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Abstract: This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional

asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a

significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for

regulating flows. The electrohydrodynamics problem is modified by means of Debye–Hückel linearization. Firstly, the

governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in

Cartesian coordinates, then long wavelength and low/zero Reynolds (‘‘neglecting the inertial forces’’) approximations are

applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain

exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics.

The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In

particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz–Smoluchowski velocity is

examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing

parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with

peristalsis.

Keywords: Electroosmosis; Peristalsis; EDL phenomenon; Axial electric field; Trapping
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1. Introduction

Peristaltic pumping is form of a fluid propagation that

arises due to regular contraction and expansion of smooth

walls along a length of the distensible channel/duct. It is

well-known to physiologists as one of the most important

phenomena for the propagation of fluid in different bio-

logical system such as spermatozoa transport, cilia motion,

embryonic lung morphogenesis, bat wing vasomotion,

intestinal pumping, medical endoscope design and phloem

translocation in botany etc. Furthermore, peristaltic

pumping finds its place in different practical applications

including biomechanical systems i.e. finger and roller

pumps. During recent years, many authors analyzed the

peristaltic flow by means of experimental and theoretical

techniques with different physiological fluid models, wall

properties, and boundary conditions. Initially, Latham [1]

introduced the peristaltic pumping phenomena with the

help of viscous and incompressible fluid model. Haroun [2]

analyzed the nonlinear peristaltic phenomena by means of

a fourth-grade fluid model through an asymmetric inclined

channel. He observed that the pressure rise is maximum

when the fluid behaves as a non-Newtonian as compared to

Newtonian fluid. Kothandapani and Srinivas [3] addressed

the peristaltic motion using Jeffrey fluid model in the

presence of magnetic field through an asymmetric channel.

They found the exact solutions with the help of stream

functions by means of the integral method. The peristaltic

flow of Williamson fluid towards an asymmetric channel

was examined by Nadeem and Akram [4]. They used the*Corresponding author, E-mail: dharmendra.tripathi@jaipur.mani-

pal.edu

Indian J Phys (October 2018) 92(10):1229–1238

https://doi.org/10.1007/s12648-018-1215-3

� 2018 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-018-1215-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-018-1215-3&amp;domain=pdf
https://doi.org/10.1007/s12648-018-1215-3


regular perturbation expansion method to obtain the solu-

tion of nonlinear governing equations. Moreover, they

observed that pressure rise is not linear due to a higher

impact of Weissenberg number; however, pressure rise is

linear as Weissenberg number tends to zero. Munir et al.

[5] investigated the peristaltic motion in the presence of

Joule heating and convective boundary conditions towards

an asymmetric channel. Tripathi and Bég [6] studied the

peristaltic flow using nanofluids and presented an appli-

cation for drug delivery system. They considered a New-

tonian fluid model and presented the exact solutions for

velocity, temperature and concentration profile. Tripathi

et al. [7] considered the peristaltic motion of Oldroyd-B

viscoelastic rheological model through an asymmetric

porous medium and presented digestive transport model.

He used the Differential transform method (DTM) to

simulate the governing flow problem. Sinha et al. [8]

analyzed the peristaltic magnetized flow with heat transfer

by considering the variable viscosity, temperature jump,

and velocity slip. Ellahi and Hussain [9] discussed the

three-dimensional peristaltic motion of Jeffrey fluid model

in the presence of slip condition and presented the exact

solutions. Some more interesting studies are available in

the references [10–13].

