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Abstract: We study numerically the existence and stability of a test particle around the equilibrium points in the circular

restricted three-body problem, and is generalized to include the effects in both primaries, oblateness and radiation together

with P–R drag, small perturbations r and e0 given in the Coriolis and centrifugal forces a and b, respectively. The primaries

are a neutron eclipsing binary system, which consists of bright oblate-stars possessing P–R drag. In the numerical

exploration of the binary systems (Kruger 60 and Achird), we computed the radiation factors qi (i = 1, 2) and the

dimensionless velocity of light cd which is a component of the P–R drag. It is interesting to note that, the involved

parameters influence the position and stability of the triangular points. It is also observed that theses points are unstable due

to the presence of a positive real part of the complex roots.
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1. Introduction

It is no longer new that one of the most interesting and

important topics in celestial mechanics as well as in

dynamical astronomy is, the classical problem of the cir-

cular restricted three-body problem (CR3BP for short). The

problem is defining a test particle having an infinitesimal

mass under the gravitational attraction of two primary

bodies, which move in circular orbits around their common

center of gravity [1]. In realistic applications, this problem

expands in many fields of research from chaos theory and

molecular physics to planetary physics, stellar systems or

even to galactic dynamics. This tells why this topic remains

an active and stimulating area of research.

In recent times, several modifications of the R3BP have

been proposed, most of which focus on investigating the

character of the motion of infinitesimal mass in the Solar

and Stellar Systems. All these modifications include addi-

tional types of forces, which are in general included in the

total potential function of the classical R3BP in an attempt

to take into consideration more dynamical parameters of

the physical system and therefore make the study of the

motion of the test particle more realistic and generalized.

The classical R3BP describes a setup in which the two

main bodies are assumed to be spherically symmetric.

However, in our Stellar and Solar Systems, several celestial

bodies, such as Saturn, Jupiter and several degenerate stars

have been found to be sufficiently oblate, prolate or tri-

axial. The shape of a celestial body should be taken into

account in order that the dynamical exploration of the

particular system to be more realistic. The investigations of

problems involving oblateness of one or both primaries

have been extensively studied in past years. Examples are

studies all conducted in 2012 by [1–4]. The first is a

variable mass circular restricted problem, the second is an

elliptic restricted problem while the third examined the

Robe’s circular R3BP, when the first primary is an oblate

spheroid. Studies that are more recent include papers of

[5–8].

Another interesting perturbing case is the model when a

test particle moves in the vicinity of a radiating primary

under the combined influence of both radiation and gravi-

tational forces. This problem, according to [9, 10] is known

as the photogravitational R3BP. A characteristic example is

the motion of a dust grain in the vicinity of a binary stellar

system in which one or even both main bodies are emitting
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radiation thus exerting light pressure to the dust grain.

Solar sailing, an experimental method of spacecraft

propulsion, uses radiation pressure from the Sun as a

motive force. Also, in cosmic formation, radiation pressure

has had a major effect on the development of the cosmos,

from the birth of the universe to ongoing formation of stars

and shaping of clouds of dust and gases on a wide range of

scales.

The effects of the radiation pressure on the motion of the

test particle have been investigated by several authors, e.g.

[11–17]. However, in these papers, the light radiation force

was defined, taken into account just one of the three

components of the light pressure field, which is due to the

central force: the gravitation and the radiation pressure.

The other two components are arising from the Doppler

shift and the absorption and subsequent re-emission of the

incident radiation. These last two components constitute

the so-called Poynting–Robertson (P–R) effect [18, 19].

The Poynting–Robertson effect act as an orbital perturba-

tions and affects the orbits and trajectories of small bodies,

all spacecrafts and all natural bodies (comets, asteroids,

dust grains, gas molecules) and can cause dust grains to

either leave the Solar system or spiral into the Sun. If the

drag effects of the Sun’s radiation pressure on the space-

craft of the Viking program had been ignored, the space-

craft would have missed Mars orbit by 15,000 km (Eugene

Hecht).

In incorporating the P–R effect, several authors such as

[20–24] have under different assumptions studied the

R3BP.

Finally, in the classical R3BP, the test particle is

assumed to move, only under the mutual gravitational force

of the primaries, but in practice, Coriolis and centrifugal

forces are effective and small perturbations affect these

forces. Examples include: small deviation of disc stars in

circular orbits and motion of a close artificial satellite of

the Earth perturbed by the atmospheric friction and the

oblateness of the Earth. [25] studied the effect of small

perturbations in the Coriolis and centrifugal forces when

both primaries are oblate spheroid and are radiating as

well, while [16] generalized the restricted problem to

include the effects of perturbations in the Coriolis and

centrifugal forces.

Sequel to the paper by [24], which took into account

effects of oblateness and the P–R drag of the smaller pri-

mary, on the motion around triangular equilibrium points.

Our aim in the present paper is to study the positions and

stability of triangular equilibrium points under effects of

small perturbations in the Coriolis and centrifugal forces

when both primaries are radiating oblate spheroids coupled

with the P–R drag emanating from both primaries.

