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Abstract: In this study, the extended sinh-Gordon equation expansion method is used in constructing various exact
solitary wave solutions to the Klein—-Gordon—Zakharov equations. The Klein—Gordon—Zakharov equations is a nonlinear
model describing the interaction between the Langmuir wave and the ion acoustic wave in a high-frequency plasma. We
successfully construct some topological, non-topological, compound topological and non-topological, singular, compound
singular solitons and singular periodic wave solutions. Under the choice of suitable values of the parameters, the 2D, 3D
and contour graphs to some of the reported solutions are also plotted.
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1. Introduction

Nonlinear partial differential equations (NPDEs) arise in
various areas of nonlinear science such as hydrodynamics,
plasma physics, molecular biology, quantum mechanics,
nonlinear optics, surface water waves etc. Various sym-
bolic approaches have been employed to obtain different
kind of travelling wave solutions to these type of equations.
Saravanan and Dhamayanthi [1] obtained some exact
solutions to a nonlinear Schrodinger equation with spin
current. Ray [2] obtained some novel double periodic
solutions to the coupled Schrodinger—Boussinesq equa-
tions. Xie et al. [3] investigated the solitons collisions in
the higher-order nonlinear Schrédinger—Maxwell-Bloch
system. Tariq and Younis [4] obtained dark and bright
solitons to the NLSE with second order spatiotemporal
dispersion. Zayed et al. [5] investigated the analytical
solutions of the nonlinear Schrodinger equation with
fourth-order dispersion and dual power law nonlinearity
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using five computational approaches. Mao et al. [6]
investigated the existence and concentration of positive
solutions in the Shrodinger—Poisson system. Kalogiratou
et al. [7] investigated the numerical solutions of the two
dimensional time-independent Shrdédinger equation. In
general, several studies have been conducted in this area
[8-59].

This study is aimed at investigating the Klein—Gordon—
Zakharov equations [60, 61] by using the extended sinh-
Gordon equation expansion method [62, 63].

The Klein—-Gordon—Zakharov equations is given by [60]

¢12‘7¢xx+¢+/1¢¢:07
lptt - lp)cx - O-(|¢|2)xx = Oa

where ¢ is a complex-valued function which represents the
fast time scale component of electric field raise by elec-
trons, Y is a real-valued function and it represents the
deviation of ion density from its equilibrium, A and ¢ are
two nonzero real constants. The Klein—-Gordon—Zakharov
equations describe the interaction between the Langmuir
wave and the ion acoustic wave in a high frequency plasma
[64]. Recently, various computational approaches have

(1)
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been used to investigate the Klein—Gordon—Zakharov
equations such as the solitary wave ansazt [64], the
extended hyperbolic functions method [65], the the bifur-
cation method [66], the trial equation method [67], the He’s
variational principle method [68], the simplest equation
method [69], the sine—cosine method and the extended tanh
method [70], the conservative finite difference scheme [71]
and the complete discrimination system for polynomial
method [72].

2. Analysis of the extended ShGEEM

Consider the sinh-Gordon equation given by [62]
b= ocsinh(qb), (2)

where o is a nonzero constant.
Substituting the travelling wave transformation

¢, t) =¥(0), {=plx—ki) (3)
into (2), we get the following nonlinear ordinary
differential equation (NODE):
. %sinh(‘}‘), 4)
where p and k are nonzero constant and the wave velocity,
respectively.

Integrating Eq. (4), we get

P2 CRIRYA 4
<2> = —ﬂsmh <2> + C, (5)

where c is the integration constant.
Setting —H‘T“k =b and % =w, Eq. (5) becomes

w' = /bsinh*(w) + c. (6)

For the different values of the parameters b and ¢, Eq. (6)
has the following set of significant solutions:
Set-I When ¢ = 0 and b = 1, Eq. (6) becomes

w = sinh(w). (7)
Simplifying Eq. (7), we get the following solutions:
sinh(w) = tesch({) or  sinh(w) = £ i sech({) (8)
and

cosh(w) = £coth({) or

where i = v —1.
Set-II When ¢ = 1, b = 1, Eq. (6) becomes

w = cosh(w). (10)

cosh(w) = £ tanh((), 9)

Simplifying Eq. (10), we get the following solutions:

sinh(w) = tan({) or sinh(w) = —cot({) (11)

and

cosh(w) = £sec({) or cosh(w)= =% csc(). (12)

Consider the general nonlinear partial differential equation
in the form

P(¢7¢x7 ¢xta¢2¢t7"') =0, (]3)

The given steps below are to be followed in obtaining the
wave solutions to Eq. (13)

Step-1 We start by transforming Eq. (13) into the fol-
lowing nonlinear NODE by using Eq. (3):

oY,V ¥ ¥V,...)=0. (14)

Step-2 The solution to Eq. (14) is assumed to be of the form
Y(w) = Z [B;sinh(w) +Ajcosh(w)}j+A0, (15)
j=1

where w is a function of { and it satisfies Eq. (6) and
Ao,A;,B; (j=1,2,...,m) are constants to be determine
letter. To obtain the value of m, the homogeneous balance
principle is used on the highest derivative and highest
power nonlinear term in Eq. (14).