Nowadays, Electrokinetic is considered to be a major

part of modern fluid dynamics. It occurs in different

applications of medical science, such as microfluidics,

blood flow (‘‘Hemodynamics’’), plasma separation, col-

loidal suspension manipulation, and fabrication. Elec-

trokinetic deals with an interaction among heterogeneous

fluids connecting to charged particles and static/alternating

electric fields. This process is important in the transporta-

tion of ionic solutions in a neighborhood of electrically

charged interface. Multiple numbers of phenomena occur

in electrokinetics such as zeta potential, diffusiophoresis,

capillary osmosis, electro-osmosis, dielectrics, streaming

current/potential sedimentation potential etc. The concept

of Nano-scaled- and micro-scaled devices in bioengineer-

ing played a significant role in electrokinetics. Nowadays,

computational and mathematical models are an essential

tool for experimental studies. Furthermore, they allow

optimizing the new designs which are difficult for sus-

tained performance in different areas of medicine, aero-

space and nuclear engineering etc. Paul et al. [14] studied

the applications of an electrokinetic pump in micro-total

analysis systems. He considered the flow through a porous

media and presented the experimental and model results for

frequency response due to the electrokinetic pump. Kang

et al. [15] analyzed the fabrication of electro-kinetic micro-

pumps. El-Sayed et al. [16] determined the EHD effects on

the peristaltic propulsion of dielectric Oldroyd viscoelastic

fluid model propagating through a flexible channel. Sinha

and Shit [17] considered the EMHD effects with radiative

heat transfer on blood flow (‘‘Hemodynamics’’) through

capillary. EMHD and heat transfer effects on the non-

Newtonian third-grade fluid model through two micro-

parallel plates were analyzed by Wang et al. [18]. Recently,

Tripathi et al. [19] discussed the transverse magnetic field

effect induced by a peristaltic wave in the presence EDL

(‘‘electrical double layer’’) effects. Few more interesting

studies on the current topic are available in Refs [20–24].

According to the above discussion and applications, the

main focus of the present study is to examine the elec-

trokinetic transport through an asymmetric channel

induced by a peristaltic wave. A long wavelength of a

peristaltic wave has been considered whereas as the inertial

forces have been neglected. Exact solution for velocity

profile is presented whereas numerical integration has been

used to evaluate the pressure rise. The physical behavior of

all the emerging parameters is discussed for velocity pro-

file, pressure rise, trapping and volume flow rate. The

present study is also associated with the imitation of real

fluids in electromagnetic biomimetic microscale pumps by

means of peristalsis [25]. Such type of pumps is beneficial

to achieve better efficiency and longevity, reduce the

maintenance and avoid the contamination problems. These

pumps have extremely large potential in bio-inspired

intravenous drip systems for a medical treatment.

2. Mathematical model

We consider the motion of an incompressible viscous fluid

between two parallel microplates (see Fig. 1) induced by

peristaltic wave trains propagating with travelling with

velocity c along the walls to have different amplitudes

a1; a2ð Þ and phase uð Þ:

�h2 ¼ b1 þ a1 cos
2p
k

�x � c�tð Þ
� �

; upper wall ð1aÞ

�h1 ¼ �b2 � a2 cos
2p
k

�x � c�tð Þ þ u

� �
; lower wall ð1bÞ

where b1 þ b2, k, x, �t are the channel width, wavelength,

axial coordinate, and time respectively. The phase differ-

ence u varies in the range 0�u� p. When u ¼ 0, a

symmetric channel with waves out of phase can be

described while for u ¼ p, the waves are in phase. More-

over, a1; a2, b1; b2 and u satisfy the condition

a2
1 þ a2

2 þ 2a1a2 cosu� b2
1 þ b2

2.

The governing equations for unsteady, two-dimensional,

viscous, incompressible flow with an axially-applied elec-

trokinetic body force in the �x; �yð Þ coordinate system, are

given as:
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o�u

o�x
þ o�v

o�y
¼ 0; ð2Þ

q
o

o�t
þ �u

o

o�x
þ �v

o

o�y

� �
�u ¼ � o�p

o�x
þ l

o2�u

o�x2
þ o2�u

o�y2

� �
þ �qe Ex;

ð3Þ

q
o

o�t
þ �u

o

o�x
þ �v

o

o�y

� �
�v ¼ � o�p

o�y
þ l

o2�v

o�x2
þ o2�v

o�y2

� �
; ð4Þ

in which q; �u; �v; �p; l; and Ex denote the fluid density, axial

velocity, transverse velocity, pressure, fluid viscosity, and

electrokinetic body force. The Poisson–Boltzmann

equation for electric potential distribution is employed

due to the presence of EDL in the micro-channel and is

defined by:

r2 �U ¼ � �qe

e
; ð5Þ

where qe is the density of the total ionic change and e is the
permittivity.