The paper organization is as follows: Sect. 2 describes

the equations of motion. The existence of triangular

equilibrium points is discussed in Sect. 3, while Sect. 4

shows numerical applications. Section 5 examines the

stability of these triangular points and Sect. 6 shows the

results and discussion. Finally, Sect. 7 summarizes the

conclusions of the paper.

2. Equations of motion

Let m1 and m2 be the masses of bigger and smaller pri-

maries, respectively, while we denote the mass of the test

particle by m. Suppose (x, y, z) be the coordinates of m in a

rotating barycentric co-ordinate system 0 xyz relative to an

inertial system with angular velocity n. Following the ter-

minologies of [1], the equations of motion of the test body

in the gravitating field of the primaries, is given by

€x� 2 _y ¼ x� 1 � lð Þ xþ lð Þ
r3

1

� l xþ l� 1ð Þ
r3

2

€yþ 2 _x ¼ y 1 � 1 � l

r3
1

� l

r3
2

� �

€z ¼ z � 1 � l

r3
1

� l

r3
2

� �
ð1Þ

where

r2
1 ¼ ðxþ lÞ2 þ y2 þ z2; r2

2 ¼ ðxþ l� 1Þ2 þ y2 þ z2;

ð2Þ

r1 and r2 are the distances of the third body from the pri-

maries while l is the mass parameter and is defined as

l ¼ m2

m1þm2
.

Now, if we consider the primaries to be sources of

radiation, and suppose that Fg and Fp are the gravitational

and radiation forces acting on a particle. Then the resultant

force on the particle is given by [9],

F ¼ Fg � Fp ¼ Fg 1 � Fp

Fg

� �
¼ qFg;

where q is the factor characterizing radiation effects.

If the solar radiation flood fluctuations and a shadow

effect of the planet are neglected, then q is assumed a

constant. Depending upon the value of q, the reduced

particle mass is positive, negative or zero. In the case

where the gravitation prevails, q[ 0. The modified equa-

tions of motion (1) with the allowance for the radiation

force of the primaries, becomes

€x� 2 _y ¼ x� 1 � lð Þ xþ lð Þq1

r3
1

� l xþ l� 1ð Þq2

r3
2

€yþ 2 _x ¼ y 1 � 1 � lð Þq1

r3
1

� lq2

r3
2

� �

€z ¼ z � 1 � lð Þq1

r3
1

� lq2

r3
2

� �
ð3Þ
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where qi(i = 1, 2) represent radiation factors of the bigger

and smaller primaries, respectively, and are such that

0\1 � qi\\ 1 i ¼ 1; 2ð Þ; and are the ratios of the radi-

ation pressure force to the gravitational force of the

primaries.

Equations (3) only took into account the radiation force

owning to the gravitation and the radiation pressure.

Incorporating the forces arising from the Doppler shift and,

the absorption and subsequent re-emission of the incident

radiation when the primaries are oblate spheroid, the

derived equations of motion of the test particle in confor-

mity with [24], have the form:

€x� 2n _y ¼ n2x� ð1 � lÞðxþ lÞq1

r3
1

� 3ð1 � lÞA1ðxþ lÞq1

2r5
1

� lq2ðxþ l� 1Þ
r3

2

� 3lðxþ l� 1ÞA2q2

2r5
2

�W1

r2
1

ðxþ lÞ
r2

1

fðxþ lÞ _xþ y _yþ z _zg þ _x� ny

� �

�W2

r2
2

ðxþ l� 1Þ
r2

2

fðxþ l� 1Þ _xþ y _yþ z _zg þ _x� ny

� �
;

€yþ 2n _x ¼ n2y� ð1 � lÞyq1

r3
1

� 3ð1 � lÞyA1q1

2r5
1

� lq2y

r3
2

� 3lyA2q2

2r5
2

�W1

r2
1

y

r2
1

fðxþ lÞ _xþ y _yþ z _zg þ _yþ nðxþ lÞ
� �

�W2

r2
2

y

r2
2

fðxþ l� 1Þ _xþ y _yþ z _zg þ _yþ nðxþ l� 1Þ
� �

;

€z ¼ �ð1 � lÞz q1

r3
1

� 3ð1 � lÞzA1q1

2r5
1

� lq2z

r3
2

� 3lzA2q2

2r5
2

�W1

r2
1

z

r2
1

fðxþ lÞ _xþ y _yþ z _zg þ _z

� �

�W2

r2
2

z

r2
2

fðxþ l� 1Þ _xþ y _yþ z _zg þ _z

� �
:

ð4Þ

where

n2 ¼ 1 þ 3

2
A1 þ

3

2
A2;Ai ¼

AE2
i � AP2

i

5R2
i ¼ 1; 2ð Þ;

W1 ¼ ð1 � lÞð1 � q1Þ
cd

; W2 ¼ lð1 � q2Þ
cd

:

ð5Þ

Ai(0\Ai\\ 1) are the oblateness coefficients of the

primaries and are defined [26] in terms of the distance

between the primaries R, the equatorial radii AEi and polar

radii APi of mi. cd is the dimensionless velocity of light

while Wi(i = 1, 2) are the P–R drag of the bigger and

smaller primaries, respectively.

