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Abstract: In this paper, an analysis of the spread of random extraneous low-frequency (50 Hz) vibrations excited in a

gravimeter body is presented. Further, their influence on the gravimeter scale reference system is determined by applying

the theory of covariance function. The data on the measurement of strength of random extraneous vibrations in fixed points

excited in the gravimeter body were recorded on the time scale in the form of arrays using a three-axis accelerometer.

High-frequency (2 and 20 kHz) noise vibrations were also used to modulate the gravimeter scale data. While processing

the results of measuring the strength of random extraneous vibrations and the data arrays on the reference system, estimates

of autocovariance and cross-covariance functions by changing the quantisation interval on the time scale were calculated.

Software developed within the MATLAB 7 package was applied for the calculations.
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1. Introduction

When carrying out precise gravimetric measurements, the

results are considerably influenced by vibrations predomi-

nating at the point of measurement that may be of both

natural (caused by wind) and artificial origins (excited by

vehicles or factories). Modern gravimeters, such as the

Scintrex CG-5 used in this study, use filters for eliminating

extraneous vibrations. In this study, the influence of

extraneous vibrations on the gravimeter reference scale is

investigated by applying the theory of covariance func-

tions. For measuring the parameters of extraneous vibra-

tions, the vibration measuring bench from Brüel and Kjær

(Denmark) was used. Figure 1 shows the test bench for

investigating the dynamic properties of the gravimeter, the

data collection, and processing equipment (3660D) with a

DELL computer (positions 1 and 2 in Fig. 1), the three-axis

accelerometer (4506), and the gravimeter under investiga-

tion (positions 3 and 4 in Fig. 1).

During the experimental investigation, the data on the

gravimeter’s reference system were measured at different

excitations of extraneous vibrations: zero excitation, har-

monic vibrations up to 50 Hz, and sweep vibrations up to

50 Hz. In the research, the acceleration of extraneous

vibrations in the Z-direction (vertical) is analysed.

Further, the influence of extraneous vibrations that

affect the performance of the gravimeter on the gravimeter

scale reference system (upon applying the theory of

covariance functions) was determined.

The data on the influence of extraneous vibrations on the

arrays of the gravimeter scale reference system were

obtained using the experimental bench with the three-axis

accelerometer, as shown in Fig. 1. The spectrum of

experimental bench measurement data is shown in Figs. 2

and 3.

At two points on the body of the gravimeter (situated in

its lower and upper parts), extraneous vibration signal

excitation vectors were obtained by the accelerometer

under four experimental conditions (1 to 4), and high-fre-

quency noise vibrations were used in condition 5. These

five conditions were as follows:

1. At zero extraneous excitation on the vibration bench,
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2. At zero extraneous excitation on the floor,

3. At harmonic excitation up to 50 Hz on the vibration

bench,

4. At sweep excitation up to 50 Hz on the vibration

bench.

5. Modulating the gravimeter vibrations using high-

frequency noise vibrations (2 and 20 kHz)

2. Simulation of parameters of the gravimeter’s

vibrations

In the paper, we provide details of a calculation method for

the most reliable value of the vibration vector’s trend by

applying the least-squares method. Here, we assume the

vibration vector trend is discrete with a constant value.

Moreover, the application of the least-squares method

partially eliminates random errors of the vibrations. For

processing large volumes of measurement data, the least-

squares method provides asymptotically effective values of

the calculated parameters, particularly when the distribu-

tion of the measurement data is not normal.

The array of measurement data of low-frequency

vibration acceleration consists of four vectors u (columns).

Each vector is understood to be a random function having

random measurement errors. Upon applying the least-

squares method to each vector u, we calculate the most

reliable value ~u of the vibration vector trend, which is

referred to as the weighted average. We apply an

assumption that variations in the value of the vector trend

are harmonic when the predicted wavelength conforms to

the vector length of the vibrations’ acceleration. The

parametric equation of a single value ui of the vector is

expressed as follows:

ei ¼ ui � ai ~u; ð1Þ

where ei is a random error of acceleration, ui is the value of

acceleration, and ~u is the trend of the acceleration vector.

Coefficient ai is expressed as follows:

ai ¼ cosDi; ð2Þ

where Di ¼ D � i; D ¼ 2p=n is the value of the

measurement unit and i = 1, 2, …n. We express Eq. (1)

using matrices as follows:

e ¼ u� A ~u; ð3Þ

where e is the vector of random errors, u ¼
u1;u2; . . .;unð ÞT is the vibration acceleration vector, and

A ¼ a1; a2; . . .; anð ÞT is the matrix of coefficients of para-

metric equations (n 9 1).