For a symmetric (z:z) electrolyte, the density of the total

ionic energy, qe is given as:

qe ¼ ez nþ � n�ð Þ; ð6Þ

here nþ and n� are the number of densities of cat-ions and

anions respectively.

Boltzmann distribution (considering no EDL overlap) is

defined as:

n� ¼ n0Exp � ez �U
KBT

� �
; ð7Þ

where n0 represents the concentration of ions at the bulk,

which is independent of surface electro-chemistry, e is the

electronic charge, z is the charge balance, KB is the

Boltzmann constant, T is the average temperature of

electrolytic solution.

Applying Debye–Hückel linearization approximation,

Poisson–Boltzmann equation reduces to

o2U
oy2

¼ �jU; ð8Þ

where j ¼ b1ez
ffiffiffiffiffiffiffiffi
2n0
eKBT

q
¼ b1

kd
, is known as the electro-os-

motic parameter and kd / 1
j is Debye length or character-

istic thickness of electrical double layer (EDL).

Integrating twice Eq. (8) and deploying the boundary

conditions Ujy¼h1
¼ f1 and Ujy¼h2

¼ f2, the electrical

potential function emerges in terms of transcendental

hyperbolic functions:

U ¼ C1ejy þ C2e
�jy; ð9Þ

where C1 ¼ eh2jf2�eh1jf1
e2h2j�e2h1j

and C2 ¼
eh1jþh2j eh1jf2�eh2jf1ð Þ

e2h1j�e2h2j
.

By using the non-dimensional parameters in above

governing equations: x ¼ �x
k ; y ¼ �y

b1
; t ¼ �tc

k ; u ¼ �u
c
; v ¼

�v
kc
; p ¼ �pb2

1

lck ; h1 ¼
�h1
b1
; �h2 ¼ h2

b1
; /1 ¼ a1

b1
;/2 ¼ a2

b1
; b ¼ b2

b1
,

where the nonlinear terms in the momentum equation are

found to be O Re k2ð Þ, Re ¼ ck
l=q being the Reynolds number

and k ¼ b1
k denotes the ratio of the transverse length scale to

the axial length scale, the governing equations reduce to

ou

ox
þ ov

oy
¼ 0; ð10Þ

Rek
o

ot
þ u

o

ox
þ v

o

oy

� �
u ¼ � op

ox
þ k2

o2u

ox2
þ o2u

oy2

� �

þ j2ueU; ð11Þ

Direction of peristaltic wave propagation 

Net flow due to combined 
effects of applied electric field 
and peristaltic pumping 

1 1 1, ,e eu u y hζΦ = = =

2 2 2, ,e eu u y hζΦ = = =

y

x

Fig. 1 Physical model for

peristaltic pumping through

asymmetric microchannel

altered by applied external

electric field
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Rek3
o

ot
þ u

o

ox
þ v

o

oy

� �
v ¼ � op

oy
þ k2 k2

o2v

ox2
þ o2v

oy2

� �
;

ð12Þ

where ue ¼ � Exef
l c

is the Helmholtz–Smoluchowski velocity

or characteristic electro-osmotic velocity. Applying long

wavelength and low Reynolds number approximations

(Re; k � 1), as is customary for peristaltic hydrodynamics,

the Eqs. (10–12) reduce to the following linearized group

of coupled partial differential equations:

ou

ox
þ ov

oy
¼ 0; ð13Þ

op

ox
¼ o2u

oy2
þ j2ueU; ð14Þ

op

oy
¼ 0: ð15Þ

The associated normalized boundary conditions

are:ujy¼h1
¼ ue1 ¼ � Exef1

l c
, Helmholtz–Smoluchowski slip

velocity at lower wall, ujy¼h2
¼ ue2 ¼ � Exef2

l c
, Helmholtz–

Smoluchowski slip velocity at upper wall.

