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Abstract: The studies of the dynamic behaviors of nonlinear models arising in ocean engineering play a significant role in
our daily activities. In this study, we investigate the coupled Boussinesq equation which arises in the shallow water waves
for two-layered fluid flow. The modified exp (—¢({))-expansion function method is utilized in reaching the solutions to
this equation such as the topological kink-type soliton and singular soliton solutions. The interesting 2D and 3D graphics of
the obtained analytical solutions in this study are presented. Via one of the reported analytical solutions, the finite forward
difference method is used in obtaining the approximate numerical and exact solutions to this equation. The Fourier—Von
Neumann analysis is used in checking the stability of the used numerical method with the studied model. The L, and L.,
error norms are computed. We finally present a comprehensive conclusion to this study.
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1. Introduction

In the past two decades, investigations of the solutions to
the various nonlinear evolution equations (NLEEs) have
attracted the attention of many scientists from all over the
world. Nonlinear evolution equations are used in modeling
complex nonlinear aspects describing some of our real-life
problems in the various fields of nonlinear sciences such as
modeling the interaction between atmosphere and ocean
influences, optic fibers, fluid mechanics, hydrodynamics,
metrology and plasma physics. It is very important to
investigate the behaviors of the models that arise in
dynamics of the ocean because of the vital roles they play
in our daily activities.

Various analytical and numerical techniques have been
formulated for tackling these kinds of nonlinear models

*Corresponding author, E-mail: hmbaskonus @gmail.com

such as the improved tan(¢/2)-expansion method [1], the
sine-Gordon expansion method [2-8], the multivariate
transformation technique [9], the homogeneous balance
method [10], the Jacobi elliptic function method [11, 12],
the extended homoclinic test function method [13], the
local fractional Riccati differential equation method [14],
the improved Bernoulli sub-equation function method [15],
the Hirota’s bilinear method, homoclinic test approach and
parameter perturbation technique [16], semi-inverse vari-
ational principle [17], the modified simple equation method
[18], the ansatz and mapping methods [19], the lumped
Galerkin approach [20], the Fourier pseudo-spectral
method [21], the shooting method [22], the meshless ker-
nel-based method of lines [23] and many other mathe-
matical approaches [24-54].

This study uses the modified exp (—¢({))-expansion
function method (MEFM) [55-58] in constructing analyt-
ical solutions to the coupled Boussinesq equation [59]. We
further utilize the finite forward difference scheme in

© 2018 TACS
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obtaining the numerical and exact approximations to the
coupled Boussinesq equation by taking one of the obtained
analytical solutions into consideration.

The Boussinesq equations for variable water depth that
are effective for shallow water and referred to as the
standard Boussinesq equations were first developed by
Peregrine [60, 61]. The Boussinesq-type equations are very
popular nonlinear evolution equations formulated for
describing the dynamics of water with small amplitude and
long wave. Boussinesq-type equations are also the most
important equations in the prediction of wave transforma-
tions in coastal areas. The Boussinesq equation is widely
used in coastal and ocean engineering. Tsunami wave
modeling and mathematical modeling of tidal oscillations
show some of the applications of this equation in ocean
engineering [60, 61].

The coupled Boussinesq equation is given by [59]

Vi +we + v, =0,

1
wi + (Wv), + Ve = 0. (1)

Boussinesq equations are used to model the dynamics of
shallow water waves that arise in different places like
rivers, lakes and sea beaches [59, 60]. The coupled
Boussinesq equation arises in the shallow water waves for
two-layered fluid flow. This occurs whenever there is an
accidental oil spill from a ship that results in a layer of oil
floating above the layer of water [60, 61].

2. The MEFM

In this section, we present the general facts of the MEFM .
Consider the nonlinear partial differential equation of
the form

) =0, 2)

where v =v(x,#) is an unknown function, and F is a

polynomial in v(x, f) and its derivatives. The subscript

indicates the partial derivatives of v with respect to x and ¢.
Step 1: Consider the following wave transformation:

vix,t) =V((), (=x—kt (3)

Substituting Eq. (3) into Eq. (2) yields the following
nonlinear ordinary differential equation (NODE):

2
F(V, Vs VaVs Vs Vit s - -

oV, VVEV V' .. )=0, (4)

where Q is a polynomial of V and its derivatives.
Step 2: The solution of Eq. (4) is assumed to be of the
form [55]

_ Z?:o A; {e—w(i)} i‘
o Bile 0]’ (5)

L Apt Al + .+ Ase
" By+Bie=?+...+ Bye®’

V(0

where A;,B;,(0<i<6,0<j<0o) are constants to be
obtained later, such that A; # 0, B, # 0.