We calculate the most reliable value of the vibration

acceleration vector u upon applying the condition of the

least-squares method as follows:

Fig. 1 Gravimeter reference system investigation bench

Fig. 2 Time signal of experimental bench measurement data at

operating gravimeter (blue curve) and zero extraneous excitation (red

curve) (colour figure online)

Fig. 3 Frequency spectrum of experimental bench measurement data

at operating gravimeter (blue curve) and zero extraneous excitation

(red curve) (colour figure online)
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U ¼ eTPe ¼ min; ð4Þ

where P is the diagonal matrix (n 9 n) of weights pi of

accelerations ui. The weights of single accelerations ui are

calculated according to the following equation:

pi ¼
r20
r2ui

; ð5Þ

where r0 is the standard deviation of the measurement

result u0, where the weight is considered to be equal to

p0 ¼ 1. Thus, the value of r0 is chosen freely, because it

does not influence the calculation results. The measurement

result u0 is chosen such that it ensures the values of

weights pi are close to one (for reducing the calculation

volume).

Hence, we write an equation

ui ¼ lnui

and then obtain

rui
¼ ruiui: ð6Þ

Equation (6) shows that the value of rui
depends on the

value of the vibration acceleration ui. Therefore, an

acceleration of higher value is of less accuracy, because

ui � rui .
Upon applying Eq. (5), we can write

pi ¼
r20

r2uiu
2
i

¼ u�2
i � 1017: ð7Þ

Here, the accepted average value
r2
0

r2ui
¼ 1017.

The extremum of Eq. (4) is found by establishing its

partial derivatives with respect to parameter ~u, upon its

equating to zero and solving the obtained equation:

oU
o ~u

¼ 2
oe
o ~u

� �T

P � e ¼ 0

Then, we obtain

�ATPe ¼ 0

and

ATPA ~u� ATPu ¼ 0: ð8Þ

The solution will be as follows:

~u ¼ ATPA
� ��1

ATPu ¼ N�1x; ð9Þ

where N ¼ ATPAð Þ and x ¼ ATPu.
The accuracy of the parameter estimates calculated upon

applying the least-squares method is evaluated by their

covariance matrix K ~u. In the case of the present task, where

the trend is a scalar, we can write this as follows:

K 0
~u ¼ r02~u ¼ r020 N

�1; ð10Þ

where r00 is the estimate of the standard deviation r0. This
is evaluated according to the following equation:

r020 ¼ 1

n� 1
eTPe: ð11Þ

The quality of data on all four acceleration vectors was

evaluated by taking into account the indicator of their

accuracy (the standard deviation). The estimates of

standard deviations are provided in Tables 1 and 2.

According to the gravimeter sensor data, the estimates

ru of the standard deviation of the parameters are the

lowest for the second vector (measurement on the floor in

the case of extraneous zero excitation). The estimates ru of

the standard deviation of the parameters of other vectors

are considerably higher. Moreover, the values of accuracy

indicators of parameters of relevant vectors (established

upon applying the arithmetic mean or the weighted average

in the processing procedure) are similar.

3. The covariance model of parameters

of the gravimeter vibration signals

For a theoretical model, an assumption is applied that

errors in measuring the gravimeter digital vibration signals

are random and possibly systematic. In each vector of the

Table 1 Indicators of accuracy of the data vectors provided by the

gravimeter sensor

Vector no. The estimate of deviations of the vector’s data from the

standard deviation ru in the mGal

Using the arithmetic mean Using the weighted average

1 0.939 0.939

2 0.052 0.052

3 7.011 7.011

4 108,784 108,784

Table 2 Indicators of accuracy of the gravimeter sensor vectors

parameters

Vector

no.

The estimate of deviations of the vector’s data from the

standard deviation r0 in the mGal

Regarding the arithmetic

mean

Regarding the weighted

average

1 0.044 0.044

2 0.002 0.002

3 0.332 0.330

4 5.345 5.128
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vibration measurement data array, the trend of the mea-

surement data of that vector is eliminated. Further, the time

interval of the spread of vibrations is used as one of the

parameters. The theoretical model is based on the concept

of a stationary random function, by considering that errors

in measuring the parameters of gravitation vibrations are

random and of the same accuracy.

