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Abstract: In this paper, we consider the two-coupled nonlinear Schrödinger equations with parity-time-symmetric

potential in the presence of four-wave mixing. We construct the soliton solutions for the vector nonlinear Schrödinger

equations with some PT-symmetric potentials. Then the linear-stability spectrum for solitary waves is studied. Moreover,

soliton solutions in high dimensional case are also considered.
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1. Introduction

The nonlinear Schrödinger (NLS) equation is one of the most

important nonlinear models to explain nonlinear phenomena

in various scientific fields, including plasma physics [1],

Bose–Einstein condensates (BECs) [8, 9], optics [4–7],

hydrodynamics [2], molecular biology [3] and so on.

Recently, a kind of nonautonomous Schrödinger equa-

tions with parity-time(PT)-symmetric potentials

iwt þ wxx þ gjwj2 þ VPTðxÞw ¼ 0

has attracted a lot of attention because of its special fea-

tures and potential applications [18–23]. The external

potential VPT is assumed to be complex and satisfies the so-

called parity-time(PT)-symmetric condition

V�ðxÞ ¼ Vð� xÞ, where � denotes complex conjugation,

see references [15–17, 42, 43]. Many kinds of parity-

time(PT)-symmetric potentials have been introduced to the

NLS equations in fiber and waveguide optics, see

[23–25, 33–35]. Two celebrated examples are the NLS

equations with PT-symmetric Scarff-II potential

[23, 26–29, 32] and periodic potential [30, 31], etc.

Recently, various types of vector nonlinear Schrödinger

systems have been studied in [8–14]. It is well known that

the scalar soliton is governed by a single nonlinear

Schrödinger equation and the vector solitons can be gov-

erned by the vector nonlinear Schrödinger systems. The

classical model of vector NLS systems is:

iq1;t þ
1

2
q1;xx þ r jq1j2 þ ajq2j2

� �
q1 ¼ 0;

iq2;t þ
1

2
q2;xx þ r ajq1j2 þ jq2j2

� �
q2 ¼ 0:

ð1:1Þ

When a ¼ 1, (1.1) is the integrable Manakov equation, but

(1.1) is not integrable when a ¼ 2. In [12], the authors

studied the following integrable vector NLS systems

iq1;t þ
1

2
q1;xx � jq1j2q1 � 2jq2j2q1 þ q1

�q2
2 ¼ 0;

iq2;t þ
1

2
q2;xx � jq2j2q2 � 2jq1j2q2 þ q2

�q1
2 ¼ 0:

ð1:2Þ

Under a linear transformation, Eq. (1.2) was reduced into

independent classical nonlinear Schrödinger equation and

the stability of (1.2) were discussed in [12]. Other vector

NLS systems with various external potentials were also

studied, see [37, 40–42, 44, 46–48].

In [44], the authors studied vector nonlinear Schrödinger

equations with PT symmetric potentials:

iq1;t þ q1;xx þ g jq1j2 þ bjq2j2
� �

q1 þ VðxÞq1 ¼ 0;

iq2;t þ q2;xx þ g jq2j2 þ bjq1j2
� �

q2 þ VðxÞq2 ¼ 0;

ð1:3Þ

where q1 and q2 are complex functions of x, t, t is the prop-

agation direction, g ¼ � 1, b� 0 is the cross-phase*Corresponding author, E-mail: hljmath@ncepu.edu.cn
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modulation coefficient, andV(x) is the complex PT symmetric

potential. Equation (1.3) could describe two interacting

paraxial waves propagating in inhomogeneous nonlinear Kerr

media. The authors of [44] obtained a class of exact vector

constant-intensity solutions for (1.3) and studied the modu-

lational instability for the solutions. In [44], the authors

mentioned that instability for scalar or vector nonlinear

Schrödinger equations with complex potentials in the pres-

ence of four-wave mixing remained open.

