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Abstract: This paper investigates the anti-synchronization of fractional-order memristive chaotic circuits (FMCC) with

time delay via an impulsive control scheme. Based on the Mittag-Leffler function, the impulsive control principle and the

Lyapunov stability theory, several criteria are adopted to derive the impulsive anti-synchronization of FMCC with time

delay. Finally, numerical examples are exploited to verify the effectiveness of the theoretical analysis, and some dis-

cussions about the stable region are given.
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1. Introduction

Memristor (short for memory resistor) was first discovered

by Chua in 1971, which was the fourth basic circuit element

of the passive two-terminal and had full rights to use the

other three classic circuits, such as existing inductors,

resistors and capacitors [1]. In the following years, the

concept of memristor had not been proved experimentally

until 2008 when a memristor being constructed by the

physical component was published by the authors in the

Hewlett–Packard laboratory [2, 3]. The resistance value of

the memristor depends on the magnitude and polarity of the

voltage. Specifically, the current resistance will be remem-

bered when the voltage is off. Because of memristor’s

characteristics, its potential applications of the chaotic sys-

tem with memristor have been discovered in quite a few

fields such as cryptography [4], image encryption [5] and

filters [6]. Therefore, the behaviors and properties of mem-

ristor arouse much attention from a number of researches.

As known to all, fractional calculus theory is an ancient

and fresh concept extensively used in the nonlinear

dynamical systems and in the fields of physics, ecology,

machinery, engineering and biology [7–9]. Concerned by a

number of researchers [10, 11], fractional differential

equation is identified as the generalization of the integral-

order differential equation and the form in which all phys-

ical phenomena are presented. Its practical applications

have great correlation with the dynamical behaviors, espe-

cially the stability of models. As a result, the synchroniza-

tion of fractional differential equation has become one of

the most active areas of research. The dynamical behaviors

of fractional-order systems can be revealed in lots of chaotic

systems, such as fractional-order Lü system, fractional-

order Lorenz system and fractional-order Chua system [12].

In addition, fractional-order systems are able to generate

more accurate result than other integer-order systems,

which arouses great interest of researchers [13–15].

Meanwhile, as investigated by many scholars [16–18],

the chaotic synchronization of dynamic systems is appli-

cable in many scientific fields such as bioengineering [19],

electromagnetic field [20, 21], secure communication [22]

and cryptography [23]. A variety of synchronization

methods have been put forward for fractional-order chaotic

systems, such as period intermittent control method [24],

active control method [25], sliding mode control method

[26] and impulsive control method [27–31]. Impulse as a

frequently used method in chaotic system contributes to

system stabilization. Some researchers investigated the

impulsive synchronization of some complex dynamical
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systems [32, 33]; some reported that of the memristive

chaotic system [34–36]. In addition, the synchronization of

fractional chaotic systems via impulsive control

scheme was proposed in some papers [37–41]. However,

there is no study on the anti-synchronization problem of

FMCC with time delay via impulsive control method.

Under this context, this paper attempts to study anti-

synchronization strategy of FMCC with time delay via

impulsive control, the criteria condition of which is pro-

posed via Lyapunov stability theory and impulsive control

principle. Meanwhile, some discussions about the

stable region are given by numerical analysis and several

feasible suggestions for improvement are put forward.

This paper is structured as follows. Section 2 describes

the model formulation, fundamental definitions and lem-

mas. The anti-synchronization for FMCC with time delay

via impulsive control scheme is realized in Sect. 3. The

influential factors of the stable region are discussed in

Sect. 4, followed by some numerical examples that illus-

trate the correctness of theoretical method. The results and

suggestions are put forward in the last section.

2. Preliminaries

In this paper, let Rn denotes the n-dimensional Euclidean

space, x ¼ x1; x2; x3; x4ð ÞT2 R4, y ¼ y1; y2; y3; y4ð ÞT2 R4.

In this section, some fundamental definitions and lemmas

are recalled, and the mathematic model of FMCC with time

delay is introduced.

2.1. Definitions and lemmas

Definition 1 [42] The Caputo fractional derivative of

order q for function u tð Þ is defined by

c
0D

q
t u tð Þ ¼ 1

C m� qð Þ

Z t

0

um sð Þ
t � sð Þq�mþ1

ds;

where t� 0;m 2 Zþ;m� 1\q\m; and C �ð Þ is the gamma

function, that is, C sð Þ ¼
R1
0

ts�1e�tdt.