The function ¢ = ¢({) simplifies the following nonlin-
ear ordinary differential equation (NODE):

(P’(C) = 20 4 pe?® 4 ). (6)

Equation (6) has the following family of solutions [55]:
Family 1: When pu # 0, > —4u > 0,

T
»(0) :ln<T

(VM) - ).

Family 2: When u # 0, 22— 4u<0,
V=12 +4u
2p

2
/=) +4“(C+E))— A >

o) = ln(

X tan( ) Z_’u

Family 3: When =0, 2 # 0 and 4> — 4u > 0,

y!
@(0) = ln(m) 9)
Family 4: When p # 0, 2 # 0 and /> — 4 = 0,

2/1(C+E)+4>.

P(+E) (10

e(() = ln(

Family 5: When =0, 2 =0 and /> —4u =0,
@({) = In({+ E). (11)

Ai,B;,(0<i<0,0<j<a), E, A u are coefficients to be
obtained, and g, 0 are positive integers that can be deter-
mined by using the homogeneous balancing principle.
Step 3: Substituting Eq. (5) with fixed value of  and o, its
possible derivatives along with Eq. (6) into Eq. (4), we get a
polynomial in powers of e~?(%). We collect a set of algebraic
equations from the polynomial by equating each summation of
the coefficients of e ~?(®) with the same power to zero. To get the
solutions of (2), we solve the set of equations with aid of
symbolic software and get the values of the coefficients
Ai, B, (0<i<6,0<j<0), E, 1, u Substituting the obtained
values of the coefficients into Eq. (5) gives the solutions to (2).
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3. The analysis of FDM

In this section, we give the analysis of the finite forward
difference. To present this analysis, the following notations
need to be given:

1. Ax is the spatial step
. At is the time step

3. x;=a+iAx, i=0,1,2,...,N points are the coordi-
nates of mesh and N =% 1, = jAx, j=0,1,2,...M
and M = L.

4. The functions v(x, r) and w(x, 1) represent the values of
these solutions at these grid points; v(x;, 7)) ~ v;; and
w(x;, ;) & wy, respectively.

5. v;; and w;; represent the numerical solutions of the
exact values of v(x,) and w(x,?) at the point (x;,1),

respectively.
For v(x, t):
Hyij =vij1 —vij, (12)
Hwij = viy1; —vij, (13
HyoVij = Vigaj — 2Vig1j + 2vie1j — Vieaj. (14)
For w(x, 1):
Hwij = wijr1 — wij, (15)
Hwij = wip1j — wij. (16)

Thus, one may approximate the partial derivatives into the
finite difference operators as

For v(x, 1):
ov - HZV,'J'
|, = A ot (17)
ov HxViJ‘
), = A+ OA), (18)
63V Hxxxvi,j 2
9, = e Ol (19)
For w(x, 1):
ow|  Hw;;
I TR (L0} (20)
ow wai.j
au—T+0((Ax)). 1)

One may rewrite Eq. (1) in the finite forward difference
operator’s form as

Hy;j Hw;; Hij
Vij = 0,
At Ax Ax ”
Hiw;j Hv;; Hwij  Hogvij (22)
T wij T Vi 3 =
At Ax Ax (Ax)

We get the following indexed forms by substituting
Egs. (12-16) into Eq. (22):

1
2(A1) (1 + (AP, — (Ax)Pwi J)

Vitlj = —
i

((At)vin —2(At)vi_1; — 2(Ax)3vi]~

— Z(Al) (Ax)zvij + Z(Ax)‘gvi,jviﬁl
— (At)via + 2(Ax) wi;

+ 2(A1) (Ax) v wiy — 2(AX)3Wi,/+1> ,

1
2(A0) (1+ (A2, = (Ax)wis)

Wirlj = —

( — Z(A)C)Vlj — (At)vi,z_jvi_j + 2(Al)V[,1JV,’J

- Z(AI)V?J + Z(AX)V,‘JJA + (At)vijvi+2J
— 2(At)wij — 2(A1)(Ax) V2w,

ij
— 2(Ax)3vi,j+1wi.j + 2(At) (Ax)zwiz.j
+ Z(Ax)3vi+jwi,j+1> ;

(24)

where the initial values u;o = uo(x;) and v;p = vo(x;).