In [45], the authors studied vector nonlinear Schrödinger

equations in the presence of four-wave mixing without PT

symmetric potentials:

iq1;t � bq1 þ
1

2
q1;xx þ jq1j2 þ ajq2j2

� �
q1 þ

a

2
q1

�q2
2 ¼ 0;

iq2;t þ bq2 þ
1

2
q2;xx þ jq2j2 þ ajq1j2

� �
q2 þ

a

2
q2

�q1
2 ¼ 0:

ð1:4Þ

where q1 and q2 are the appropriately normalized, slowly-

varying, complex field envelopes for the transverse electric

(TE) and transverse magnetic (TM) polarized waves,

respectively. a
2

and a are the coefficients of the four wave

mixing (FWM) term and the cross-phase modulation (CPM)

term, respectively. It is well known that four-wave mixing

(FWM) is an important nonlinear process in the context of

silica fibers. Equation (1.4) have been extensively studied in

a number of publications, see [45] and the references therein.

In this paper, we consider the following vector nonlinear

Schrödinger equations with PT symmetric potentials in the

presence of four-wave mixing:

iq1;t þ q1;xx þ g jq1j2q1 þ 2jq2j2q1 � q1
�q2

2
� �

þ V1q1 � iV2q2 ¼ 0;

iq2;t þ q2;xx þ g jq2j2q2 þ 2jq1j2q2 � q2
�q1

2
� �

þ V1q2 þ iV2q1 ¼ 0;

ð1:5Þ

where q1
�q2

2, q2
�q1

2 are four-wave mixing terms, q1ðx; tÞ,
q2ðx; tÞ are complex functions of x, t.V1ðxÞ,V2ðxÞ are complex

PT-symmetric potentials, satisfying V�
1 ðxÞ ¼ V1ð� xÞ,

V�
2 ðxÞ ¼ V2ð� xÞ, respectively. g characterizes the self-focus-

ing or defocusing Kerr nonlinearity. When V2 ¼ 0, the mod-

ulational instability of (1.5) is an open problem proposed in [44]

(b ¼ 2 andg2 ¼ �g in (53)). There are lots of methods to study

soliton solutions for nonlinear evolution equations, such as the

inverse scattering method [22], Darboux transformation [35],

the Lie method [21] and similarity transformation method [29],

see the papers [15, 27, 28, 34, 39, 49, 50] and the references

therein. In this paper, by employing a linear transformation as

[12], Eq. (1.5) is reduced into two independent classical non-

linear Schrödinger equations with PT potentials. Through the

solutions of classical nonlinear Schrödinger equation with PT

potentials, we finally obtain soliton solutions for Eq. (1.5).

Then we show the stability for soliton waves, under PT-sym-

metric k-wave-number Scarff-II potential and PT-symmetric

multiwell Scarff-II potential. We also find soliton solutions for

Eq. (1.5) in high dimensional case.

The organization of this paper is as follows: In Sect. 2, we

map the coupled Eq. (1.5) into the independent NLSEs by

using the linear transformation, then through solutions of

independent NLSEs with PT-symmetric potentials, we get

solitary waves of Eq. (1.5). In Sect. 3, we design two inter-

esting PT-symmetric potentials, and obtain the detailed

solitary waves. In Sect. 4, we show some soliton solution of

Eq. (1.5) in high dimensional case. In Sect. 5, we discuss the

stability for the solitary waves obtained in Sect. 3.

2. The linear transformation

In this section, we map the vector nonlinear Schrödinger

equation (1.5) into the independent NLSEs by using the

linear transformation. Then through solutions of indepen-

dent NLSE with PT-symmetric potentials, we get solitary

waves of Eq. (1.5).