Moreover, when 0\q\1,

c
0D

q
t u tð Þ ¼ 1

C 1 � qð Þ

Z t

0

u0 sð Þ
t � sð Þq ds:

For simplicity, we denote Dqu tð Þ as the c
0D

q
t u tð Þ and

describe all of the following Caputo operators.

Definition 2 [42] The Mittag-Leffler function is defined

by

Eq tð Þ ¼
X1
m¼0

tm

C mqþ 1ð Þ ;

where q[ 0 and t 2 C.

Lemma 1 [43] For u tð Þ 2 Rn is continuous and differ-

entiable function, there is an inequality below

DquT tð Þu tð Þ� 2uT tð ÞDqu tð Þ; 0\q\1:

Lemma 2 [44] For x 2 Rþ and 0\q\1, Eq xð Þ is the

monotone increasing function.

Lemma 3 [45] Suppose that x tð Þ ¼ x1 tð Þ; x2 tð Þ; . . .;ð
xn tð ÞÞT 2 Rn and y tð Þ ¼ ðy1 tð Þ; y2 tð Þ; . . .yn tð ÞÞT 2 Rn,

for all D ¼ rij
� �

n�n
, the following inequality holds:

yTDx� smaxy
Tyþ �smaxx

Tx;

where smax ¼ 1
2

Dk k1¼ 1
2

maxn
i¼1

Pn
j¼1 rij

�� ��� �
, �smax ¼

1
2

Dk k1¼ 1
2

maxn
j¼1

Pn
i¼1 rij

�� ��� �
.

Lemma 4 [46] Suppose V tð Þ be a continuous nonnegative
function on t0 � s; t0½ � satisfying the following inequality:

DqV tð Þ�# �V tð Þ for t[ t0;

where 0\q\1, �V tð Þ ¼ maxt�s� s� t V sð Þf g and #[ 0 is a

constant. Then

V tð Þ�V t0ð ÞEq # t � t0ð Þqð Þ:

2.2. Model description

Based on the chaotic circuit with one memristor of [47]

shown in Fig. 1, let x1 ¼ u1; x2 ¼ u2; x3 ¼ i3; x4 ¼ /; a ¼
1
C1
; b ¼ 1

L
;C2 ¼ 1;R ¼ 1; c ¼ r=L; n ¼ G and s is the time

delay in the current transmission. The mathematic model of

memristive chaotic system can be described by

_x1 ¼ a nx1 � x1 þ x2 �W x4ð Þx1ð Þ;
_x2 ¼ x1 � x2 þ x3 t � sð Þ;
_x3 ¼ �bx2 � cx3 t � sð Þ;
_x4 ¼ x1:

8>><
>>:

ð1Þ

Similar to [47], the flux-controlled memristor is defined

by

Fig. 1 Chua’s chaotic circuits with a flux-controlled memristor
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x /ð Þ ¼ a/þ b/3; ð2Þ

W /ð Þ ¼ dx /ð Þ
d/

¼ aþ 3b/2; ð3Þ

where W /ð Þ is the memductance, / is flux, and a and b are

constants.

Referring to the above model, the new fractional-order

chaotic system with memristor according to (1) is descri-

bed as

Dqx1 ¼ a nx1 � x1 þ x2 �W x4ð Þx1ð Þ;
Dqx2 ¼ x1 � x2 þ x3 t � sð Þ;
Dqx3 ¼ �bx2 � cx3 t � sð Þ;
Dqx4 ¼ x1:

8>><
>>:

ð4Þ

Usually, in order to get the phenomenon of chaos, we set

q ¼ 0:985; a ¼ 12=11; b ¼ 1=11; a ¼ 10; b ¼ 14; c ¼ 0:1;

n ¼ 2:2 and s ¼ 0:02; then, the simulation is done with the

initial value 0; 0:1; 0; 0ð ÞT to system (4), and the simulation

results are shown in Fig. 2.

Let x ¼ x1; x2; x3; x4ð ÞT , system (4) can be written as

Dqx ¼ Axþ Bx t � sð Þ þ / xð Þ; ð5Þ

where

A ¼

a n� 1ð Þ a 0 0

1 �1 0 0

0 �b 0 0

1 0 0 0

2
664

3
775; B ¼

0 0 0 0

0 0 1 0

0 0 �c 0

0 0 0 0

2
664

3
775;

/ xð Þ ¼

�aW x4ð Þx1

0

0

0

2
664

3
775

and a; b; c; n; a; b are positive constants.