Integrating Eq. (14) and imposing the above boundary

conditions, the axial velocity yields:

u ¼ �ueðC1eyj þ C2e
�yjÞ þ op

ox

y2

2
þ C3 þ C4y; ð16Þ

where

C3 ¼
1

h2 � h1

h1

h2
2

2

op

ox
� ue2 � C2e

�h2jue � C1e�h2jue

� ��

�h2

h2
1

2

op

ox
� ue1 � C2e

�h1jue � C1e
h1jue

� ��
;

C4 ¼� h1

2

op

ox
þ 1

h1
ue1 þ C2e�h1jue þ C1e

h1jue

	 


þ 1

h1 h1 � h2ð Þ h2 � h21
2

op

ox
þ ue1 þ C2e

�h1jue þ C1eh1jue

� ��

þh1

h2
2

2

op

ox
� ue2 � C2e�h2jue � C1e�h2jue

� ��
:

The volumetric flow rate in laboratory frame of

reference is defined as:

Q ¼
Zh2

h1

u dy; ð17Þ

which, by virtue of Eq. (16), yields

Q ¼C3ðh2 � h1Þ þ
C4

2
ðh2

2 � h2
1Þ þ

1

6

op

ox
h3
2 � h3

1

	 

:

�
C2 e�h1j � e�h2j

	 

ue

j
þ

C1 eh1j � eh2j
	 


ue

j

ð18Þ

The transformations between a wave frame ðxw; ywÞ
moving with velocity c and the fixed frame (x; y) are given

by:

x ¼ xw � ct; y ¼ yw; u ¼ uw þ c; v ¼ vw; ð19Þ

where ðuw; vwÞ and ðu; vÞ are the velocity components in

the wave and fixed frame respectively.

The volumetric flow rate in the wave frame is given by

qw ¼
Zh2

h1

uwdyw ¼
Zh2

h1

ðu � 1Þdyw; ð20Þ

which, on integration, yields:

qw ¼ Q þ h1 � h2: ð21Þ

Averaging volumetric flow rate along one time period,

we get

�Q ¼
Z1

0

Qdt ¼
Z1

0

ðqw þ h2 � h1Þdt; ð22Þ

or

�Q ¼ qw þ 1þ b ¼ Q þ 1þ b þ h1 � h2: ð23Þ

Rearranging the terms of Eq. (18) and using Eq. (23),

the pressure gradient is obtained as:

op

ox
¼ 1

h1 � h2ð Þ3j
6e� h1þh2ð Þj C2ueð eh1j �2ð

	
þ h1j� h2jÞ

þ eh2j 2ð þ h1j� h2jÞÞ
þ e h1þh2ð Þj 2ð �Q� 1� bþ h2 � h1Þ þ h1 � h2ð Þ ue1 � ue2ð Þð Þjð
þC1ue eh1j �2ð

	
þ h1j� h2jÞ þ eh2j 2ð þ h1j� h2jÞÞÞÞ:

ð24Þ

The pressure difference across one wavelength Dpð Þ is

defined as follows:

Dp ¼
Z1

0

op

ox
dx; ð25Þ

Using Eq. (16), the stream function in the wave frame

(obeying the Cauchy–Riemann equations, uw ¼ ow
oyw

and

vw ¼ � ow
oxw

) takes the following form:
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where h1 ¼ 1þ /1 cos 2pðx � tÞ for lower wall and h2 ¼
�b � /2 cosð2pðx � tÞ þ uÞ for upper wall.

3. Results and discussion

This section contributes to graphical results for all the

governing parameters involved in the governing flow

problem. A symbolic computational software ‘‘Mathemat-

ica’’ has been used to visualize the behavior of potential

function U, velocity profile u, volume flow rate Q, pressure

rise Dp trapping phenomena. For this purpose, Figs. 2, 3, 4,

5 and 6 have been sketched to analyze the behavior of

electro-osmotic parameter j, Phase difference u, and

Helmholtz–Smoluchowski velocity ue.