We rewrite the vector NLSE (1.5) into matrix form:

iAt þ Axx þ gAAyAþ EA ¼ 0; ð2:1Þ

where y stands for the Hermite conjugation and

A ¼
q1 q2

� q2 q1

 !
; E ¼

V1 iV2

� iV2 V1

 !
:

Next, we diagonalize the matrix A and E. Choose invertible

matrix J as

J ¼
1
2

1
2

� i
2

i
2

 !
;

then

B :¼ J�1EJ ¼
V1 þ V2 0

0 V1 � V2

 !
;

D :¼ J�1AJ ¼
q1 � iq2 0

0 q1 þ iq2

 ! :

Through transformation,

A ¼ JDJ�1; Ay ¼ JDyJ�1; E ¼ JBJ�1;

Equation (2.1) is reduced into:

iDt þ Dxx þ gDDyDþ BD ¼ 0: ð2:2Þ

Let

q1 ¼ u1 þ u2

2
; q2 ¼ u2 � u1

2i
: ð2:3Þ

We can finally rewrite Eqs. (2.1) or (2.3) into the

independent NLS equations about u1 and u2:

1292 L Han and L Xin



iu1;t þ u1;xx þ gju1j2u1 þ ðV1 � V2Þu1 ¼ 0;

iu2;t þ u2;xx þ gju2j2u2 þ ðV1 þ V2Þu2 ¼ 0;
ð2:4Þ

where V1 � V2, V1 þ V2 are still complex PT-symmetric

potentials, as V1ðxÞ, V2ðxÞ are complex PT-symmetric

potentials.

If we obtain the solutions for (2.4), we will finally obtain

the solutions for (1.5) from (2.3).

3. Solutions in the one-dimensional vector NLSEs

In this section, we design two interesting PT-symmetric

Scarff-II potentials for Eq. (2.4), including PT-symmetric

k-wave-number Scarff-II potential and PT-symmetric

multiwell Scarff-II potential [23]. We obtain soliton solu-

tions and plot some figures for the solitary waves.

3.1. PT-symmetric k-wave-number Scarff-II potential

In this subsection, we design the external potentials of

Eq. (2.4) into an interesting PT-symmetric k-wave-number

Scarff-II potential.

Let

V1ðxÞ � V2ðxÞ ¼ N1ðxÞ þ iM1ðxÞ;
V1ðxÞ þ V2ðxÞ ¼ N2ðxÞ þ iM2ðxÞ;

where the PT-symmetric k-wave-number Scarff-II

potential is given as

N1ðxÞ ¼ N01sech
2ðk1xÞ;

M1ðxÞ ¼ M01sechðk1xÞtanhðk1xÞ;

N2ðxÞ ¼ N02sech
2ðk2xÞ;

M2ðxÞ ¼ M02sechðk2xÞtanhðk2xÞ;

ð3:1Þ

where k1; k2 [ 0 denotes the wave number, N01;N02 [ 0

and M01;M02 2 R. When k1 ¼ k2 ¼ 1, Nj þ iMjðj ¼ 1; 2Þ is

the PT-symmetric potential considered in [36].

For the PT-symmetric k-wave-number Scarff-II poten-

tial given in (3.1), we could obtain the solutions for

Eq. (2.4) as following (see [23]):

u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M01
2

9k1
2
� N01 þ 2k1

2

� �s
sechðk1xÞei½u1ðxÞþk1

2t�; ð3:2Þ

where gðM01
2

9k1
2 � N01 þ 2k1

2Þ[ 0 and u1ðxÞ ¼ M01

3k1
2

arctan½sinhðk1xÞ�,

u2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M02
2

9k2
2
� N02 þ 2k2

2

� �s
sechðk2xÞei½u2ðxÞþk2

2t�;

ð3:3Þ

where gðM02
2

9k2
2 � N02 þ 2k2

2Þ[ 0 and u2ðxÞ ¼ M02

3k2
2

arctan½sinhðk2xÞ�.
From (3.2), (3.3) and (2.3),

q1 ¼ u1 þ u2

2
; q2 ¼ u2 � u1

2i
:

We could obtain that the solutions for the vector NLSE

(1.5) are:

q1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M01
2

9k1
2
� N01 þ 2k1

2

� �s
sechðk1xÞei½u1ðxÞþk1

2t�

 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M02
2

9k2
2
� N02 þ 2k2

2

� �s
sechðk2xÞei½u2ðxÞþk2

2t�

!
;

ð3:4Þ

q2 ¼ i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M01
2

9k1
2
� N01 þ 2k1

2

� �s
sechðk1xÞei½u1ðxÞþk1

2t�

 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g

M02
2

9k2
2
� N02 þ 2k2

2

� �s
sechðk2xÞei½u2ðxÞþk2

2t�

!
:

ð3:5Þ

Through some calculation, we get the spatial–temporal

distribution of jq1j2 and jq2j2 as:

jq1j2 ¼ 1

4g

M2
01

9k2
1

� N01 þ 2k2
1

� �
sech2ðk1xÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

01

9k2
1

� N01 þ 2k2
1

� �
M2

02

9k2
2

� N02 þ 2k2
2

� �s
sechðk1xÞ

"

sechðk2xÞcos ðu1 � u2Þ þ ðk2
1 � k2

2Þt
� �

þ M2
02

9k2
2

� N02 þ 2k2
2

� �
sech2ðk2xÞ

	
;

jq2j2 ¼ 1

4g

M2
01

9k2
1

� N01 þ 2k2
1

� �
sech2ðk1xÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

01

9k2
1

� N01 þ 2k2
1

� �
M2

02

9k2
2

� N02 þ 2k2
2

� �s
sechðk1xÞ

"

sechðk2xÞcos ðu1 � u2Þ þ ðk2
1 � k2

2Þt
� �

þ M2
02

9k2
2

� N02 þ 2k2
2

� �
sech2ðk2xÞ

	
:
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where ðM
2
01

9k2
1

� N01 þ 2k2
1Þð

M2
02

9k2
2

� N02 þ 2k2
2Þ[ 0.

The spatial–temporal distribution of jq1j2 and jq2j2 are

ploted in Fig. 1 with g ¼ 1, N01 ¼ 5, M01 ¼ 5:2, k1 ¼
ffiffiffi
2

p
,

N02 ¼ 1, M02 ¼ 0:5, k2 ¼ 1ffiffi
2

p .

3.2. PT-symmetric multiwell Scarff-II potential

In this subsection, we design the external potentials of

Eq. (2.4) into anthor meaningful PT-symmetric multiwell

Scarff-II potential.

Let

V1ðxÞ � V2ðxÞ ¼ N1ðxÞ þ iM1ðxÞ;
V1ðxÞ þ V2ðxÞ ¼ N2ðxÞ þ iM2ðxÞ;

where the PT-symmetric multiwell Scarff-II potential is

given as

N1ðxÞ ¼
M01

2

9
þ 2 � rcosðxxÞ


 	
sech2ðxÞ;

M1ðxÞ ¼ M01sechðxÞtanhðxÞ;

N2ðxÞ ¼
M02

2

9
þ 2 � rcosðxxÞ


 	
sech2ðxÞ;

M2ðxÞ ¼ M02sechðxÞtanhðxÞ;

ð3:6Þ

where M01;M02; r 2 R and x� 0 denotes the wave num-

ber. When x ¼ 0 and r ¼ M01
2

9
þ 2 � N01, then Nj þ

iMjðj ¼ 1; 2Þ is PT-symmetric potentials considered in

[36].

For the given PT-symmetric multiwell Scarff-II poten-

tial in (3.6) with x ¼ 0, r ¼ �1, we could obtain the

solutions for Eq. (2.4) as following (see [23]):

u1 ¼ sechðxÞei½u1ðxÞþt�; ð3:7Þ

u2 ¼ sechðxÞei½u2ðxÞþt�; ð3:8Þ

where u1ðxÞ¼M01

3
arctan½sinhðxÞ�, u2ðxÞ¼M02

3
arctan½sinhðxÞ�,

and g¼�1.