4. Von Neumann stability analysis

In this section, the stability of the numerical scheme with
the coupled Boussinesq equation is analyzed by using the
Fourier—Von Neumann stability analysis (Figs. 1, 2, 3, 4).
We consider {" as the amplification factor. The growth
factor of a typical Fourier mode may be given as follows:

vh= PP wh o= we', (25)
where i = /—1.

To check the stability of the numerical scheme, the
nonlinear terms in the coupled Boussinesq equation
vvy,wv, and vw, must be linearized by making v and
w local constants. Thus, the nonlinear terms vv,, wv, and
vw, become Av,, By, and Aw,, respectively.

The finite difference operator form of these linearized
terms is given as
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v(x,t)

()

(a)
Hxi‘ Hxi‘ Hx ij
Av, = A A;J, Bv, =B A;J, Aw, = A2 (26)

where A =V and B = w/.
Implementing these changes on Eq. (22), one may
obtain

HtViJ+HxWiJ+AHxVi,j:O’
At Ax Ax )
H[W[J+BHXV[J+AHXWiJ Hmv,}ji ( 7)
At Ax Ax  (Ax)P

Now, inserting Eq. (25) into Eq. (27) yields

1
P( 80 1 (42— B)(d) (M)

(b)

(b)

Fig. 2 The singular soliton surfaces of Eq. (40) and (41) under the values A =1, E =1 and ¢t = 2 for the 2D graphics

((=A + B)(An)(Ax)* + A(Ax) (L~ 1)

+ (A2 — B)(Ar)(Ax)*cos|[p] + iAt(2 + (A? — B)Ax?

— 2cos[B]sin[f]))
B (M
At + (A2 — B)AtAx?

)¢

(28)
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Fig. 4 The singular soliton surfaces of Eq. (44) and (45) under the values k = 0.35, E = 1 and t = 2 for the 2D graphics
P(( — AAf — Ax(—1 + BA®)({ — 1) + AAtcos]f]

1 p
o
— iAAtsin[f] + 2iAAtcos[ﬁ]sin[[)’]) 1 Ax* cos [g] — iAxsin [Ii}} ( . 2

X (At 4 (A* — B)Amxz)f]) — 2iAAtA sin [ﬂ — iAx*sin [ﬂ

n w(( — A2 ATAR® + Ar(1 — BAY?) + AAS (L — 1)

B’ 8]
+ Atcos[f] + (A2 — B)AtAxcos[fj] -2 (((AtzAx4 - BAtzAx6)Cos l:_ sin D)
A A2 2. 2 -1\ _
+ iltsin[B] + i(A® — B)ArAX sm[ﬁ])(AtJr(A B)AtAR?) ) 0, eact [ 3] 7B 2
(29) 2 2" 2
3 3

where A =V B =w Next, Let ¢ = (" and assume — iAR A cos {E] sin {E] LA A cos [3% sin [E}
that { is independent of time. Then, we easily obtain the 2 2 2 2
following system of algebraic equations. 6. B AN\ d

Therefore, — BAF A sin {2] )) )

(30)
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(= %x“ cos {g}

_ inddsin {E} ((Ax*cos E} — 2iAAIAYsin {Q — iAxtsin E}

2
LR
+ 2(((At2Ax4 — BAPAx®) cos {5] sin —}

12
2
— AP Ax*cos {g} cos [%] sin {g}
3 - 3
— iAPAx*cos [g} sin {g} +iAPP Ax*cos 3—11 sin F}

22
— BAP AxCsin {g} 4)%) .

(31)

According to the Fourier stability, numerical scheme is
unconditionally stable as |{;| <1, |{;] < 1.

5. L, and L, Error Norms
To show how close the exact and numerical solutions are,

we use L, and L., error norms.
The L, and L., error norms are defined as [62]

L2 — Huexact _ unumericH2
— exac numeric
=\ |hD | —
J=0
L. = uexact o unumeric
o =l Il 33)

_ Max|uexact _ numeric|
- j :

J

6. Theoretical calculations

In this section, we present the computational parts of the
study.

6.1. Application of the MEFM to Eq. (1)

In this subsection, we present the application of the MEFM
to the coupled Boussinesq equations.

Consider the coupled Boussinesq equations given in
Eq. (1).

Using the wave transformation

v(x, 1) =V(), w=W(), { =x—kt, (34)
Eq. (1) is carried to the following single NODE:
2V — V3 4 3kV? - 2k2V =0, (35)

where W = kV — V72
Balancing the terms V" and V3 in (35), we have the
following relation between ¢ and J:

o=ag+1, (36)
choosing ¢ = 1 implies that § = 2.
Using o = 1, 6 = 2 along with Eq. (5), we get
Ag+Aje? + Are™2?
V() = o +Ae " + Age (37)

By + Bie=?