Figure 2(a, b) reveals the variation of potential function

U against electro-osmotic parameter j and phase difference

u, respectively. In Fig. 2a one can see that electro-osmotic

parameter j does not cause any significant effect on

potential function in the region y 2 � 1; 1½ � and remains

uniform in this region. The Electro-osmotic parameter j ¼
b1
kd

is itself directly proportional to Debye length kdð Þ. On
the other hand, potential function becomes significantly

increased when y\� 1 or y[ 1 and due to the increment

in electro-osmotic parameter j a similar behavior has been

observed. Figure 2b depicts the behavior of phase differ-

ence u on potential function U. Phase difference u ¼ 0

represents a symmetric channel having waves out of phase

and u ¼ p represents the waves are in phase whereas it

varies in the range 0�u� p: In Fig. 2b, it is found that the

phase difference significantly enhances the potential func-

tion U. An increment in phase difference produces a strong

acceleration in the potential function. However, when

y[ 1 then the phase difference does not cause any impact

on potential function and the behavior remains same

against the rest of all values of phase difference.

Figure 3(a–c) shows the velocity curves against all the

pertinent parameters. Figure 3a depicts the variation of the

electro-osmotic parameter j on velocity profile. In this

figure, we can notice that the electro-osmotic pressure

tends to reduce the axial fluid velocity along the walls of

the channel, however, there is no substantial impact in the

(a)

(b)

Fig. 2 Potential profile (potential field vs. transverse coordinate) at

/1 ¼ 0:5;/2 ¼ 1:2; b ¼ 1; f1 ¼ 0:5; f2 ¼ 1; and (a) u ¼ p=2, (b)
j ¼ 1

w ¼ 1

h1 � h2ð Þ3j
e� h1þh2þyð Þj e h1þh2þyð Þj

�
y �h3

2ue1 þ h3
1ue2 þ h2

2 2ue1 þ ue2ð Þy
	

þ 2Qy2

� h2y 3Q þ ue1 þ ue2ð Þyð Þ þ h2
1 h2 2ue1 þ ue2ð Þ � ue1 þ 2ue2ð Þyð Þ

þ h1 �h2
2 ue1 þ 2ue2ð Þ þ h2 6Q þ �ue1 þ ue2ð Þyð Þ þ y �3Q þ ue1 þ ue2ð Þyð Þ

	 

j

þ C2ue e h1þh2ð Þj h1 � h2ð Þ3�
�

e h2þyð Þjy �2y2 þ h3
2j� 2h2

2yjþ h2
1 �2h2 þ yð Þj

	 

þ h2y 3þ yjð Þ þ h1 h2

2jþ y 3� yjð Þ þ h2 �6þ yjÞð Þ
	 


þ e h1þyð Þjy h3
1

	
jþ h2

1 h2 � 2yð Þj
þ y �2y þ h2

2jþ h2 3� yjð Þ
	 


þ h1 �2h2
2jþ h2 �6þ yjð Þ þ y 3þ yjÞÞð Þ

	 

þ C1ue �e h1þh2þ2yð Þj h1 � h2ð Þ3þ

�
e h1þ2h2þyð Þjyðh3

1jþ h2
1 h2 � 2yð Þj

þ y 2y þ h2
2j� h2 3þ yjð Þ

	 

þ h1 �2h2

2jþ y �3þ yjð Þ þ h2 6þ yjð Þ
	 


þ e 2h1þh2þyð Þjy

�2y2 � h3
2jþ h2

1 2h2 � yð Þjþ 2h2
2yjþ h2y 3� yjð Þ �h1 h2

2j� y 3þ yjð Þ
	

þh2 6þ yjð ÞÞ
	 
	 


ð26Þ
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middle of the channel and remains same in the interval

y 2 � 1; 1:5½ �. Figure 3b presents the attitude of Helm-

holtz–Smoluchowski velocity ue ¼ � Exef
l c

(or ‘‘characteris-

tic electro-osmotic velocity’’), since Helmholtz–

Smoluchowski velocity is directly proportional to the

electric field. This figure reveals that higher values of

Helmholtz–Smoluchowski velocity tend to diminish the

axial velocity greatly and axial velocity becomes negative.