From (3.7), (3.8) and (2.3), we could obtain that the

solutions for the vector NLSE (1.5) are:

q1 ¼ 1

2
eiu1ðxÞ þ eiu2ðxÞ
� �

sechðxÞeit; ð3:9Þ

q2 ¼ i

2
eiu1ðxÞ � eiu2ðxÞ
� �

sechðxÞeit; ð3:10Þ

where u1ðxÞ ¼ M01

3
arctan½sinhðxÞ�, u2ðxÞ ¼ M02

3
arctan

½sinhðxÞ�.
Through some calculation, we get the spatial–temporal

distribution of jq1j2and jq2j2 as:

jq1j2 ¼ 1

4
sech2ðxÞ½2 þ 2cosðu2 � u1Þ�;

jq2j2 ¼ 1

4
sech2ðxÞ½2 � 2cosðu2 � u1Þ�:

The spatial–temporal distribution of jq1j2 and jq2j2 are

ploted in Fig. 2 with g ¼ 1, x ¼ 0, r ¼ 1, M01 ¼ 0:3,

M02 ¼ 15:3.

4. Solutions for the high-dimensional vector NLSEs

Recently, soliton solutions of high dimensional nonlinear

evolution equations have also attracted great attention of

researchers, see [16, 20, 26, 48]. In this section, we gen-

eralize our method to the high-dimensional case. In high

dimensional case, Eq. (1.5) takes the form

Fig. 1 ð1 � aÞ is the spatial–temporal distribution of jq1j2 with g ¼ 1, N01 ¼ 5, M01 ¼ 5:2, k1 ¼
ffiffiffi
2

p
, N02 ¼ 1, M02 ¼ 0:5, k2 ¼ 1ffiffi

2
p ; ð1 � bÞ is the

spatial–temporal distribution of jq2j2 with g ¼ 1, N01 ¼ 5, M01 ¼ 5:2, k1 ¼
ffiffiffi
2

p
, N02 ¼ 1, M02 ¼ 0:5, k2 ¼ 1ffiffi

2
p
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iq1;t þ Mq1 þ g jq1j2q1 þ 2jq2j2q1 � q1
�q2

2
� �

þ V1q1 � iV2q2 ¼ 0;

iq2;t þ Mq2 þ g jq2j2q2 þ 2jq1j2q2 � q2
�q1

2
� �

þ V1q2 þ iV2q1 ¼ 0;

ð4:1Þ

where V1 and V2 are PT-symmetric potentials, g is a real

constant with g ¼ �1, and M is the Laplace operator.

Through the linear transformation in Sect. 2 [see (2.1),

(2.2), (2.3)], Eq. (4.1) is transformed into the independent

NLS equations about u1 and u2:

iu1;t þ Muþ gju1j2u1 þ ðV1 � V2Þu1 ¼ 0;

iu2;t þ Muþ gju2j2u2 þ ðV1 þ V2Þu2 ¼ 0;
ð4:2Þ

where V1 � V2, V1 þ V2 are still complex PT-symmetric

potentials, sinceV1,V2 are complex PT-symmetric potentials.

4.1. Solutions under 2D PT-symmetric Scarff-II

potential

First, we consider the formation of PT bright spatial soli-

tons in two-dimensional symmetric geometries, where

q1 ¼ q1ðx; y; tÞ, q2 ¼ q2ðx; y; tÞ are complex functions with

respect to x; y; t 2 R, M ¼ o2
x þ o2

y . The 2D PT-symmetric

potential requires the sufficient condition

V�
1 ðx; yÞ ¼ V1ð�x;�yÞ, V�

2 ðx; yÞ ¼ V2ð�x;�yÞ.
Let

V1ðx; yÞ � V2ðx; yÞ ¼ N1ðx; yÞ þ iM1ðx; yÞ;
V1ðx; yÞ þ V2ðx; yÞ ¼ N2ðx; yÞ þ iM2ðx; yÞ;

where the generalized 2D PT-symmetric Scarff-II potential

is given as:

N1ðx; yÞ ¼
X
g¼x;y

M01
2

9kg
2
þ 2kg

2

 !
sech2ðkggÞ � ga2

Y
g¼x;y

sech2ðkggÞ;

M1ðx; yÞ ¼ M01

X
g¼x;y

sechðkggÞtanhðkggÞ;

N2ðx; yÞ ¼
X
g¼x;y

M02
2

9kg
2
þ 2kg

2

 !
sech2ðkggÞ � gb2

Y
g¼x;y

sech2ðkggÞ;

M2ðx; yÞ ¼ M02

X
g¼x;y

sechðkggÞtanhðkggÞ;

ð4:3Þ

where kg [ 0 are the wave numbers in the x, y directions,

and M01;M02; a; b are real constants. We could obtain the

solutions for Eq. (4.2) as following (see [17]):

u1ðx; y; tÞ ¼ asechðkxxÞsechðkyyÞei½u1þlt�; ð4:4Þ

where l ¼ kx
2 þ ky

2 and u1ðx; yÞ ¼ M01

3

P
g¼x;y kg

�2arctan

½sinhðkggÞ� is the phase.

u2ðx; y; tÞ ¼ bsechðkxxÞsechðkyyÞei½u2þlt�; ð4:5Þ

where l ¼ kx
2 þ ky

2 and u2ðx; yÞ ¼ M02

3

P
g¼x;y kg

�2

arctan½sinhðkggÞ� is the phase,

From Eq. (2.3), we could obtain that the solutions for

the vector NLSE (4.1) are:

q1 ¼ u1ðx; y; tÞ þ u2ðx; y; tÞ
2

; q2 ¼ u2ðx; y; tÞ � u1ðx; y; tÞ
2i

:

ð4:6Þ

Through some computation, we get the spatial–temporal

distribution of jq1j2 and jq2j2 as:

Fig. 2 ð2 � aÞ is the spatial–temporal distribution of jq1j2 with g ¼ 1, x ¼ 0, r ¼ 1, M01 ¼ 0:3, M02 ¼ 15:3; ð2 � bÞ is the spatial–temporal

distribution of jq2j2 with g ¼ 1, x ¼ 0, r ¼ 1, M01 ¼ 0:3, M02 ¼ 15:3
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jq1j2 ¼ 1

4
a2 þ b2 þ 2abcosðu2 � u1Þ
� �

sech2ðkxxÞ;

jq2j2 ¼ 1

4
a2 þ b2 � 2abcosðu2 � u1Þ
� �

sech2ðkxxÞ:

The spatial–temporal distribution of jq1j2 and jq2j2 are

ploted in Fig. 3 with kx ¼ ky ¼ 1, M01 ¼ 0:3, l ¼ 2,

M02 ¼ 3, a ¼ 3, b ¼ 0:3.

4.2. Solutions under 3D PT-symmetric potential

Second, we consider the three dimensional NLSE with the

PT-symmetric potential, where q1 ¼ q1ðx; y; z; tÞ, q2 ¼
q2ðx; y; z; tÞ are complex functions with respect to

x; y; z; t 2 R, M ¼ o2
x þ o2

y þ o2
z . The 3D PT-symmetric

potential requires the sufficient condition V�
1 ðx; y; zÞ ¼

V1ð� x;� y;� zÞ, V�
2 ðx; y; zÞ ¼ V2ð� x;� y;� zÞ.

