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Abstract: In this paper, we consider the two-coupled nonlinear Schrédinger equations with parity-time-symmetric
potential in the presence of four-wave mixing. We construct the soliton solutions for the vector nonlinear Schrodinger
equations with some PT-symmetric potentials. Then the linear-stability spectrum for solitary waves is studied. Moreover,
soliton solutions in high dimensional case are also considered.
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1. Introduction

The nonlinear Schrodinger (NLS) equation is one of the most
important nonlinear models to explain nonlinear phenomena
in various scientific fields, including plasma physics [1],
Bose-Einstein condensates (BECs) [8, 9], optics [4-7],
hydrodynamics [2], molecular biology [3] and so on.

Recently, a kind of nonautonomous Schrodinger equa-
tions with parity-time(PT)-symmetric potentials

W, + W + g7+ Ver(x)y =0

has attracted a lot of attention because of its special fea-
tures and potential applications [18-23]. The external
potential Vpr is assumed to be complex and satisfies the so-
called parity-time(PT)-symmetric condition
V*(x) = V(—x), where x denotes complex conjugation,
see references [15-17, 42, 43]. Many kinds of parity-
time(PT)-symmetric potentials have been introduced to the
NLS equations in fiber and waveguide optics, see
[23-25, 33-35]. Two celebrated examples are the NLS
equations  with  PT-symmetric  Scarff-Il  potential
[23, 26-29, 32] and periodic potential [30, 31], etc.
Recently, various types of vector nonlinear Schrodinger
systems have been studied in [8—14]. It is well known that
the scalar soliton is governed by a single nonlinear
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Schrodinger equation and the vector solitons can be gov-
erned by the vector nonlinear Schrédinger systems. The
classical model of vector NLS systems is:

. 1
191, + qu,xx + 0(|¢11|2 + 0‘|612|2)611 =0,
(1.1)

. 1
iq2; + 920 + U(Oﬁ\611|2 + |6]2|2)6]2 =0.

When o« = 1, (1.1) is the integrable Manakov equation, but
(1.1) is not integrable when o = 2. In [12], the authors
studied the following integrable vector NLS systems

. 1 .
g1, + 3l — g1 Pq1 = 2lga g1 + q1" g = 0,
(1.2)

. 1 .
iga; + 52— 92 g2 — 2lq1 g2 + q2" g1 = 0.

Under a linear transformation, Eq. (1.2) was reduced into
independent classical nonlinear Schrodinger equation and
the stability of (1.2) were discussed in [12]. Other vector
NLS systems with various external potentials were also
studied, see [37, 40-42, 44, 46-48].

In [44], the authors studied vector nonlinear Schrodinger
equations with PT symmetric potentials:

i1, + i + g(lql I’ + ﬁlqzlz)qn +V(x)q1 =0,
(1.3)
ig2, + qoe + g(lqzl2 + Blai |2) g+ V(x)g =0,

where ¢, and g, are complex functions of x, #, tis the prop-
agation direction, g=+1, >0 is the cross-phase
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modulation coefficient, and V(x) is the complex PT symmetric
potential. Equation (1.3) could describe two interacting
paraxial waves propagating in inhomogeneous nonlinear Kerr
media. The authors of [44] obtained a class of exact vector
constant-intensity solutions for (1.3) and studied the modu-
lational instability for the solutions. In [44], the authors
mentioned that instability for scalar or vector nonlinear
Schrodinger equations with complex potentials in the pres-
ence of four-wave mixing remained open.

In [45], the authors studied vector nonlinear Schrodinger
equations in the presence of four-wave mixing without PT
symmetric potentials:

. 1 a
iq1 — Bq et (|611|2 + 0\612|2)611 +§f11*422 =0,

. 1 a .,
iga, + Bg> +§q2,xx + (|612|2 + a\ql|2)612 toa 1> =0.
(1.4)

where g; and g, are the appropriately normalized, slowly-
varying, complex field envelopes for the transverse electric
(TE) and transverse magnetic (TM) polarized waves,
respectively. § and a are the coefficients of the four wave
mixing (FWM) term and the cross-phase modulation (CPM)
term, respectively. It is well known that four-wave mixing
(FWM) is an important nonlinear process in the context of
silica fibers. Equation (1.4) have been extensively studied in
anumber of publications, see [45] and the references therein.