To investigate the impulsive anti-synchronization of

FMCC with time delay, the drive system can be rewritten

as

Dqx tð Þ ¼ Ax tð Þ þ Bx t � sð Þ þ / x tð Þð Þ;
x tð Þ ¼ h tð Þ; �s� t\0:

�
ð6Þ

In order to achieve anti-synchronization, we construct

the following response system with impulsive control

Dqy tð Þ ¼ Ay tð Þ þ By t � sð Þ þ / y tð Þð Þ; t 6¼ tk;
Dyjt¼tk

¼ Ck y tkð Þ þ x tkð Þð Þ; k ¼ 1; 2; . . .;
y tð Þ ¼ h tð Þ; �s� t\0;
y tþ0
� �

¼ y0;

8>><
>>:

ð7Þ

Fig. 2 Chaotic attractor of

FMCC, (a) x1 tð Þ; x2 tð Þ; (b)
x2 tð Þ; x3 tð Þ; (c) x2 tð Þ; x4 tð Þ and

(d) x1 tð Þ; x4 tð Þ
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where Ck 2 R4�4 is the impulsive control matrix and tk is

the impulsive instants which satisfy t1 � t2 � � � � � tk.

For systems (6) and (7), let the error states

e tð Þ ¼ y tð Þ þ x tð Þ, where e tð Þ ¼ x1 tð Þ þ y1 tð Þ; x2 tð Þþð
y2 tð Þ; x3 tð Þ þ y3 tð Þ; x4 tð Þ þ y4 tð ÞÞT . Then, the error

dynamical system between drive system (6) and response

system (7) is described by

Dqe tð Þ ¼ Ae tð Þ þ Be t � sð Þ þ / e tð Þð Þ; t 6¼ tk;
Dejt¼tk

¼ Cke tkð Þ; k ¼ 1; 2; . . .;

e tþ0
� �

¼ e0;

8<
: ð8Þ

where

/ e tð Þð Þ ¼ / y tð Þð Þ þ / x tð Þð Þ
¼ �aW x4 tð Þð Þx1 tð Þ � aW y4 tð Þð Þy1 tð Þ; 0; 0; 0½ �T :

ð9Þ

3. Main result

In this section, the anti-synchronization problem of

FMCC with time delay via an impulsive strategy is

investigated.

Assumption 1 Because chaotic systems have bounded

states regardless of the initial states, we assume that the

following assumptions hold:

x1 tð Þj j �M1; x2 tð Þj j �M2; x3 tð Þj j �M3; x4 tð Þj j �M4;

where M1;M2;M3;M4 are real constants.

Remark 1 Based on the chaotic theory, the state of the

chaotic system is bound, and many of the published articles

use this assumption, such as [27, 31, 33].

Theorem 1 Let q is spectral radius, Ck is Hermite

matrix, Â ¼ Ak k2; dk is the largest eigenvalue of matrix

I þ Ckð ÞT I þ Ckð Þ: If there exists a constant g[ 1 such

that the following conditions hold:

ðH1Þ q I þ Ckð Þ� 1; ð10Þ

ðH2Þ gdkEq dsqk
� �

\1; ð11Þ

where d ¼ 2 Âþ 3abM1M4 þ smax þ �smax

� �
, smax ¼

1
2

Bk k1, �smax ¼ 1
2

Bk k1, and sk ¼ tk � tk�1, k ¼ 1; 2; . . .,

then the trivial solution of error dynamical system (8) is

asymptotically stable, which implies that systems (6) and

(7) achieve anti-synchronization.

Proof Construct the following Lyapunov-like function

V tð Þ ¼ 1

2
eT tð Þe tð Þ: ð12Þ

Take a time derivative of V tð Þ along e tð Þ of system (12).