Moreover, we can see that when the values of Helmholtz–

Smoluchowski velocity ue � 0 then the axial velocity pro-

file is symmetric and for ue ¼ 0, then Eq. (14) reduces to

the similar equation obtained by Latham [1]. It is depicted

from Fig. 3c that phase difference u produces a wavy

impact on axial velocity and tends to enhance the axial

velocity in the middle of the channel and reveals opposite

impact near the walls of the channel.

Figure 4(a–c) demonstrates the behavior of volume flow

rate Q along the axial coordinates for multiple values of the

electro-osmotic parameter j, Phase difference u, and

Helmholtz–Smoluchowski velocity ue. The irregularity in

profiles is relevant due to a complex dual amplitude of

peristaltic wave propagating through the asymmetric

(a)

(b)

(c)

Fig. 3 Velocity profile (axial velocity vs. transverse coordinate) at

/1 ¼ 0:5;/2 ¼ 1:2; b ¼ 1; f1 ¼ 0:5; f2 ¼ 1; ue1 ¼ 0:5; ue2 ¼ 1; and

(a) ue ¼ 1;u ¼ p=2, (b) j ¼ 2;u ¼ p=2, (c) ue ¼ 1;j ¼ 2

(a)

(b)

(c)

Fig. 4 Volumetric flow rate versus channel length at /1 ¼ 0:5;/2 ¼
1:2; b ¼ 1; f1 ¼ 0:5; f2 ¼ 1; ue1 ¼ 0:5; ue2 ¼ 1; and (a)
ue ¼ 1;u ¼ p=2, (b) j ¼ 2;u ¼ p=2, (c) ue ¼ 1;j ¼ 2

1234 R Jhorar et al.



microchannel. In Fig. 4a we can see that there is a signif-

icant increment in volume flow rate for higher values of

electro-osmotic parameter j: There is a damping in an axial

flow due to an increment in Debye length. The acceleration

occurs due to electrokinetic body force in Eq. (14) i.e.,

jueU. From Fig. 4b one can notice that when Helmholtz–

Smoluchowski velocity ue becomes positive then the axial

flow accelerates while the behavior is converse for negative

values of Helmholtz–Smoluchowski velocity ue. However

there is no electric field for ue ¼ 0: It is depicted from

Fig. 4c that when the phase difference u increases then the

axial flow tilts backward, however, higher values of phase

difference tend to diminish the volume flow rate when

Q\0:8 nevertheless no change has been observed for

higher values of volume flow rate.

Figure 5(a–c) portrays the variation of pressure rise Dp

(‘‘peristaltic pumping’’) against averaged volume flow rate

Q for different values of the electro-osmotic parameter j,
Phase difference u, and Helmholtz–Smoluchowski veloc-

ity ue. In Fig. 5a one can notice that there is consistently an

increment in pressure rise with an increment (‘‘decrement

in Debye length’’) in the electro-osmotic parameter j.
From Fig. 5b, is seen that the higher values of Helmholtz–

Smoluchowski velocity ue markedly enhance the pressure

rise. From Fig. 5c it is found that an increment in phase

difference u significantly tends to diminish the pressure

rise. Moreover, in all these figures we notice that there is no

crossover of profiles i.e., the impact of an electro-osmotic

parameter j, phase difference u and Helmholtz–Smolu-

chowski velocity ue remains to sustain against all the val-

ues of pressure rise.