Step-3 We substitute Eq. (15) and it is possible deriva-
tive with fixed value of m along with Eq. (3) into Eq. (14)
to obtain a polynomial equation in wSsinhi(w)cosh!(w)
(s=0,1 and i,j=0,1,2,...). We collect a set of
over-determined nonlinear algebraic set of equations in
Ag,A;, Bk, by setting the coefficients of
wSsinh'(w)cosh/(w) to zero.

Step-4 The obtained set of over-determined nonlinear
algebraic equations is then solved with aid of symbolic
software to determine the values of the parameters
A(),Aj7 Bj, k7 M.

Step-5 Using the results obtained in Egs. (8), (9), (11)
and (12), we secure the wave solutions to any given non-
linear partial differential equation in the forms

Y() = Zm: [+B; i sech(() :I:Aitanh(C)]‘i—&-Ao, (16)

Y() = Z [+£B; esch() + Ajcoth()]+Ao, (17)

Y(() = zm:[j:Bjsec +Ajtan(C)]j+A0 (18)
=1

and



On the new wave behavior to the Klein-Gordon—Zakharov equations

395

V() = i[:l:Bjcsc(C) —A; cot(C)]j+A0.

=1

(19)

3. Theoretical calculations

In this section, the application of the extended sinh-Gordon
equation expansion method to the Klein—Gordon—Zakharov
equations is presented.

Consider the Klein—-Gordon—Zakharov
(Eq. (1)) given in Sect. 1.

Substituting the wave transformation

¢ =Y’y = D), = ulx — kt),p = px +rt

equations

(20)
into Eq. (1), we obtain the following NODE:
(K2 = 1)1 +p> = A\ + 40P + 12 (K2 — 1P =0
(21)
from the real part, and the relation k = —2 from the
imaginary part.
Balancing W and W in Eq. (21), gives m = 1.

With m = 1, Egs. (15), (16), (17), (18) and (19) take the
forms

¥ (w) = Bysinh(w) + Ajcosh(w) + Ao, (22)
W(() = By i sech(() £ Aytanh(l) + Ao, (23)
() = +B) csch({) + Acoth() + Ao, (24)
W() = £Bysec + Agtan(() + Ao, (25)
W(0) = +Byesc(() — Ay cot(0) + Ao, (26)
respectively.

Substituting Eq. (22) and it is second derivative into
Eq. (21), yields a polynomial equation in the power
hyperbolic functions. After making some hyperbolic
identities substitutions into the polynomial equation, we
collect a set of algebraic equations by equating each
summation of the coefficients of the hyperbolic functions
having the same power to zero. We simplify the set of
algebraic equations to obtained the values of the parame-
ters involved. To explicitly obtain the solutions of Eq. (1),
we substitute the values of the parameters into each of
Eqgs. (23), (24), (25) and (26).

Case-1 When

2
Ag =0, Al:_ﬁ —%B1:07
r/—(r2 =22 - 1)
2ut —r?

p:

we get

u 2 [ ( p )} i(px-+rt)
=t—\/—— h —
¢ (x,1) =2 1/ o tanh | x + rt e ,

(27)
_ 22
hiwn = A =22) + (1= r2 +242)) (28)
tanh® [,u (x Jrl;)t)} ,
2 A

o L )

(29)

2 2 p

V) = s e ey L))

(30)

where /o<0 and (2u2 — r?)(1 — r* +212) <0 for valid
solutions.

Case-2 When
—0.A =0 B M 2Pt
AO—OaAl_Ov B, = (r2+'u2) - 72+ﬂ2
we get
_ k2 P\ gitextr)
¢3(x’t)_i(r2+,u2) iasech[,u(x—i—rt)]e ,
(31)
242
Yl 1) = — 21 232 Y
AP+ )"+ (1 =2 = 2) (P + 1))
sech? [,u(x +I;7t)},
(32)
Lo 2 P Y]
Ou(x, 1) ==+ ) g csch {,u(x + rt)]e ,
(33)
212
Yylx,1) = 2 2)2 2 2 (2 42
M2 +w) + (A =r =) (P + 7)) (34)
csch? [,u(x +l—7t)},
r

where Ag <0 or 2o > 0 and (r*> + pi> — 1)(r? + ) > 0 for
valid solutions.
Case-3 When

u [ 2
Ag=0, Ay =————-14/——, B =A
0 ) 1 ('uz_zrz) AU’ 1 15
2+ u? —2r2
=r\|—
uz—2r2 "’

we get
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(a)
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Fig. 1 The (a) 3D, 2D, (b) contour graphs of Eq. (27) under the values r = 0.075, u =02, A= —2,0 =5, (—10<x <10, —10 < ¢ < 10 for the
2D and 3D plots), (—20 <x <20, —20 < <20 for the contour plot) and ¢ = 0.8 for the 2D graph