Next, we introduce small perturbations in the Coriolis

and centrifugal forces with the help of the parameters a and

b. Then, the generalized equations of motion under com-

bined effects of radiation, P–R drag, oblateness and small

perturbations in the Coriolis and centrifugal forces, in the

xy-orbital plane is described by the equations

€x� 2na _y ¼ Xx;

€yþ 2na _x ¼ Xy;
ð6Þ

where

Xx ¼ n2bx� ð1 � lÞðxþ lÞq1

r3
1

� 3ð1 � lÞA1ðxþ lÞq1

2r5
1

� lq2ðxþ l� 1Þ
r3

2

� 3lðxþ l� 1ÞA2q2

2r5
2

�W1

r2
1

ðxþ lÞ
r2

1

fðxþ lÞ _xþ y _yþ z _zg þ _x� ny

� �

�W2

r2
2

ðxþ l� 1Þ
r2

2

fðxþ l� 1Þ _xþ y _yþ z _zg þ _x� ny

� �
;

Xy ¼ n2by� yq1

r3
1

� 3ð1 � lÞA1yq1

2r5
1

� lyq2

r3
2

� 3lA2yq2

2r5
2

�W1

r2
1

y

r2
1

fðxþ lÞ _xþ y _yþ z _zg þ _x� ny

� �

�W2

r2
2

y

r2
2

fðxþ l� 1Þ _xþ y _yþ z _zg þ _x� ny

� �
;

a ¼ 1 þ r: rj j\\1 and b ¼ 1 þ e0: e0j j\\1.

Next, we discuss the positions of triangular equilibrium

points of the third body.

3. Position of triangular equilibrium points

The coordinates of triangular equilibrium points are found

by solving the equations Xx ¼ 0 and Xy ¼ 0 provided

y 6¼ 0. That is, they are the solutions of the equations

n2bx� ð1 � lÞðxþ lÞq1

r3
1

� 3ð1 � lÞA1ðxþ lÞq1

2r5
1

� lq2ðxþ l� 1Þ
r3

2

� 3lðxþ l� 1ÞA2q2

2r5
2

þW1ny

r2
1

þW2ny

r2
2

¼ 0;

ð7Þ

and,

n2b� ð1 � lÞ q1

r3
1

� 3ð1 � lÞq1A1

2r5
1

� lq2

r3
2

� 3lA2q2

2r5
2

� �
y

�W1n ðxþ lÞ
r2

1

�W2n ðxþ l� 1Þ
r2

2

¼ 0

ð8Þ

Now, when the P–R drag effect and oblateness factors

are ignored, Eqs. (7) and (8) become:
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x b� ð1 � lÞq1

r3
1

� lq2

r3
2

� �
� ð1 � lÞl q1

r3
1

� q2

r3
2

� �
¼ 0;

b� ð1 � lÞ q1

r3
1

� lq2

r3
2

¼ 0:

When the above equations are solved, we get

r1 ¼ q1

b

� �1
3

; r2 ¼ q2

b

� �1
3

: ð9Þ

Equations (9) are the solutions of Eqs. (2) when z ¼ 0,

which is the photogravitational set up when both primaries

are radiation sources. Hence, when P–R drag and

oblateness of the primaries are present (i.e.

Ai 6¼ 0 Wi 6¼ 0), we can with the help of (9) assume the

solutions of Eqs. (7) and (8), to be

r1 ¼ q1

b

� �1
3

þe1; r2 ¼ q2

b

� �1
3

þe2; ei\\1 i ¼ 1; 2ð Þ

ð10Þ

Now, the x-coordinate of the triangular point is found by

solving r2
1 ¼ ðxþ lÞ2 þ y2 and r2

2 ¼ ðxþ l� 1Þ2 þ y2

simultaneously, to get

x ¼ 1

2
� lþ r2

1 � r2
2

2
ð11Þ

On substituting Eqs. (10) in (11), yields

x ¼ 1

2
� lþ q

2
3

1 � q
2
3

2

2b
2
3

þ q1

b

� �1
3

e1 �
q2

b

� �1
3

e2 ð12Þ

From y2 ¼ r2
1 � ðxþ lÞ2; we get

y ¼ �y0 1 þ 1

2y2
0 b

1
3

q
1
3

1e1 þ q
1
3

2e2

� �
� 1

2y2
0 b

q
2
3

1 � q
2
3

2

� �
q

1
3

1e1 � q
1
3

2e2

� �" #

ð13Þ

where

y0 ¼ � 1

2
�1 þ 1

2 b
2
3

q
1
3

1 þ q
1
3

2

� �
þ 1

2 b
4
3

q
2
3

1 � q
2
3

2

� �2
" #1

2

Now, substituting Eqs. (5), (10), (12), and (13) and into

Eqs. (7) and (8), we neglect products of ei, Ai and

Wi(i = 1, 2), we get the respective equations:

a1e1 þ b1e2 ¼ c1 ð14Þ
a2e1 þ b2e2 ¼ c2 ð15Þ

where

a1 ¼ 3x0 q
�1
3

1 b
4
3 1 � lð Þ þ 3lq

�1
3

1 b
4
3 1 � lð Þ

b1 ¼ 3lx0q
�1
3

2 b
4
3 � 3lq

�1
3

2 b
4
3 1 � lð Þ

c1 ¼ 3

2
b �x0 þ x0q

�2
3

1 b
2
3 � x0lq

�2
3

1 b
2
3 þ lq

�2
3

1 b
2
3 � l2q

�2
3

1 b
2
3

� �

A1 þ
3

2
b �x0þð x0lq

�2
3

2 b
2
3

þ l2q
�2
3

2 b
2
3 � lq

�2
3

2 b
2
3

�
A2 � y0q

�2
3

1 b
2
3 W1 þW2ð Þ

a2 ¼ 3y0q
�1
3

1 b
4
3 1� lð Þ

b2 ¼ 3ly0q
�1
3

2 b
4
3

c2 ¼
3

2
by0 �1þ q

�2
3

1 b
2
3 � lq

�2
3

1 b
2
3

� �
A1 þ

3

2
by0 �1þ lq

�2
3

1 b
2
3

� �

A2 þ x0 þ lð Þq
�2
3

1 b
2
3W1

þ x0 þ l� 1ð Þq
�2
3

1 b
2
3W2

For simplicity, we express qi ¼ 1� di i¼ 1;2ð Þ where di
are very small. Substituting these in Eqs. (12) and (13), we

have

x ¼ 1

2
� l� 1

3
d1 þ

1

3
d2 þ e1 � e2 and

y ¼ �
ffiffiffi
3

p

2
1 � 4

9
e0 � 2

9
d1 �

2

9
d2 þ

1

2y2
0

e1 þ e2ð Þ
� �

ð16Þ

where x0 ¼ 1
2
� l� 1

3
d1 þ 1

3
d2 and y0 ¼ �

ffiffi
3

p

2
1 � 4

9
e0

	
� 2

9
d1 � 2

9
d2Þ:

Now, using the relations:

e1 ¼ b2c1 � b1c2

a1b2 � a2b1

; e2 ¼ a1c2 � a2c1

a1b2 � a2b1

:

The values of e1 and e2 are

e1 ¼ �A2

2
� W1

3
ffiffiffi
3

p
ð1 � lÞ

� 2W2

3
ffiffiffi
3

p
ð1 � lÞ

;

e2 ¼ �A1

2
þ 2W1

3l
ffiffiffi
3

p þ W2

3l
ffiffiffi
3

p :

ð17Þ

These equations have been obtained by neglecting

products of ei, Ai, qi and Wi(i = 1, 2)

Now, we substitute Eqs. (17) in (16), to get

x4 ¼ 1

2
� l� 1

3
d1 þ

1

3
d2 þ

A1

2
� A2

2
� W1ð2 � lÞ

3l
ffiffiffi
3

p
ð1 � lÞ

� W2ð1 þ lÞ
3l

ffiffiffi
3

p
ð1 � lÞ

y4 ¼ �
ffiffiffi
3

p

2
1 � 4

9
e0 � 2

9
d1 �

2

9
d2 �

A1

3
� A2

3

� ��

þW1ð2 � 3lÞ
9lð1 � lÞ þW2ð1 � 3lÞ

9lð1 � lÞ

�

ð18Þ
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Equations (18) give the coordinates of the triangular

equilibrium points of the system under investigation. Since

r1 = r2, the two points defined by (18) form scalene

triangles with the primaries. These points are denoted by

L4;5ðx4;�y4Þ, and are called the triangular equilibrium

points by virtue of the two triangles they form with lines

joining the primaries. The positions depend on the mass

ratio, small perturbation in the centrifugal force, oblateness,

radiation pressures and P–R drag of the primaries.

4. Numerical applications

In order to show the effects of parameters involved in the

position and stability of triangular equilibrium points, we

consider the binaries system Kruger 60 and Achird. We

first compute the dimensionless velocity of light cd using

the relation cd ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffi
c M1þM2ð Þ

a

q [27], where ’c’ is the velocity of

light, ’c’ is the gravitational constant, ’a’ the binary sepa-

ration, and M1 and M2 are the masses of primaries. Then,

we obtain the ratios di and consequently radiation factors qi

by means of relation q ¼ 1 � AjL
aqM [28] and d2 ¼ d1

L2M1

L1M2

[29], taking j = 1 on the basis of Stefan-Boltzmann’s law.

Li, Mi refer to luminosity and masses of the primaries, and

a and q are the radius and density of a moving body; j is

the radiation pressure efficiency factor of a star; A ¼ 3
16pCG

is a constant. In C.G.S system, A ¼ 2:9838 � 10�5: We

suppose that the dust grain has a radius and density

a = 2 9 10-2cm and q = 1.4g c-3, respectively. All these

necessary qualities are listed in the Table 1.

Using the software Mathematica, Table 1 and Eq. (18),

we locate numerically the positions of triangular points

given in Tables 2, 3, 4, 5. Figure 1 and 2 are the graph of

Table 2 and 4 for the triangular points of the binaries

system Kruger 60 and Achird.

In the next section, we investigate the stability of tri-

angular points.