We will consider the random function (formed accord-

ing to the arrays of measuring the vibration parameter u) a
stationary function (in a broad sense), meaning its average

value M u tð Þf g ! const; and the covariance function

depend only on the difference of arguments s� Ku sð Þ. For
processing the digital signals, discrete Fourier transform

[1–3] and the theory of wavelet functions [4–7] may be

applied. The autocovariance function of a single data array,

or the cross-covariance function of two data arrays Ku sð Þ,
will be expressed as follows [8–16]:

KuðsÞ ¼ M e ��u1ðuÞ � e ��u2ðuþ sÞf g ð12Þ

or

Ku sð Þ ¼ 1

T � s

ZT�s

0

eu1 uð Þeu2 uþ sð Þdu; ð13Þ

where eu1 ¼ u1 � ~u1, eu2 ¼ u2 � ~u2 are the cantered

vectors of measurement of vibration parameters u (when

the trend is eliminated), u is the vibration parameter, s ¼
k � D is the variable quantisation interval, k is the number of

units of measurement, D is the number of units of mea-

surement, D is the value of a unit of measurement, T is

time, and M is the mean.

The estimate K 0
u sð Þ of the covariance function, accord-

ing to the available data on the measurement of vibration

parameters, is calculated as follows:

K 0
u sð Þ ¼ K 0

u kð Þ ¼ 1

n� k

Xn�k

i¼1

eu1 uið Þeu2 uiþkð Þ; ð14Þ

where n is the total number of discrete intervals.

Equation (14) can be applied either in the form of an

autocovariance function or a cross-covariance function.

When it is an autocovariance function, the arrays eu1 uð Þ
and eu2 uþ sð Þ are parts of single arrays, and when it is a

cross-covariance function they are two different arrays.

The estimate of a normed covariance function is as

follows:

R0
u kð Þ ¼

K 0
u kð Þ

K 0
u 0ð Þ ¼

K 0
u kð Þ
r02u

; ð15Þ
Fig. 4 Normed autocovariance function of a vector of the gravimeter

scale reference system for condition 1

Fig. 5 Normed autocovariance function of a vector of the gravimeter

scale reference system for condition 2

Fig. 6 Normed autocovariance function of a vector of the gravimeter

scale reference system for condition 3

1380 J Skeivalas et al.



where r0u is the estimate of the standard deviation of a

random function.

For eliminating the trends of vectors in the ith digital

array of measurements, the following equations are

applied:

eui ¼ ui � e � ~uT
i ¼ eui1; . . .; euimð Þ; ð16Þ

where eui is the ith digital array of reduced values where a

trend of vectors ui is eliminated, ui is the ith array of the

measured vibration parameters, e is a unit vector of size

(n 9 1), n is the number of lines in the ith array, ~ui is the

weighted average vector of the vectors in the ith array, and

uij is the jth vector of the reduced values in the ith array

(where j = 1,…,m).

For elimination of the trend of vectors, the arithmetic

mean or the weighted average is applied. The vector of the

arithmetic mean of vectors of the ith array is calculated

according to the following equation:

�ui ¼
1

n
uT
i e

� �
ð17Þ

The weighted average of vectors is calculated by

applying the least-square method.

The estimate of the covariance matrix of vibration

parameters in the ith array is expressed as follows:

Fig. 7 Normed autocovariance function of a vector of the gravimeter

scale reference system for condition 4

Fig. 8 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 1 and 2

Fig. 9 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 1 and 3

Fig. 10 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 1 and 4
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K 0 uið Þ ¼ 1

n� 1
euT

i eui: ð18Þ

The estimate of the covariance matrix or two vibration

parameters vectors i and j is expressed as follows:

K 0 ui;uj

� �
¼ 1

n� 1
euT

i euj; ð19Þ

Here, the sizes of the ui;uj arrays should be the same.

The accuracy of the calculated correlation coefficient is

defined by the standard deviation rr. The value of this is

established according to the following equation:

rr ¼
1ffiffiffi
k

p 1� r2
� �

;

where k ! 450; and r is correlation coefficient. The

maximum estimate of the standard deviation is obtained

when the value of r is close to zero, and in this case,

r0r � 0; 05; when r � 0; 5; we find r0r � 0; 037:

4. Results and discussion

The gravimeter scale reference system was fixed at 6 Hz

frequency intervals and at n = 450, a vector of each

Fig. 11 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 2 and 3

Fig. 12 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 2 and 4

Fig. 13 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for conditions 3 and 4

Fig. 14 Normed autocovariance function of a vector of the gravime-

ter scale reference system for condition 5
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condition was obtained. The expression of each measure-

ment vector is a random function when approximating its

expression to the one of a stationary function, and the

components of the constant and periodic trends are

eliminated.

The measurement data arrays were processed by the

software developed within the MATLAB 7 package of

programs.

The values of the quantisation interval of normed

covariance functions vary from 1 to n/2. For each vector of

the gravimeter scale reference system, the estimate K 0
u sð Þ

of the normed autocovariance function Ku sð Þ was calcu-

lated, and five graphical expressions of normed autoco-

variance functions were obtained.