In this paper, we consider the following vector nonlinear
Schrodinger equations with PT symmetric potentials in the
presence of four-wave mixing:

igre + g+ g(\ql a1+ 2lga a1 — qn*q22> +Vigi —iVagr =0,

g2 + @2 + g(\q2|2q2 +2g1’q2 — QZ*Q12> + Viga +iVagq1 =0,
(1.5)

where ¢1*g22, ¢2*q1* are four-wave mixing terms, g (x,?),
g2 (x, 1) are complex functions of x, 7. V| (x), V2 (x) are complex
PT-symmetric  potentials, satisfying V(x) = Vi(—x),
V5 (x) = Va(—x), respectively. g characterizes the self-focus-
ing or defocusing Kerr nonlinearity. When V, = 0, the mod-
ulational instability of (1.5) is an open problem proposed in [44]
(p = 2and g, = —gin(53)). There are lots of methods to study
soliton solutions for nonlinear evolution equations, such as the
inverse scattering method [22], Darboux transformation [35],
the Lie method [21] and similarity transformation method [29],
see the papers [15, 27, 28, 34, 39, 49, 50] and the references
therein. In this paper, by employing a linear transformation as
[12], Eq. (1.5) is reduced into two independent classical non-
linear Schrodinger equations with PT potentials. Through the
solutions of classical nonlinear Schrodinger equation with PT
potentials, we finally obtain soliton solutions for Eq. (1.5).
Then we show the stability for soliton waves, under PT-sym-
metric k-wave-number Scarff-II potential and PT-symmetric

multiwell Scarff-II potential. We also find soliton solutions for
Eq. (1.5) in high dimensional case.

The organization of this paper is as follows: In Sect. 2, we
map the coupled Eq. (1.5) into the independent NLSEs by
using the linear transformation, then through solutions of
independent NLSEs with PT-symmetric potentials, we get
solitary waves of Eq. (1.5). In Sect. 3, we design two inter-
esting PT-symmetric potentials, and obtain the detailed
solitary waves. In Sect. 4, we show some soliton solution of
Eq. (1.5) in high dimensional case. In Sect. 5, we discuss the
stability for the solitary waves obtained in Sect. 3.

2. The linear transformation

In this section, we map the vector nonlinear Schrodinger
equation (1.5) into the independent NLSEs by using the
linear transformation. Then through solutions of indepen-
dent NLSE with PT-symmetric potentials, we get solitary
waves of Eq. (1.5).

We rewrite the vector NLSE (1.5) into matrix form:

A, + A +gAATA 1 EA = 0, (2.1)
where 1 stands for the Hermite conjugation and

q1 75 Vi iV,
A= , E=| :

—q2 q1 —1V; Vi

Next, we diagonalize the matrix A and E. Choose invertible
matrix J as
) |

1
J—( 2
Vi+ Vs, 0 )

then
0 Vi—-V,

PYSRSYI L o)
0 q1 +iq

Through transformation,

[SIE

SIS
I

B:=J'EJ]= (

A=Jps~t, At =yply', E=uBJ,

Equation (2.1) is reduced into:

iD, + Dy + ¢DDTD + BD = 0. (2.2)
Let
up + up Uy — Uy
== =" 23
q1 2 ) q2 i ( )

We can finally rewrite Egs. (2.1) or (2.3) into the
independent NLS equations about u; and u5:
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iy + Uy o + glw [Py 4+ (Vi = Va)uy, =0,

, (2.4)
iup, + up o + glua|"un + (Vi + Va2)up = 0,

where V| — V,, Vi 4V, are still complex PT-symmetric
potentials, as Vi(x), V,(x) are complex PT-symmetric
potentials.

If we obtain the solutions for (2.4), we will finally obtain
the solutions for (1.5) from (2.3).

3. Solutions in the one-dimensional vector NLSEs

In this section, we design two interesting PT-symmetric
Scarff-II potentials for Eq. (2.4), including PT-symmetric
k-wave-number Scarff-Il potential and PT-symmetric
multiwell Scarff-II potential [23]. We obtain soliton solu-
tions and plot some figures for the solitary waves.