Substituting Eq. (37) and its second derivative into
Eq. (35), we get an equation in a polynomial of e~?. We
collect a group of the algebraic equation from this poly-
nomial by equating the sum of the coefficients of e~ with
the same power to zero. We solve the group of equations
with the help of Wolfram Mathematica software and find
the values of the coefficients. The values of the coefficients
are obtained in various cases. For each case, to obtain the
solutions of Eq. (1), we put the values of the coefficients
into Eq. (37) along with one of (Family 1- 5).
Case-1:

AO:BO(\W—M—A),A] :Bl<\/12—4,u—i)
— 2By, Ar = —2By,k =\/ )% — 4p.

Case-2:

AO:BO(\/m+k)7Al :Bl<\/m+k)
— 2By, Ay = —2By, ). = \/k> + 4p.

With case-1, we obtained the following families of
solutions:
solution-1:When u # 0, 12 — 4u > 0,

vii(x,t) = \ A2 —4du— 2

4u (38)
+ ;
A+ 27— dp tanhlyy  (x,1)]

wii (1) = 2u(2% = 4p) [ (Zcoshlp 1 (x, )

) (39)
/22 = dusinhl 1 (x,0)])
where
Yo =3 E+x— T t) X \/2* —4p.
solution-2: When =0, 4 # 0 and 2> — 4u > 0,
v 1) = (1 = cohly5(x, 1)), (40)
;2
t) = — - 41
W20 = e ] T )
where

Via(x,1) = %)(E +x— Ar).

With case-2, we obtained the following families of
solutions:

solution-1:When p # 0, /> — 4u > 0,
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Table 1 Numerical and exact approximations of Eq. (1) and absolute
errors under Eq. (38)

X; 1 Numerical Exact Eror

0 0.01 0.07960 0.07961 6.69266x 1076
0.01 0.01 0.07884 0.07885 6.63951x1076
0.02 0.01 0.07809 0.07809 6.58665x 1076
0.03 0.01 0.07734 0.07735 6.53408x107°
0.04 0.01 0.07660 0.07661 6.48180x107°
0.05 0.01 0.07587 0.07587 6.42982x107°
0.06 0.01 0.07514 0.07515 6.37813x107°
0.07 0.01 0.07442 0.07443 6.32674x107°
0.08 0.01 0.07371 0.07371 6.27564x107°
0.09 0.01 0.07300 0.07301 6.22483x107°

Table 2 Numerical and exact approximations of Eq. (1) and absolute
errors under Eq. (39)

X; 1 Numerical Exact Eror
0 0.01 0.07644 0.07644 3.42592x10°6
0.01 0.01 0.07574 0.07574 3.39847x 107
0.02 0.01 0.07504 0.07505 3.37117x107¢
0.03 0.01 0.07435 0.07436 3.34400%x 107
0.04 0.01 0.07367 0.07367 3.31699%x 107
0.05 0.01 0.07210 0.07210 3.29012x 107
0.06 0.01 0.07232 0.07232 3.26340x1076
0.07 0.01 0.07165 0.07166 3.23682x107°
0.08 0.01 0.07099 0.07010 3.21039x 107
0.09 0.01 0.07034 0.07034 3.18412x10°¢
v21xt \/k2+4 +k

4u (42)

\/k2—|—4 — k tanh[y, | (x,1)]
wo(x, 1) = 2k2,u/(\/k2 + 4p coshy | (x,1)]

| ; (43)
— k sinh[\, ; (x, t)]) )
where
VU, (x, 1) = %k(E +x— kt).
solution-2: When u =0, 2 # 0 and 2> —4pu > 0,
v22(x,1) = k(1 — coth[y, »(x,1)]), (44)
k2
= — 4
W242(x7 t) cosh[thn(x, l)] —1 ) ( 5)
where
w2'2(.x, t) == %k(E +.x - kt).

6.2. Exact and numerical approximations

In this subsection, we obtain the exact and numerical
approximations of Eq. (1) using Eq. (38) and (39) and the
datum k=1,A=3,u=2,E=2.5. Substituting these
values into Egs. (38) and (39) gives the following special
exact solutions for the approximations:

(1) :
v(x, 1) = ,
34+ tanh{%(Z.S —t—i—x)}

2+ (46)

Wi, )—4(3cosh[ (25—t+x)}+smh[ (25-1

—|—x)D_2.