5. Stability of triangular equilibrium points

We now examine the stability of an equilibrium config-

uration, that is, its ability to restrain the body motion in

its vicinity. To do so, we displace the third body a little

from an equilibrium point with a small velocity. If its

motion is a rapid departure from the vicinity of the point,

we call such a position an unstable one. However, if the

body merely oscillates about the point, it is said to be a

stable position. Let the position of an equilibrium point be

denoted by (a0, b0) and consider a small displacement

(n, g) from the point such that x = a0 ? n and y = b0 ?

g. Substituting these values in (6), we obtain the varia-

tional equations

€n� 2na _g ¼ ðUx _xÞ0 _nþ ðUx _yÞ0 _gþ ðUxxÞ0nþ ðUxyÞ0g

€gþ 2na _n ¼ ðUy _xÞ0 _nþ ðUy _yÞ0 _gþ ðUyxÞ0nþ ðUyyÞ0g

ð19Þ

Here, only linear terms in n and g have been taken. The

second order partial derivatives of U are denoted by sub-

scripts. The superscript o indicates that the derivatives are

to be evaluated at the equilibrium point (a0, b0).

Table 1 Computation of qi(i = 1, 2) and cd for Kruger 60 and Achird binary system

Binaries Luminosity (L0) Mass (M0) Radiation pressure (qi) Binary separation (AU) Dimensionless velocity of light

L1 L2 M1 M2 Q1 Q2 A Cd

Kruger 60 0.01 0.0034 0.271 0.176 0.99992 0.99996 9.5 46,393.84

Achird 1.29 0.06 0.95 0.62 0.9971 0.9997 71 67,675.52

Table 2 Effects of oblateness and Coriolis forces on L4,5 for l = 0.3937, cd = 46,393.84, 0\ 1 - qi\\ 1 and 0 B Ai B 0.2

e
0

q1 q2 A1 A2 W1 W2 x4 ± y4

0 1 1 0 0 0 0 0.106300 0.866025

0.0001 0.99992 0.99996 0.00001 0.00002 1.04548 9 10-9 3.39442 9 10-10 0.106282 0.865955

0.001 0.99992 0.99996 0.0001 0.0002 1.04548 9 10-9 3.39442 9 10-10 0.106237 0.865531

0.01 0.99992 0.99996 0.001 0.002 1.04548 9 10-9 3.39442 9 10-10 0.105787 0.861287

0.05 0.99992 0.99996 0.01 0.02 1.04548 9 10-9 3.39442 9 10-10 0.101287 0.838097

0.1 0.99992 0.99996 0.1 0.2 1.04548 9 10-9 3.39442 9 10-10 0.056287 0.740910
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The characteristic equation corresponding to Eqs. (19) is

k2 � kU0
x _x � U0

xx � 2nak� kU0
x _y � U0

xy

2nak� kU0
y _x � U0

yx k2 � kU0
y _y � U0

yy
























¼ 0

That is,

k4 þ ak3 þ bk2 þ ckþ d ¼ 0 ð20Þ

where

Table 4 Effects of oblateness and Coriolis forces onL4,5 for l = 0.3949, cd = 67675.52, 0\ 1 - qi\\ 1 and 0 B Ai B 0.2

e
0

q1 q2 A1 A2 W1 W2 x4 ± y4

0 1 1 0 0 0 0 0.105100 0.866025

0.0001 0.9971 0.9997 0.00001 0.00002 2.59295 9 10-8 1.75056 9 10-9 0.104228 0.865362

0.001 0.9971 0.9997 0.0001 0.0002 2.59295 9 10-8 1.75056 9 10-9 0.104183 0.864938

0.01 0.9971 0.9997 0.001 0.002 2.59295 9 10-8 1.75056 9 10-9 0.103733 0.860695

0.05 0.9971 0.9997 0.01 0.02 2.59295 9 10-8 1.75056 9 10-9 0.099233 0.837504

0.1 0.9971 0.9997 0.1 0.2 2.59295 9 10-8 1.75056 9 10-9 0.054233 0.740317

Table 3 Effects of radiation pressure on L4,5 for l = 0.3937, e
0

= 0.003, cd = 46,393.84, 0\ 1 - qi\\ 1 and 0 B Ai B 0.2

e
0

q1 q2 A1 A2 W1 W2 x4 ± y4

0.003 0.99 0.99996 0.001 0.002 1.30685 9 10-7 3.39442 9 10-10 0.102480 0.862073

0.003 0.9 0.99996 0.001 0.002 1.30685 9 10-6 3.39442 9 10-10 0.072478 0.844752

0.003 0.8 0.99996 0.001 0.002 2.61371 9 10-6 3.39442 9 10-10 0.039143 0.825508

0.003 0.7 0.99996 0.001 0.002 3.92056 9 10-6 3.39442 9 10-10 0.005808 0.806263

0.003 0.6 0.99996 0.001 0.002 5.22742 9 10-6 3.39442 9 10-10 - 0.027527 0.787019

0.003 0.5 0.99996 0.001 0.002 6.53427 9 10-10 3.39442 9 10-10 - 0.060862 0.767774