3.1. PT-symmetric k-wave-number Scarff-II potential

In this subsection, we design the external potentials of
Eq. (2.4) into an interesting PT-symmetric k-wave-number
Scarff-II potential.

Let

V] (x) — VQ(X) = N1 (X) —|—iM] (X),
V1 (x) + Vz(x) = Nz(x) + ng(x),

where the PT-symmetric k-wave-number Scarff-1I
potential is given as

Ni(x) = Noisech®(kix),

M, (x) = My sech(kix)tanh(k;x),

N;(x) = Nopsech® (kyx), Gy
M, (x) = Mypsech(kpx)tanh(kyx),

where kj,k, > 0 denotes the wave number, Nyj, Ny, > 0
and My, My, € R. When k) =k, = ],]V]—i-lle(] = 1,2) is
the PT-symmetric potential considered in [36].

For the PT-symmetric k-wave-number Scarff-II poten-
tial given in (3.1), we could obtain the solutions for
Eq. (2.4) as following (see [23]):

1 (M()l
uy =
9%k,?

— Noi + 2k )sech(klx) il () +r? 1. (3.2)

where g(9k| —Noi +2k*) >0 and @ (x) = g%
arctan|sinh(k;x)),
l M, i
9k2
(3.3)
where g(gkz Nop+2k*) >0 and  @,(x) %

arctan [sinh(kzx)]
From (3.2), (3.3) and (2.3),

up + up U — Uy

2 2i
We could obtain that the solutions for the vector NLSE
(1.5) are:

1 1 (Mm
q1 = 9k1
1 (Moz
Ok,

1 (MQ[
9k,>

1 (M02
9k,

Through some calculation, we get the spatial-temporal
.. . 2 2
distribution of |g;|” and |¢,| as:

q1 = q2 =

— Nop + 2k )sech(klx)ei[""(x)Jrk‘z’]

— Noz + 2k, )sech(kzx)ei[wz(x)+kz2z]> 7

(3.4)

— Not + 2k )sech(klx)ei[%()f)+k12t]

2

+

i

q2 = 5
— — Nop + 2k >sech(kzx)ei[¢2(x>+k22’]> )

(3.5)

> 1 [ , M2,
lg1]” = @ 9k2 — Noj + 2k? ) sech? (ki x) + 2 9k2

2
sech(kyx)cos (¢ — @2) + (ki — k3)t] + <M

— No1 + 2k2>

o — Noy + 2k§) sech(kix)

9k3
2 1 [ M2 M2
lg2|” = 4g 9k2 — Noi + 2k; ) sech® (ki x) — 2 9k2
2 g2 Mg,
sech(kox)cos[(@) — ¢,) + (ki — k3)1] + (

2
9k3

— No1 + 2k2>

(5
— Noz + 2k >sech2 kox }
(5
]

— No + 2k§) sech(k;x)

— N + 2k2) sech2 (kox
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Fig. 1 (1 — a) is the spatial-temporal distribution of |q1\2 withg =1, Noy =5, Mo1 =52,k = V2, Npp = 1, Mpp = 0.5, k, = %; (1 — D) is the
spatial—temporal distribution of |g2|* with g = 1, Noy = 5, Moy = 5.2, k1 = V2, Ney = 1, Mo, = 0.5, k» = \/Li

where (45 — Noy + 2k2) (%% — Ny, +23) > 0.

The spatial-temporal distribution of |g;|* and |g,|* are
ploted in Fig. 1 with g = 1, No; = 5, Mo, = 5.2, ky = /2,
Nop =1, My = 0.5, kp = %

3.2. PT-symmetric multiwell Scarff-II potential

In this subsection, we design the external potentials of
Eq. (2.4) into anthor meaningful PT-symmetric multiwell
Scarff-1II potential.

Let

Vi (x) — Vz(x) =N, (x) + 1M, (x),
Vi (x) + Vg(x) = Ng(x) + ng(x),

where the PT-symmetric multiwell Scarff-II potential is
given as

[Mo? | 2
5 + 2 — gcos(wx) | sech”(x),

M (x) = My sech(x)tanh(x),

Ni(x) =

[Mo,? | 2
5 + 2 — agcos(wx) | sech”(x),

M, (x) = Myysech(x)tanh(x),

N2 ()C) =

where My, My,0 € R and » >0 denotes the wave num-
ber. When w =0 and o= M%‘Z—FZ — Noi, then N;+
iM;(j =1,2) is PT-symmetric potentials considered in
[36].