Let

V1ðx; y; zÞ � V2ðx; y; zÞ ¼ N1ðx; y; zÞ þ iM1ðx; y; zÞ;

V1ðx; y; zÞ þ V2ðx; y; zÞ ¼ N2ðx; y; zÞ þ iM2ðx; y; zÞ:

where the generalized 3D PT-symmetric Scarff-II potential

is given as:

N1ðx; y; zÞ ¼
X

g¼x;y;z

M01
2

9kg
2
þ 2kg

2

 !
sech2ðkggÞ � ga2

Y
g¼x;y;z

sech2ðkggÞ;

M1ðx; y; zÞ ¼ M01

X
g¼x;y;z

sechðkggÞtanhðkggÞ;

N2ðx; y; zÞ ¼
X

g¼x;y;z

M02
2

9kg
2
þ 2kg

2

 !
sech2ðkggÞ � gb2

Y
g¼x;y;z

sech2ðkggÞ;

M2ðx; y; zÞ ¼ M02

X
g¼x;y;z

sechðkggÞtanhðkggÞ;

ð4:7Þ

where kg [ 0 are the wave numbers in the

x, y, z directions, and M01;M02; a; b are real constants.

We could obtain the solutions of Eq. (4.2) as following

(see [23]):

u1ðx; y; z; tÞ ¼ asechðkxxÞsechðkyyÞsechðkzzÞei½u1þlt�;

ð4:8Þ

where l ¼ kx
2 þ ky

2 þ kz
2 and the phase is

u1ðx; y; zÞ ¼ M01

3

P
g¼x;y;z kg

�2arctan½sinhðkggÞ�,

u2ðx; y; z; tÞ ¼ bsechðkxxÞsechðkyyÞsechðkzzÞei½u2þlt�;

ð4:9Þ

where l ¼ kx
2 þ ky

2 þ kz
2 and the phase is

u2ðx; y; zÞ ¼ M02

3

P
g¼x;y;z kg

�2arctan½sinhðkggÞ�.
From Eq. (2.3), we could obtain that the solutions for

the vector NLSE (4.1) are:

q1 ¼ u1ðx; y; z; tÞ þ u2ðx; y; z; tÞ
2

;

q2 ¼ u2ðx; y; z; tÞ � u1ðx; y; z; tÞ
2i

:

ð4:10Þ

5. Stability of nonlinear modes

In order to analyze the linear stability of the solution in one

dimensional case, we compute the linear-stability spectrum

for solitary waves by using the numerical methods [12, 38].

First we consider perturbations on the solutions of Eq. (1.5)

of the form

Q1ðx; tÞ ¼ r1ðxÞ þ ½v1ðxÞ þ w1ðxÞ�ekt þ ½v�1ðxÞ � w�
1ðxÞ�ek

�t
� �

eilt;

Q2ðx; tÞ ¼ r2ðxÞ þ ½v2ðxÞ þ w2ðxÞ�ekt þ ½v�2ðxÞ � w�
2ðxÞ�ek

�t
� �

ei lt�p
2ð Þ;

ð5:1Þ

Fig. 3 ð3 � aÞ is the spatial–temporal distribution of jq1j2 with kx ¼ ky ¼ 1, M01 ¼ 0:3, l ¼ 2, M02 ¼ 3, a ¼ 3, b ¼ 0:3; ð3 � bÞ is the spatial–

temporal distribution of jq2j2 with kx ¼ ky ¼ 1, M01 ¼ 0:3, l ¼ 2, M02 ¼ 3, a ¼ 3, b ¼ 0:3
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where r1ðxÞeilt; r2ðxÞeiðlt�p
2
Þ are stationary solutions of

Eq. (1.5), � is complex conjugate operator, v1; v2;w1;w2 �
1 are perturbations, and k indicates the perturbation growth

gate.