0.003 0.99992 0.95 0.001 0.002 1.04548 9 10-9 4.24302 9 10-7 0.122440 0.854367

0.003 0.99992 0.85 0.001 0.002 1.04548 9 10-9 1.27291 9 10-6 0.155772 0.835122

0.003 0.99992 0.75 0.001 0.002 1.04548 9 10-9 2.12151 9 10-6 0.189104 0.815877

0.003 0.99992 0.65 0.001 0.002 1.04548 9 10-9 2.97011 9 10-6 0.222437 0.796632

0.003 0.99992 0.55 0.001 0.002 1.04548 9 10-9 3.81872 9 10-6 0.255769 0.777386

0.003 0.99992 0.50 0.001 0.002 1.04548 9 10-9 4.24302 9 10-6 0.272435 0.767764

Table 5 Effects of radiation pressure on L4,5 for l = 0.3949, e
0

= 0.003, cd = 67675.52, 0\ 1 - qi\\ 1 and 0 B Ai B 0.2

e
0

q1 q2 A1 A2 W1 W2 x4 ± y4

0.003 0.99 0.9997 0.001 0.002 8.94119 9 10-8 1.75056 9 10-9 0.101367 0.862022

0.003 0.9 0.9997 0.001 0.002 8.94119 9 10-7 1.75056 9 10-9 0.071366 0.844702

0.003 0.8 0.9997 0.001 0.002 1.78824 9 10-6 1.75056 9 10-9 0.038031 0.825458

0.003 0.7 0.9997 0.001 0.002 2.68236 9 10-6 1.75056 9 10-9 0.004697 0.806213

0.003 0.6 0.9997 0.001 0.002 3.57648 9 10-6 1.75056 9 10-9 - 0.028638 0.786968

0.003 0.5 0.9997 0.001 0.002 4.47060 9 10-6 1.75056 9 10-9 - 0.061972 0.767724

0.003 0.9971 0.95 0.001 0.002 2.59295 9 10-8 2.91760 9 10-7 0.120300 0.853824

0.003 0.9971 0.85 0.001 0.002 2.59295 9 10-8 8.75280 9 10-7 0.153632 0.834579

0.003 0.9971 0.75 0.001 0.002 2.59295 9 10-8 1.45880 9 10-6 0.186965 0.815334

0.003 0.9971 0.65 0.001 0.002 2.59295 9 10-8 2.04232 9 10-6 0.220298 0.796089

0.003 0.9971 0.55 0.001 0.002 2.59295 9 10-8 2.62584 9 10-6 0.253630 0.776844

0.003 0.9971 0.50 0.001 0.002 2.59295 9 10-8 2.9176 9 10-6 0.270297 0.767221
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a ¼ �ðU0
y _y þ U0