From Lemma 1, for t 2 tk; tkþ1ð �, we get

DqV tð Þ� eT tð ÞDqe tð Þ
¼ eT tð Þ Ae tð Þ þ Be t � sð Þ þ / e tð Þð Þð Þ
¼ eT tð ÞAe tð Þ þ eT tð ÞBe t � sð Þ þ eT tð Þ/ e tð Þð Þ
¼ eT tð ÞAe tð Þ þ eT tð ÞBe t � sð Þ � aae2

1 tð Þ � 3abðy2
4 tð Þy1 tð Þ

þ y2
4 tð Þx1 tð Þ þ x2

4 tð Þx1 tð Þ � y2
4 tð Þx1 tð ÞÞe1 tð Þ

¼ eT tð ÞAe tð Þ þ eT tð ÞBe t � sð Þ � aae2
1 tð Þ � 3aby2

4 tð Þe2
1 tð Þ

þ 3abx1 tð Þ y4 tð Þ � x4 tð Þð Þe4 tð Þ e1 tð Þ
� ÂeT tð Þe tð Þ þ eT tð ÞBe t � sð Þ

þ 3ab x1 tð Þj j y4 tð Þj j þ x4 tð Þj jð Þe4 tð Þ e1 tð Þ
� eT tð ÞAe tð Þ þ eT tð ÞBe t � sð Þ

þ 3

2
ab x1 tð Þj j y4 tð Þ þj jx4 tð Þj jð Þðe2

4 tð Þ þ e2
1 tð ÞÞ

� eT tð ÞAe tð Þ þ eT tð ÞBe t � sð Þ þ 3abM1M4e
T tð Þe tð Þ:

ð13Þ

From Lemma 3, we have

DqV tð Þ� Âþ 3abM1M4

� �
eT tð Þe tð Þ þ smaxe

T tð Þe tð Þ
þ �smaxe

T t � sð Þe t � sð Þ
� 2 Âþ 3abM1M4 þ smax

� �
V tð Þ þ 2�smaxV t � sð Þ

� 2 Âþ 3abM1M4 þ smax þ �smax

� �
�V tð Þ;

ð14Þ

where �V tð Þ ¼ maxt�s� s� t V sð Þf g. From Lemma 4,

V tð Þ�V tþk
� �

Eq 2 Âþ 3abM1M4 þ smax þ �smax

� �
t� tkð Þq

� �
;

for t 2 tk; tkþ1ð �:
ð15Þ

Put d into Eq. (16), we have

V tð Þ�V tþk
� �

Eq d t � tkð Þqð Þ: ð16Þ

When t ¼ tk; k 2 N, we have

V tþk
� �

¼ 1

2
eT tþk
� �

e tþk
� �

¼ 1

2
eT tkð Þ I þ Bkð ÞT I þ Bkð Þe tkð Þ

� dkV tkð Þ:

ð17Þ

Therefore, from inequalities (18) and (19), we have

V tð Þ� dkV tkð ÞEq d t � tkð Þqð Þ: ð18Þ

For t 2 t0; t1ð �, it follows from inequality (20) that

V tð Þ�V tþ0
� �

Eq d t � t0ð Þqð Þ: ð19Þ

When t ¼ t1, we have

V tþ1
� �

� d1V t1ð Þ� d1V tþ0
� �

Eq d t1 � t0ð Þqð Þ: ð20Þ

Similarly, for t 2 t1; t2ð �, we have

V tð Þ�V tþ1
� �

Eq d t � t1ð Þqð Þ
� d1V tþ0

� �
Eq d t1 � t0ð Þqð ÞEq d t � t1ð Þqð Þ:

ð21Þ
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When t ¼ t2, we have

V tþ2
� �

�d2V t2ð Þ�d2d1V tþ0
� �

Eq d t1 � t0ð Þqð ÞEq d t2 � t1ð Þqð Þ:
ð22Þ

In general, when t¼ tk, we have

V tþk
� �

� dkV tkð Þ� dk. . .d1V tþ0
� �

Eq d t1 � t0ð Þqð Þ
Eq d t2 � t1ð Þqð Þ � � � � Eq d tk � tk�1ð Þqð Þ;

ð23Þ

and for t 2 tk; tkþ1ð �, we have

V tð Þ� dk. . .d1V tþ0
� �

Eq d t1 � t0ð Þqð ÞEq d t2 � t1ð Þqð Þ. . .
� Eq d tk � tk�1ð Þqð ÞEq d t � tkð Þqð Þ

� 1

gk
V tþ0
� �

Eq d t � tkð Þqð Þ:

ð24Þ

According to the condition (H2), when k ! 1, we have

V tð Þ ! 0: ð25Þ

Consequently, e tð Þk k ! 0 as k ! 1. It follows that the

trivial solution of error dynamical system (8) is

asymptotically stable, which implies that system (7) is

anti-synchronized with system (6). This completes the

proof.

Remark 2 Recently, there has been a small number of

works about the impulsive anti-synchronization of the

fractional-order chaotic circuit, but these research findings

are without considering the effect of time delay and

memristor. Compared with [34–38], we consider a frac-

tional-order delayed chaotic circuit under with memristor.