At t =0, Egs. (46) and (47) become
8
3 + tanh [% 2.5+ x)] ’

(47)

vo(x) = =2+ (48)
wo(x) =4 <3cosh {l 25+ x)} + sinh [1 25+ x)} ) _2.
2 2
(49)
Inserting (Ax) = (Ar) = 0.01 into Eq. (23) and (24) yields
viprj = (9999.10 + v7;
+9999.10v;_y

—wiy) (= 4999.10v; 2,

v — v (50)
+4999.10v;2; — wij — vijwij + w,-ﬁl),
Wis1y = (999910 412 — wiy) ™ (9999.10v;
+4999.10v;_5 v
—9999.10v;_1 jvi; + 9999.10v;;
‘ (51)

—9999. IOV,'J‘_H - 4999.10V,‘JV,‘+2J
+9999.10w;; + v Wij t Vijiwig

2
— Wi~ Vi.J'WiJ+1)7

respectively.

Hence, we present the exact and numerical approxima-
tions of Eq. (1) in Tables 1 and 2 and L, and L., error
norms in Table 3.

7. Results and discussion

In this study, we successfully employed the modified exp
(—@({))-expansion function method to the coupled
Boussinesq equation. Several wave solutions are
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Table 3 L, and L., error norm under 0 <42<1 and 0<x<1

X =1 Ly(v(x, 1) Lo (v(x, 1) Ly(w(x, 1)) Loo(W(x, 1))
0.1 0.0004379358 0.0006196246 0.0002236631 0.0003188607
0.01 0.0000000321 0.0000001112 0.0000000090 0.0000000302
0.001 0.0000000465 0.0000000668 0.0000000237 0.0000000346
0.0001 0.0000000005 0.0000000007 0.0000000235 0.0000000832
Fig. 5 Numerical and exact 0.080 \ T
approximations graph of Eq. (1) s Numerical Solution 0.054305
under Eq. (38) 0.075 - s Exact Solution b
0.054300
0.070 - = i
X 0.054295
0.065 - > 0.054290 ]
0.060 0.054285 i
2 0055 0.40570 0.40574 0.40578 |
> \ X
0.050
0.045 -
0.040
0.035 -
0.030 ! ! ! !
0 0.1 0.2 0.3 0.4
X
Fig. 6 Numerical and exact 0.080 \ \ T \ \
approximations graph of Eq. (1) === Numerical Solution 0.055565
under Eq. 39) 0.075 - m Exact Solution B
0.070 | 2 0.055560 |
0.065 - 3 0.055555 J
. 0.060 0.055550 T
e 0.3522770 0.3522784 0.3522787
X 0.055 -
z oS x
0.050
0.045
0.040
0.035
0.030 ! ! !
0 0.1 0.2 0.3

constructed. Jawad ef al. [59] constructed some exponen-
tial function and non-topological soliton solutions to the
coupled Boussinesq equation. In this study, soliton, topo-
logical kink-type soliton and singular soliton solutions are
reported. When we compare our results with the results
presented in [59], we observed that the reported analytical
solutions in this study are newly constructed. Furthermore,
the well-known numerical scheme, namely the finite for-
ward difference method, is used in obtaining the approxi-
mate exact and numerical solutions to the coupled

Boussinesq equation. We observed that as Ax = Ar are
getting smaller, the approximations are approaching zero
(Figs. 5 and 6).

8. Conclusion
In this study, we use the modified exp (—¢({))-expansion

function method in obtaining the analytical solutions to the
coupled Boussinesq equation. Topological kink-type
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Fig. 7 Absolute error graph x10°

under Eq. (38)
6.5

5.5

4.5

Absolute Error

3.5

25 : : :
0

Fig. 8 Absolute error graph %105

under Eq. (39) 3.5

25

Absolute Error

1.5

soliton, soliton and singular soliton solutions are success-
fully extracted. By choosing the suitable values of the
parameters, the 2D and 3D of the reported solutions are
also plotted. Via one of the obtained analytical solutions,
the finite forward difference scheme is used in approxi-
mating the exact and numerical solutions to the studied
nonlinear model. The stability of the numerical scheme is
also checked. The L, and L., error norms are also com-
puted (Figs. 7, 8). The numerical and exact approximations
are compared, and the comparison is supported by graph-
ical plots.

The modified exp (—¢({))-expansion function method
is an efficient mathematical tool which provides good
analytical solutions for numerical study, and finite forward
difference method supplies good approximations when it is
utilized on these analytical solutions.
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