x _xÞ
b ¼ 4n2a2 þ U0

x _xU
0
y _y � U0

xx � U0
yy � ðU0

x _yÞ
2

c ¼ U0
x _xU

0
yy þ U0

xxU
0
y _y þ 2nU0

xy � 2nU0
yx � U0

y _xU
0
xy � U0

yxU
0
x _y

d ¼ U0
xxU

0
yy � U0

yxU
0
xy

Evaluating the second order partial derivatives at the

equilibrium points, we obtain

U0
x _x ¼�ðx0 þ lÞ2

W1 �W1 � ðx0 þ l� 1Þ2
W2 �W2

U0
x _y ¼�ðx0 þ lÞy0W1 � ðx0 þ l� 1Þy0W2 ¼ U0

y _xsay

U0
y _y ¼�ðy2

0 þ 1ÞW1 � ðy2
0 þ 1ÞW2

U0
xx ¼ 3x2

0 � 3l2 þ 3lþ 2x2
0 þ 4lx0 þ 2l2 � 2l2x0 � 4l2x0 � 2l3

	 �
d1

þ 2lx2
0 þ 2l3 þ 4l2x0 � 4lx0 � 4l2 þ 2l

	 �
d2 þ 5x2

0 � 5l2 þ 5l
	 �

e0

þ lþ 5x2
0 þ 10lx0 þ 5l2 � 5lx2

0 � 10l2x0 � 5l3
	 �3

2
A1

þ 1þ 4lþ 5lx2
0 þ 5l3 þ 10l2x0 � 10lx0 � 10l2

	 �3

2
A2

þ 3� 3l� 15l2 þ 15l3 þ 6x0 � 15x2
0 � 30lx0 þ 15lx2

0 þ 30l2x0

	 �
e1

þ �12lþ 30l2 � 15l3 � 6x0 � 15lx2
0 þ 30lx0 � 30l2x0

	 �
e2

� 2x0y0 þ 2ly0ð ÞW1 � 2x0y0 þ 2ly0 � 2y0ð ÞW2

U0
xy ¼ 3x0y0 þ 2x0y0 � 2ly0 � 2lx0y0 � 2l2y0

	 �
d1

þ 2lx0y0 þ 2l2y0 � 2ly0

	 �
d2

þ x0y0 þ ly0 � lx0y0 � l2y0

	 � 15

2
A1

þ lx0y0 þ l2y0 � ly0

	 � 15

2
A2 þ 5 x0y0ð Þe0

þ 3y0 þ
3x0

2y0

� 15x0y0 � 15ly0 þ 15lx0y0 þ 15l2y0

� �
e1

þ �3y0 þ
3x0

2y0

þ 15ly0 � 15lx0y0 � 15l2y0

� �
e2

þ 1 � 2y2
0

	 �
W1 þ 1 � 2y2

0

	 �
W2

U0
yx ¼ 3x0y0 þþ 2x0y0 � 2ly0 � 2lx0y0 � 2l2y0

	 �
d1

þ 2lx0y0 þ 2l2y0 � 2ly0

	 �
d2

þ x0y0 þ ly0 � lx0y0ð �l2y0

� 15

2
A1

þ lx0y0 þ l2y0 � ly0

	 � 15

2
A2 þ 5 x0y0ð Þe0

þ 3y0 þ
3x0

2y0

� 15x0y0 � 15ly0 þ 15lx0y0

�
þ15l2y0

�
e1

þ �3y0 þ
3x0

2y0

þ 15ly0 � 15lx0y0 � 15l2y0

� �
e2

þ 2 x0 þ lð Þ2
W1 �W1 þ 2 x0 þ l� 1ð Þ2

W2 �W2

U0
yy ¼ 3y2

0 þ 2y2
0 � 2ly2

0

	 �
d1 þ 2ly2

0

	 �
d2 þ 5y2

0

	 �
e0

þ lþ 5y2
0 � 5ly2

0

	 � 3

2
A1

1 � lþ 5ly2
0

	 � 3

2
A2 þ 6 � 3l� 15y2

0 þ 15ly2
0

	 �
e1

þ 3 þ 3l� 15ly2
0

	 �
e2 þ 2x0y0 þ 2ly0ð ÞW1

þ 2x0y0 þ 2ly0 � 2y0ð ÞW2

6. Results and discussion

Substituting for U0
x _x;U

0
x _y;U

0
y _y;U

0
y _x;U

0
xx;U

0
xy;U

0
yy, and X0

yx; in

the characteristic Eq. (20), we get

Fig. 1 Showing the effect of oblateness and Coriolis forces on L4,5

for Kruger 60

Fig. 2 Showing the effect of oblateness and Coriolis forces on L4,5

for Achird
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a ¼ 3W1 þ 3W2

b ¼ 1 þ 8r� 5e0 � 3

2
A1 1 � 2lð Þ þ 3

2
A2 �1 þ 2lð Þ

þ W1ffiffiffi
3

p � W2ffiffiffi
3

p

c ¼ �W1

4
12 þ 9lð Þ �W2

4
21 � 9lð Þ

d ¼ 27

4
l 1 � lð Þ þ 45

2
l 1 � lð Þe0 þ 3

2
l 1 � lð Þd1

þ 3

2
l 1 � lð Þd2 þ

117

4
l 1 � lð ÞA1 þ

117

4
l 1 � lð ÞA2

þ 27W1

4
ffiffiffi
3

p
1 � lð Þ

�3l2 þ 5l� 2
	 �

þ 27W2

4
ffiffiffi
3

p
1 � lð Þ

�3l2 þ 4l� 1
	 �

The characteristic equation roots (k1,2,3,4) are computed

numerically for the motion of a test particle in the

neighborhood of a binary star in Table 6 and 7. In

particular, the binaries system, ‘‘Kruger 60 and Achird’’

are suitable model for our problem.

The triangular equilibrium points have also been

established in Eqs. (18) forming scalene triangles with the

line joining the primaries, and are calculated using the

values of the binary system (Kruger 60 and Achird) as in

Tables 2, 3, 4, 5 for varying oblateness, radiation pressure

force and effects of the Coriolis force. These are shown

graphically in Figs. 1 and 2. It found that both increases in

the Coriolis force and the oblateness parameter cause

decrease in the equilibrium points. The points L4,5 is

observed to shift in the direction of the bigger primary and

towards the line joining the primaries with increasing

perturbations.

7. Conclusions

We have modelled Eqs. (6), the motion in the circular

R3BP of a test particle under the assumption of both

bodies, oblate radiating stars possessing P–R drag given in

the literature. The equations are affected by the mass ratio,

radiation pressure, oblateness and small perturbation in the

Coriolis and centrifugal force. These points are different

from those of the classical R3BP of [1], and those obtained

by [3, 16, 25].

The triangular equilibrium points L4,5 under the joint

action of perturbing forces are seen to be unstable in the

presence of the P–R drag, while in their absence, they are

conditionally stable.

Also, the stability of these points has been investigated

for (Kruger 60 and Achird) as in Tables 6 and 7, these roots

as shown above reveals the existence of at least one

complex root with positive real part. Hence, we conclude

that the triangular equilibrium points are unstable in the

Lyapunov sense due to the presence of at least one complex

root of Eq. (20) having positive real part.