The condition of impulsive anti-synchronization between

master–slave systems is achieved. Figures 3, 4 and 5 show

that the control scheme is effective.

4. Numerical simulations

In this section, some numerical simulations are presented to

verify and demonstrate the proposed theoretical approach;

and the connection of stable region is given later. The

simulations are run on MATLAB program based on the

predictor–corrector algorithm [48] for fractional-order

differential equations.

4.1. Anti-synchronization of FMCC under impulsive

control

To facilitate the description of impulsive property, the

impulsive matrix is denoted as Ck ¼

Fig. 3 Dynamical behaviors of

systems (6) and (7) without

impulsive control matrix,

q ¼ 0:985, (a) x1 tð Þ; y1 tð Þ; (b)
x2 tð Þ; y2 tð Þ; (c) x3 tð Þ; y3 tð Þ; (d)
x4 tð Þ; y4 tð Þ
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diag �kb;�kb;�kb;�kbð Þ; which kb refers to the impulsive

coupling strength. On the basis of Fig. 2, when M1 ¼ 3,

and M4 ¼ 1:8 are selected, d ¼ 69:6 is obtained. According

to the condition (H1) of Theorem 1, the result of 0� kb � 2

is got. Moreover, after setting sk ¼ 0:01; q ¼ 0:985; g ¼

1:1; and kb ¼ 1:6, by MATLAB calculation program, we

get

gdkEq dsqk
� �

¼ 1:1 � 0:36 � E0:985 69:6 � 0:010:985
� �

¼ 0:84\1 ;

then, the condition (H2) of Theorem 1 holds. The initial

values of system (6) and system (7) are set to be

0; 0:1; 0; 0ð ÞT and �0:5; 0; 0:5; �0:5ð ÞT , respectively. It

follows from Theorem 1 that system (7) is anti-synchro-

nized with system (6) under the impulsive control matrix

Bk.

Figure 3 illustrates the time evolution curves between

system (6) and system (7) without impulsive control matrix

Ck, indicating that both systems have different state tra-

jectories over time. Figure 4 gives the state trajectories of

systems (6) and (7) with impulsive control matrix Ck.

Figure 5 depicts the error dynamics of the two systems

with impulsive control matrix Ck, suggesting the feasibility

of implementing impulsive anti-synchronization in limited

time.

4.2. The analysis of stable region

Figure 6 displays the stable region about impulsive interval

sk and order q with different kb. Under the condition (H2)

Fig. 4 Dynamical behaviors of

systems (6) and (7) with

impulsive control matrix,

q ¼ 0:985; kb ¼ 1:6; sk ¼ 0:01,

(a) x1 tð Þ; y1 tð Þ; (b) x2 tð Þ; y2 tð Þ;
(c) x3 tð Þ; y3 tð Þ; (d) x4 tð Þ; y4 tð Þ

Fig. 5 Synchronization errors between systems (6) and (7) with

impulsive control matrix, q ¼ 0:985; kb ¼ 1:6; sk ¼ 0:01

1192 F Meng et al.



of Theorem 1 when g ¼ 1:1 and d ¼ 69:6, the stable region

about sk increases with order q from 0 to 1.

With different sk, the stable region of impulsive cou-

pling strength kb and order q is shown in Fig. 7. Obviously,

a larger stable region can be obtained with a bigger q.

Under some fixed values of g when q ¼ 0:985, the

stable region with impulsive coupling strength kb and

impulsive interval sk is displayed in Fig. 8. It shows that sk
goes infinity when kb ¼ 1. This is because the condition

(H2) of Theorem 1 is always satisfied if dk ¼ 0.

5. Results and discussions

In this paper, the anti-synchronization of FMCC with time

delay has been achieved in finite time based on Lyapunov

stability theories and principle of impulsive control. The

results are given not only by theoretical analysis, but also

by numerical simulation. Under the conditions of Theo-

rem 1, some discussions about the stable region have been

obtained. With fixed impulsive coupling strength, a larger

stable region for FMCC with time delay is obtained at

smaller impulsive interval sk and the bigger fractional

order q where 0\q\1. Because the discussed chaotic

system with memristor takes into account impulsive

interval, impulsive coupling strength and fractional order,

it is practical and attractive in understanding the chaotic

system with memristor. This study will have potential

applications to cryptography, filters and image encryption.
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