The next engrossing part of this section is trapping which

can be visualized by drawing streamlines. It is the estab-

lishment of an internally moving bolus bounded by

streamlines. For this purpose Fig. 6(a–h) have been sketched

for multiple values of the electro-osmotic parameter j,
phase difference u, and Helmholtz–Smoluchowski velocity

ue. It is revealed from Fig. 6(a–c) that a negative increment

in Helmholtz–Smoluchowski velocity ue from - 1 to - 5,

yields an accumulation in the formulation of a bolus in the

lower and upper zone. However, in the absence of the

electric field ue ¼ 0ð Þ (see Fig. 6a), there are less boluses in
the trapped zones. Figure 6(d, e) illustrates the variation of

the electro-osmotic parameter j with all the other parame-

ters remains constant. We can see that the higher values of

electro-osmotic parameter j significantly enhance the trap-

ping bolus in the upper and lower zone. Moreover, trapped

boluses also increase in magnitude more in the horizontal

direction as compared to the vertical direction. It is clear

from Fig. 6(g, h) that when the phase difference u increases

up to u ¼ p
4
, then the number of trapped bolus remains same,

however, the magnitude of the trapped bolus increases

vertically. Moreover, when u ¼ p
2
(see Fig. 6h) then the

trapped bolus disappears in the lower zone and the trapped

bolus remains same in the upper zone.

4. Conclusions

A theoretical and mathematical study on peristaltic

pumping with electrokinetic effects through an asymmetric

channel is presented. An irrotational, incompressible and

viscous fluid is considered to model the continuity and

(a)

(b)

(c)

Fig. 5 Pressure difference across one wavelength versus time

averaged volumetric flow rate at /1 ¼ 0:3; /2 ¼ 0:7; b ¼ 1; f1 ¼
0:5; f2 ¼ 1; ue1 ¼ 0:5; ue2 ¼ 1; and (a) ue ¼ 1;u ¼ p=2, (b)
j ¼ 2;u ¼ p=2, (c) ue ¼ �1;j ¼ 5
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momentum equations. Further, Debye linearization has

also been used to model the governing equations. The exact

solution for velocity function with electrokinetic effects

has been derived by considering the long wavelength and

the inertial forces have been ignored. However, numerical

computations have been utilized to analyze the pressure

rise. It is observed that with the increment in electro-os-

motic parameter the potential function elevates whereas it

opposes the velocity of the fluid. Phase difference reveals

converse behavior on velocity profile whereas it signifi-

cantly enhances the potential function. For positive values

of Helmholtz–Smoluchowski velocity significantly reduces

the velocity profile while for negative values, the velocity

profile is symmetric. Higher values of the electro-osmotic

parameter and Helmholtz–Smoluchowski velocity increase

the volume flow rate evidently. Subsequent increment in

electro-osmotic parameter and Helmholtz–Smoluchowski

velocity leads to increase in pressure rise whereas the

Fig. 6 Stream lines in wave form at /1 ¼ 0:7; /2 ¼ 1:5; �Q ¼ 1:5,
f1 ¼ 0:5; f2 ¼ 1; ue ¼ � 0:5; ue ¼ �1 for (a) b ¼ 3;u ¼ p=2;j ¼ 1;
ue ¼ 0, (b) b ¼ 3;u ¼ p=2;j ¼ 1; ue ¼ �1, (c) b ¼ 3;u ¼ p=2;j ¼

1; ue ¼ �5, (d) b ¼ 3;u ¼ p=2; j ¼ 2; ue ¼ �5, (e) b ¼ 3;u ¼ p=2;
j ¼ 3; ue ¼ �5, (f) b ¼ 3;u ¼ 0;j ¼ 1; ue ¼ �5, (g) b ¼ 3;u ¼
p=4; j ¼ 1; ue ¼ �5, (h) b ¼ 2;u ¼ p=2;j ¼ 1; ue ¼ �5
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opposite behaviour in pressure rise has been observed for

higher values of phase difference. Trapping boluses

increase significantly for higher negative values of Helm-

holtz–Smoluchowski velocity and electro-osmotic

parameter.

The present study reveals different engrossing beha-

viour that warrants further study on peristaltic flow with

electro-kinetic effects. The present study has ignored non-

Newtonian fluid models and it will be addressed in near

future.
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