For the given PT-symmetric multiwell Scarff-II poten-
tial in (3.6) with @ =0, ¢ = 1, we could obtain the
solutions for Eq. (2.4) as following (see [23]):

up = sech(x)e®1+1, (3.7)

uy = sech(x)e®2+1, (3.8)

where ¢, (x)="2arctan[sinh(x)], @,(x)=2arctansinh(x)),

and g==+1.
From (3.7), (3.8) and (2.3), we could obtain that the
solutions for the vector NLSE (1.5) are:

1/ . ) )
g1 = 5 (eltm(X) + el‘/’Z("))sech(x)e", (3.9)
% = % (ewlm _ ei‘/’z(x>)sech(x)eit, (3.10)

— My

= M @,(x) = 2 arctan

where @, (x) = Zarctan[sinh(x)],
[sinh(x)].
Through some calculation, we get the spatial-temporal

distribution of |¢;[*and |¢,|* as:

1
a1l = gsecl ()2 + 2c05(0> — 1)

1
|‘]2|2 = Zsechz(x)[Z —2cos(py — ¢y)]-

The spatial-temporal distribution of |¢|* and |g,|* are
ploted in Fig. 2 with g=1, 0w =0, 6 =1, My =0.3,
My, = 15.3.

4. Solutions for the high-dimensional vector NLSEs

Recently, soliton solutions of high dimensional nonlinear
evolution equations have also attracted great attention of
researchers, see [16, 20, 26, 48]. In this section, we gen-
eralize our method to the high-dimensional case. In high
dimensional case, Eq. (1.5) takes the form
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t 55

X

Fig. 2 (2 — a) is the spatial-temporal distribution of |g; |2 withg=1, =0, 0 =1, My; = 0.3, My, = 15.3; (2 — b) is the spatial-temporal

distribution of \qz|2 withg=1,w=0,0=1, My; =0.3, Mp = 15.3

igi, + g1 + g(lql a1 +2lga g1 — ql*qzz)

+Vig — iV2q2 =0,
(4.1)

ig2, + Aga + g(lquZqz +2/qiq2 — q2*q12)
+ Viga +1V2q1 = 0,

where V| and V, are PT-symmetric potentials, g is a real

constant with g = £1, and A is the Laplace operator.
Through the linear transformation in Sect. 2 [see (2.1),

(2.2), (2.3)], Eq. (4.1) is transformed into the independent

NLS equations about u; and u:

iy, 4+ Au+ glugPuy + (Vi — Va)uy =0, (42)

iy, + Au+ g|u2|2u2 + (Vi+WV)u, =0,

where Vi — V,, Vi +V, are still complex PT-symmetric
potentials, since V|, V, are complex PT-symmetric potentials.

4.1. Solutions under 2D PT-symmetric Scarff-II
potential

First, we consider the formation of PT bright spatial soli-
tons in two-dimensional symmetric geometries, where
q1 = q1(x,9,1), g2 = q2(x,y, 1) are complex functions with
respect to x,y,t € R, A = 6)% + 63. The 2D PT-symmetric
potential requires the sufficient condition
Vi(xy) = Vi(=x,—y). Vi(x,y) = Va(—x, —y).
Let
V]()C,y) - Vz(x,y) = Nl(xvy) +iM1(x7y)v
Vi(x,y) + Va(x,y) = Na(x,y) + iMa(x,y),

where the generalized 2D PT-symmetric Scarff-II potential
is given as:

M, 2
Ni(x,y) = Z < LI 2k,12> sech? (kyn) — ga* H sech? (kyn),

2
n=x,y 9k’7 n=x.y

M, (x7Y) = Mo, Z sech(k,m)tanh(k,m),

n=xy
My’ 2 2 2 2
Ny(x,y) = Z o2 + 2k,” | sech” (kyn) — gb H sech” (kyn),
n=x,y n n=x,y