In addition, the estimates K 0
u sð Þ of the normed cross-

covariance functions for the five conditions and nine

graphical expressions of their relevant combinations were

obtained.

The normed autocovariance functions calculated for the

five conditions achieve the maximum value of the corre-

lation coefficient r ! 1; 0 when the values of the quanti-

sation interval k ! 0 sk ! 0ð Þ and then, the value of the

correlation coefficient further falls down to r ! 0 when

k ! 5 : 20ð Þ sk ! 0; 8s : 3; 4sð Þ: In conditions 3 and 4, the

values of autocovariance functions at extraneous excitation

of vibrations (harmonic and sweep vibrations with the

frequency up to 50 Hz) in the body of the gravimeter and

increasing quantisation interval varied across a broad range

r ! � 0; 5 : � 0; 8ð Þ: This demonstrates that the random

functions of the gravimeter scale data for conditions 3 and

4 are not stationary because of the influence of extraneous

vibration signals.

The impact of high-frequency noise vibrations (2 kHz

and 20 kHz) on gravimeter signals is practically invisible.

Moreover, the values and expressions of the gravimeter

autocovariance functions are unchanged.

The normed cross-covariance functions for the five

conditions have low values of correlation coefficient that

vary in the range r ! � 0; 04 : � 0; 25ð Þ: These data prove
that extraneous vibration signals only slightly affect the

cross-correlation of vectors for the five conditions. How-

ever, the influence of extraneous vibration signals is

expressed in the results for conditions with normed auto-

covariance functions. This is shown in Figs. 4 to 17 below.

In Fig. 17, the graphical expressions of the generalised

(spatial) correlation matrix of the array of four vectors of

the gravimeter scale reference system are provided. The

expressions of the correlation matrices turn into blocks of

Fig. 17 Graphical expression of the generalised (spatial) correlation

matrix of the array of four vectors of the gravimeter scale reference

system

Fig. 15 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for condition 5 and the 2 kHz noise vectors

Fig. 16 Normed cross-covariance function of vectors of the gravime-

ter scale reference system for condition 5 and the 20 kHz noise

vectors

The analysis of gravimeter performance 1383



four pyramids, where the values of correlation coefficients

are shown by tints of the colour spectrum. The chromatic

projection of the pyramids is shown in the horizontal plane.

5. Conclusions

An analysis of the influence of the extraneous vibrations on

the gravimeter scale reference system by applying the

theory of covariance functions enables establishing the

dynamics of changes in correlation between the data vec-

tors, depending on the parameters of the excited vibrations.

The probabilistic dependence (autocovariance) of these

vectors is strong (r ! 1; 0Þ, but only at a small quantisa-

tion interval [when k ! 0 sk ! 0sð Þ]. At zero excitation,

the probabilistic dependence rapidly falls to r ! 0 at

k ! 5 sk ! 0; 8sð Þ. However, in the presence of extraneous

vibration excitation (harmonic and sweep vibrations with

frequencies up to 50 Hz), the rates of decrease in autoco-

variance to r ! 0 at k ! 20 sk ! 3; 4sð Þ are slower. Fur-

ther, in the presence of extraneous vibration excitation, on

increasing the quantisation interval, the values r of auto-

covariance functions vary across a broad range when r !
� 0; 5 : � 0; 8ð Þ: This demonstrates that the random func-

tions of the data of the gravimeter scale reference system in

the case of extraneous excitation are not stationary. The

values of the cross-covariance functions of the vectors

obtained in the presence of extraneous excitation and zero

excitation vary across a narrow range when r !
� 0; 04 : � 0; 25ð Þ: These data show that low-frequency

(50 Hz) extraneous vibrations have little effect on the

cross-correlation of the vectors. However, the influence of

extraneous excitation vibrations is noticeable on the

normed autocovariance functions of vectors of the

gravimeter scale reference system.

High-frequency (2 kHz and 20 kHz) noise modulation

vibrations does not affect the autocovariance functions

practically. Further, the influence of high-frequency mod-

ulation vibrations does not significantly affect the

gravimeter system readings vectors for the normalised

inter-covariance functions, because their values are prac-

tically close to zero. Therefore, high-frequency noise does

not distort gravitational oscillations.
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Turla Signal Image Video Process. 10 1287 (2016)

[11] A Sahnoune, D Berkani Signal Image Video Process. 12(7) 1273
(2018)

[12] S O Chen, M M Balasooriya Signal Image Video Process. 12(2)
363 (2018)
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