This research work has produced significant results and

is the backdrop for space technology, man-made satellites

are modeled and built as test particles in orbits of celestial

bodies. Results considering the shape of the Earth and

Table 6 Roots of the characteristic Eq. (20) for Kruger 60 with varying parameters of radiation, oblateness and P–R drag for

l = 0.3937, cd = 46393.84, 0 B 1 - qi B 1 and 0 B Ai B 0.2

e
0

r q1 q2 A1 A2 W1 W2 k1,2 k3,4

0 0 1 1 0 0 0 0 - 0.620218 ± 0.940569 i 0.620218 ± 0.940569 i

0.003 0.001 0.99992 1 0 0 0 0 - 0.624173 ± 0.941324 i 0.624173 ± 0.941324 i

0.003 0.001 1 0.99996 0 0 0 0 - 0.624171 ± 0.941323 i 0.624171 ± 0.941323 i

0.003 0.001 0.99992 0.99996 0 0 0 0 - 0.624175 ± 0.941326 i 0.624175 ± 0.941326 i

0.003 0.001 1 1 0.02 0 0 0 - 0.644229 ± 0.956163 i 0.644229 ± 0.956163 i

0.003 0.001 1 1 0 0.01 0 0 - 0.632499 ± 0.950103 i 0.632499 ± 0.950103 i

0.003 0.001 1 1 0.02 0.01 0 0 - 0.651892 ± 0.964532 i 0.651892 ± 0.964532 i

0.003 0.001 1 1 0.02 0.02 0 0 - 0.659281 ± 0.972703 i 0.659281 ± 0.972703 i

0.003 0.001 0.99992 0.99996 0.02 0.01 0 0 - 0.651898 ± 0.964536 i 0.651898 ± 0.964536 i

0.003 0.001 0.99992 0.99996 0.01 0.02 0 0 - 0.650061 ± 0.965775 i 0.650061 ± 0.965775 i

0.003 0.001 0.99992 1 0 0 1.04548 9 10-9 0 - 0.624173 ± 0.941324 i 0.624173 ± 0.941324 i

0.003 0.001 1 0.99996 0 0 0 3.39442 9 10-10 - 0.624171 ± 0.941323 i 0.624171 ± 0.941323 i

0.003 0.001 0.99992 0.99996 0 0 1.04548 9 10-9 3.39442 9 10-10 - 0.624175 ± 0.941326 i 0.624175 ± 0.941326 i

0.003 0.001 0.99992 0.99996 0.02 0 1.04548 9 10-9 3.39442 9 10-10 - 0.644235 ± 0.956167 i 0.644235 ± 0.956167 i

0.003 0.001 0.99992 0.99996 0 0.01 1.04548 9 10-9 3.39442 9 10-10 - 0.632505 ± 0.950108 i 0.632505 ± 0.950108 i

0.003 0.001 0.99992 0.99996 0.02 0.01 1.04548 9 10-9 3.39442 9 10-10 - 0.651898 ± 0.964536 i 0.651898 ± 0.964536 i

0.003 0.001 0.99992 0.99996 0.02 0.02 1.04548 9 10-9 3.39442 9 10-10 - 0.659287 ± 0.972707 i 0.659287 ± 0.972707 i
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radiation effect of the Sun, in the Sun-Earth-Satellites

system are examples.
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e
0
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0 0 1 1 0 0 0 0 - 0.620490 ± 0.940749 i 0.620490 ± 0.940749 i

0.003 0.001 0.9971 1 0 0 0 0 - 0.624603 ± 0.941610 i 0.624603 ± 0.94161 0 i

0.003 0.001 1 0.9997 0 0 0 0 - 0.624457 ± 0.941513 i 0.624457 ± 0.941513 i

0.003 0.001 0.9971 0.9997 0 0 0 0 - 0.624620 ± 0.941621 i 0.62460 ± 0.9416210 i

0.003 0.001 1 1 0.02 0 0 0 - 0.644482 ± 0.956361 i 0.644482 ± 0.956361 i

0.003 0.001 1 1 0 0.01 0 0 - 0.632783 ± 0.950278 i 0.632783 ± 0.950278 i

0.003 0.001 1 1 0.02 0.01 0 0 - 0.652158 ± 0.964726 i 0.652158 ± 0.964726 i

0.003 0.001 1 1 0.02 0.02 0 0 - 0.659559 ± 0.972892 i 0.659559 ± 0.972892 i

0.003 0.001 0.9971 0.9997 0.02 0.01 0 0 - 0.652320 ± 0.964835 i 0.652320 ± 0.964835 i
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0.003 0.001 1 0.9997 0 0 0 1.75056 9 10-9 - 0.624457 ± 0.941513 i 0.624457 ± 0.941513 i

0.003 0.001 0.9971 0.9997 0 0 2.59295 9 10-8 1.75056 9 10-9 - 0.624620 ± 0.941621 i 0.624620 ± 0.941621 i

0.003 0.001 0.9971 0.9997 0.02 0 2.59295 9 10-8 1.75056 9 10-9 - 0.644649 ± 0.956474 i 0.644649 ± 0.956474 i

0.003 0.001 0.9971 0.9997 0 0.01 2.59295 9 10-8 1.75056 9 10-9 - 0.632957 ± 0.950394 i 0.632957 ± 0.950394 i

0.003 0.001 0.9971 0.9997 0.02 0.01 2.59295 9 10-8 1.75056 9 10-9 - 0.652320 ± 0.964835 i 0.652320 ± 0.964835 i

0.003 0.001 0.9971 0.9997 0.02 0.02 2.59295 9 10-8 1.75056 9 10-9 - 0.659717 ± 0.972999 i 0.659717 ± 0.972999 i
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