Ma(x,y) = Mo Y sech(kyn)ianh(kyn),

n=xy

(4.3)

where k, > 0 are the wave numbers in the x, y directions,
and My, My, a,b are real constants. We could obtain the
solutions for Eq. (4.2) as following (see [17]):
w1 (x,y,1) = asech(k.x)sech(ky)el?1 4, (4.4)
where u = k> + ky2 and ¢;(x,y) = @anw k,f2arctan
[sinh(kyn)] is the phase.

uz(x,y,1) = bsech(k.x)sech(kyy)el? 4,

P2 ()C, y) = % Zy,:x_y kﬂ72

(4.5)

where u =k + ky2 and
arctan[sinh(k,n)] is the phase,

From Eq. (2.3), we could obtain that the solutions for
the vector NLSE (4.1) are:

ul(xayat)+u2(x7y?t) uz(x,y,t)—ul(x,y,t)
q1 = ) )y 42 = 2% .

(4.6)

Through some computation, we get the spatial-temporal
s 2 2
distribution of |g;|° and |g|" as:
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2 1, , 5 2 where k, >0 are the wave numbers in the
" = 4(a +b% + 2abeos(¢, (pl))sech (ksx), x, y, z directions, and My, My,a,b are real constants.

1
g2 = 1 (a* + b* — 2abcos(p, — ¢,))sech* (k.x).
The spatial-temporal distribution of |¢,|* and |g,|* are
ploted in Fig. 3 with k, =k, =1, My =03, p=2,

M02:3,a:3,b:0.3.
4.2. Solutions under 3D PT-symmetric potential

Second, we consider the three dimensional NLSE with the
PT-symmetric potential, where ¢q; = q{(x,y,2,1), g2 =
q2(x,y,z,t) are complex functions with respect to
x,y,2,t ER, A= 6)2( + 63 + 6?. The 3D PT-symmetric
potential requires the sufficient condition V(x,y,z) =
Vi(=x,—y,—2), V;‘(x,y,z) =Va(=x,—y,—2).

Let

VI(X»Y»Z) - V2(x7y7Z) = Nl(X,y,Z) + iMl(x7y7Z)7
Vl (XJ,Z) + Vz(x’% Z) = NZ(x7ya Z) + iMZ(xayaZ)'
where the generalized 3D PT-symmetric Scarff-II potential

is given as:

Moi2
Ni(x,y,2) = Z < o +2k,72>sech2(k,,n)—ga2

2
nN=xy,2 9k'1

H sech®(kyi),

N=x,y,2

M, (x,y,z) = My Z sech(kyn)tanh(kyn),

n=x,y,2

M, 2
Na(x,y,z) = Z < 0 +2kn2>sech2(k,,t1)—gb2 H sech® (kyn),

2
n=xy.z 9k’l n=x.y,z

My (x,y,2) = My Z sech(kyn)tanh(kyn),

H=xy,2

(4.7)

We could obtain the solutions of Eq. (4.2) as following
(see [23]):

w1 (x,y,2,1) = asech(k.x)sech(kyy)sech(k.z)ell?1 )

(4.8)
where  u =k’ + ky2 +k*> and the phase is
Qi(x,y,2) =" 30, ., kg~ arctansinh(kyy)],
up(x,y,z,1) = bsech(kxx)sech(kyy)sech(kzz)ei[(/’ﬁ”t],

(4.9)
where =k’ +k’>+k> and the phase s

P (x,y,2) = @anw,z k,2arctan[sinh(k,n)).
From Eq. (2.3), we could obtain that the solutions for
the vector NLSE (4.1) are:

(%, y,2,1) + (X, y,2,1)
1= 2 )
MZ(xvyaZ7 t) - ul(X,)%L t)

2i '

(4.10)

q2 =

5. Stability of nonlinear modes

In order to analyze the linear stability of the solution in one
dimensional case, we compute the linear-stability spectrum
for solitary waves by using the numerical methods [12, 38].
First we consider perturbations on the solutions of Eq. (1.5)
of the form

01(x.1) = () + I () + wi@]e” + pi(x) = wi@e’ ") e,
Oa(x, 1) = (rz (x) 4 [v2(x) + wa(x)]e™ + [vi(x) — wz(x)]e;f’) ei(/"*%)7

