom. J. Phys. 52 149 (2007)

[35] J S Bagla, J Yadav, and T R Seshadri Mon. Not. R. Astron. Soc.

390 829 (2008)

[36] B J T Jones, V J Martı́nez, E Saar, and V Trimble Rev. Mod.

Phys. 76 1211 (2005)

[37] P H Coleman and L Pietronero Phys. Rep. 213 311 (1992)

[38] X Luo and D N Schramm Science. 256 513 LP (1992)

[39] J Gaite J. Cosmol. Astropart. Phys. 2018 010 (2018)

[40] T Antal, F S Labini, N L Vasilyev, and Y V Baryshev EPL

Europhysics Lett. 88 59001 (2009)

[41] D W Hogg, M R Blanton, D J Eisenstein, J E Gunn, D J Sch-

legel, I Zehavi, N A Bahcall, J Brinkmann, I Csabai, and D P

Schneider Astrophys. J. Lett. 585 L5 (2003)

Fractal study on Saraswati supercluster 1389

http://www.sdss3.org/


[42] M R Blanton and S Roweis Astron. J. 133 734 (2007)

[43] D J Eisenstein, J Annis, J E Gunn, A S Szalay, A J Connolly, R

C Nichol, N A Bahcall, M Bernardi, S Burles, and F J Castander

Astron. J. 122 2267 (2001)

[44] E Komatsu, J Dunkley, M R Nolta, C L Bennett, B Gold, G

Hinshaw, N Jarosik, D Larson, M Limon, and L Page Astrophys.

J. Suppl. Ser. 180 330 (2009)

[45] Y Baryshev and P Teerikorpi ArXiv Prepr. Astro-Ph/0505185

(2005)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1390 V Raj et al.


	Fractal study on Saraswati supercluster
	Abstract
	Introduction
	Fractal analysis
	Results and discussion
	Conclusion
	Acknowledgements
	References