:
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Fig. 2 The (a) 3D, 2D, (b) contour graphs of Eq. (31) under the values r = 0.5, t = 0.75, A= 2,06 =5, (—10 <x <10, —10 < < 10 for the 2D
and 3D plots), (—20 <x <20, —20 <t <20 for the contour plot) and t = 0.8 for the 2D graph

ds(x, 1) = —ﬁ\/ —%(:I:i sech [,u(x—l—ét)}
+tanh [u(x Jr];t)])ei(f’””),
(35)
Ws(x, 1) = =202 (A = 27)((2 = 27 + 1) — (1> = 2r7))) ™"
X (ii sech[u(x+€t)] :ttanh{#(x+1§t>])27

(36)

P (x,1) = ﬁ \/%(:I:coth [,u (x —l—];t)}

(37)
+csch {,u (x Jrét)] )ei(prrrz)7
Volx 1) = =242 (A8 =2r7)((2 =27 +42) = (1 = 2r7))) "
x (:I:coth [#(X +I;7t)} + csch [,u(x +1;7t)] )27
(38)

where A6 <0 and (2 + p?> —2r?) (1% — 2r?) > 0 for valid
solutions.
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Fig. 3 The (a) 3D, 2D, (b) contour graphs of Eq. (33) under the values r = 0.5, u =0.75, .= -2, 0 =5, =20 <x <20, —20<1<20 and
t = 0.8 for the 2D graph
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Fig. 4 The (a) 3D, 2D, (b) contour graphs of Eq. (39) under the values r =2, u =3, A = —2,0 =5, (-10<x <10, —10 < < 10 for the 2D and
3D plots), (—20 <x <20, —20 <7 <20 for the contour plot) and ¢ = 0.8 for the 2D graph

Case-4 When u 2
$q(x,1) = — @2 +277) V"7
O (sl +2)] 1o+ 2) o
By =-A, p (39)
we get Vq(x, 1) = A(Zrél;:—uz) (:I:sec[,u(x—i—ét)] :I:tan[u(x +I;t)])2,

(40)
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1 2 11 ( p ) i(pr-+r1)
t)=t————/——tan|= —t
¢8 ()C, ) ('uz I 2}"2) )MO' an |:2 uix + r € )

(41)
2

K 2|1 ( p )
t) = s tan” | = =t 42
Vg (x, 1) 2P+ ) an [Z,u x+21) (42)
where /6 <0 or 4 > 0 and (2r? — 2 + ) (p> +2r%) > 0
for valid solutions.

4. Results and discussion

The extended sinh-Gordon equation expansion method is
utilized to construct various solitary wave solutions to the
Klein—Gordon-Zakharov equations. There are some results
to the studied model that have been previously reported in
the literature. Triki and Boucerredj [64] reported some
bright and dark soliton to Eq. (1) by using the solitary wave
ansazt. Shang et al. [65] obtained some bell-type, kink-
type, compound bell-type and kink-type, singular and
periodic travelling wave solutions to Eq. (1) by using the
extended hyperbolic functions method. Zhang et al. [66]
secured some hyperbolic and trigonometric to Eq. (1) by
utilizing the bifurcation method. Akbari and Taghizadeh
[68] acquired some exact solitary wave solutions with
hyperbolic function structure to Eq. (1) by using He’s semi-
inverse method. Kudryashov [69] utilized the simplest
equation method in constructing soliton and singular peri-
odic wave solutions to Eq. (1). Shi et al. [70] utilized the
sine—cosine method and the extended tanh method to
construct some solitons and periodic wave solutions. In this
study, some topological, non-topological, compound
topological and non-topological, singular soliton and sin-
gular periodic wave solutions are constructed. We observed
that the reported results of this study have some features
that explain some of their physical meanings, for instance;
the hyperbolic tangent which arises in the calculation of
magnetic moment and rapidity of special relativity, the
hyperbolic cotangent which arises in the Langevin function
for magnetic polarization and the hyperbolic secant which
arises in the profile of a laminar jet [73] (Figs. 1, 2, 3, 4).

5. Conclusions

This study constructed family of solitary wave solutions to
the Klein—Gordon—Zakharov equations by using the
extended sinh-Gordon equation expansion method such as
the topological, non-topological, compound topological
and non-topological, singular soliton and singular periodic
wave solutions. All the obtained solutions satisfied the
Klein—Gordon—Zakharov equations. The 2D, 3D and the

contour graphs to some of the obtained solutions are also
plotted. We feel that the reported results may be useful in
explaining the physical meaning of some nonlinear models
arising in various fields of nonlinear sciences. From the
results presented in this study, it can be seen that the
extended sinh-Gordon equation expansion method is
powerful and efficient mathematical tool which can be
utilized to obtain varieties of solitary wave solutions to
various complex nonlinear models.
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