By inserting the perturbed solution (5.1) into the vector

NLSE (1.5) and linearizing it, one could obtain the fol-

lowing linearized eigenvalue problem:

LW ¼ kW; ð5:2Þ

where

L ¼ i

0 G1 þ oxx 0 G3

G2 þ oxx 0 G4 0

0 G3 0 G1 þ oxx

G4 0 G2 þ oxx 0

0
BBB@

1
CCCA;

W ¼

v1

w1

v2

w2

0
BBB@

1
CCCA;

G1 ¼ � lþ 2r1r
�
1 þ 2r2r

�
2 � r1

2 � r2
2

� �
gþ V1;

G3 ¼ 2r1r
�
2 þ 2r2r

�
1 � 2r1r2

� �
g� V2;

G2 ¼ � lþ 2r1r
�
1 þ 2r2r

�
2 þ r1

2 þ r2
2

� �
gþ V1;

G4 ¼ 2r1r
�
2 þ 2r2r

�
1 þ 2r1r2

� �
g� V2;

and k is the associated eigenvalue of the linear stability

operator L.

Since linear stability spectrum is the set of eigenvalues

of the linear stability operator of a soliton, the stability of

the perturbed soliton of (1.5) is related to the real parts

ReðkÞ of all eigenvalues k. The criterion of the linear sta-

bility can be given as follows: the stability of the perturbed

soliton of the solution is unstable if the eigenvalues satisfy

ReðkÞ[ 0, as in this case the eigenmode of the perturba-

tion solution increase exponentially. The solution is

stable if the eigenvalues satisfy ReðkÞ\0. And ReðkÞ ¼ 0

corresponds to two cases of stability and instability. In

order to compute the linear-stability spectrum for solitary

waves, we reduce the linearized eigenvalue problem into a

matrix eigenvalue problem by applying the Fourier collo-

cation method [12], then we use the QR algorithm to solve

the matrix eigenvalue problem.

In the following we will present some numerical results

to show the solutions of the eigenvalue problem (5.2). Let

V1, V2 are given as PT-symmetric k-wave-number Scarff-II

potential in (3.1), we compute the spectrum for the linear

spectral problem (see Fig. 4). It is seen from the figure that

the solutions (3.4) and (3.5) are unstable in the sense of

linear stability analysis, since some of the eigenvalues

contain some positive real parts.

Let V1, V2 are given as PT-symmetric multiwell Scarff-

II potential in (3.6), we compute the spectrum for the linear

spectral problem (see Fig. 5). It is clear from the figure that

the solutions (3.9) and (3.10) are unstable with the linear

analyzing method. In particular, we notice that a series of

eigenvalues with positive real parts exist in the linear

spectrum.

6. Conclusions

In this work, we mainly study the soliton solutions and

instability for optical solitions governed by vector nonlin-

ear Schrödinger equations with PT symmetric potential in

Fig. 4 Eigenvalues for linearized eigenvalue problem of Eqs. (3.4)

and (3.5) with g ¼ 1, N01 ¼ 0:1, M01 ¼ 0:6, k1 ¼ k2 ¼
ffiffiffi
2

p
,

N02 ¼ 0:2, M02 ¼ 9

Fig. 5 Eigenvalues for linearized eigenvalue problem of Eqs. (3.9)

and (3.10) with g ¼ 1, x ¼ 0, r ¼ 1, M01 ¼ 0:3, M02 ¼ 15:3
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the presence of four-wave mixing. It is well known that

four-wave mixing is an important method for producing

phase conjugation and is widely used in photorefractive

materials. Firstly, soliton solutions are obtained by means

of the linear transformation and two external potentials are

considered. Second, the linear stability of solitons under

PT-symmetric k-wave-number Scarff-II potential and PT-

symmetric multiwell Scarff-II potential is investigated in

detail by means of linear spectrum analysis. Finally, the

solitons of high dimensional vector NLS equations with

PT-symmetric potential in the presence of four-wave

mixing are considered. More results about high dimen-

sional case would be discussed in the future.
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[12] R Xiang, L M Ling and X Lü Appl. Math. Lett. 68 163 (2017)

[13] L C Zhao, L M Ling, Z Y Yang and J Liu Commun. Nonlinear

Sci. Numer. Simul. 23 21 (2015)

[14] L C Zhao, G G Xin and Z Y Yang Phys. Rev. E 90 022918

(2014)
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