(5.1)

3-b

5
y S %

y 55

X

Fig. 3 (3 — a) is the spatial-temporal distribution of |g, |2 withk, =k, =1, My; = 0.3, p =2, Mo, =3,a=3,b=0.3; (3 —b) is the spatial-
temporal distribution of \q2|2 with ky =k, =1, Moy =03, u=2,Mp =3,a=3,b=023
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where ri(x)e™, ry(x)el*~3) are stationary solutions of
Eq. (1.5), = is complex conjugate operator, vy, vy, wi, Wy <K
1 are perturbations, and A indicates the perturbation growth
gate.

By inserting the perturbed solution (5.1) into the vector
NLSE (1.5) and linearizing it, one could obtain the fol-
lowing linearized eigenvalue problem:

LY = 1Y, (5.2)
where
0 G + Oy 0 G;
| G +0. 0 Gs 0
e G; 0 Gy + O
Gy 0 Gy + 0y 0
Vi
w=| ",
V2
wa
G =—u+ (2r1r1‘ +2rr; — - r22)g + Vi,
Gs = (2r175 +2r2r} — 2r112) g — Va,

G2
Gy

—pu+ (2rr} + 275 + 12+ 1) g+ Vi,
(2175 + 2rar) +2r112) g — V2,

and / is the associated eigenvalue of the linear stability
operator L.

Since linear stability spectrum is the set of eigenvalues
of the linear stability operator of a soliton, the stability of
the perturbed soliton of (1.5) is related to the real parts
Re(A) of all eigenvalues A. The criterion of the linear sta-
bility can be given as follows: the stability of the perturbed
soliton of the solution is unstable if the eigenvalues satisfy
Re(2) > 0, as in this case the eigenmode of the perturba-
tion solution increase exponentially. The solution is
stable if the eigenvalues satisfy Re(4) <0. And Re(1) =0
corresponds to two cases of stability and instability. In
order to compute the linear-stability spectrum for solitary
waves, we reduce the linearized eigenvalue problem into a
matrix eigenvalue problem by applying the Fourier collo-
cation method [12], then we use the QR algorithm to solve
the matrix eigenvalue problem.

In the following we will present some numerical results
to show the solutions of the eigenvalue problem (5.2). Let
V1, V, are given as PT-symmetric k-wave-number Scarff-II
potential in (3.1), we compute the spectrum for the linear
spectral problem (see Fig. 4). It is seen from the figure that
the solutions (3.4) and (3.5) are unstable in the sense of
linear stability analysis, since some of the eigenvalues
contain some positive real parts.

10

Im(a)
(=]

1 | 1 1 1

1
02 01 0 01 02 03 04 05
Re{3)

10 1 1
05 04 03

Fig. 4 Eigenvalues for linearized eigenvalue problem of Egs. (3.4)
and (35) with 8 = 1, N(n = 0.1, M(n = 0.6, k1 = kz = \/i,
Nop =02, My, =9

Let Vi, V, are given as PT-symmetric multiwell Scarff-
I potential in (3.6), we compute the spectrum for the linear
spectral problem (see Fig. 5). It is clear from the figure that
the solutions (3.9) and (3.10) are unstable with the linear
analyzing method. In particular, we notice that a series of
eigenvalues with positive real parts exist in the linear
spectrum.

6. Conclusions
In this work, we mainly study the soliton solutions and

instability for optical solitions governed by vector nonlin-
ear Schrodinger equations with PT symmetric potential in

10 T T T T T

Im(a)
(=}

1 1 1 1

10 1 1
02 015 01 0.05 0 0.05 01 0.15 02

Re{3)

Fig. 5 Eigenvalues for linearized eigenvalue problem of Egs. (3.9)
and (3.10) with g =1, w =0, 0 =1, My; = 0.3, My, =153
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the presence of four-wave mixing. It is well known that
four-wave mixing is an important method for producing
phase conjugation and is widely used in photorefractive
materials. Firstly, soliton solutions are obtained by means
of the linear transformation and two external potentials are
considered. Second, the linear stability of solitons under
PT-symmetric k-wave-number Scarff-II potential and PT-
symmetric multiwell Scarff-II potential is investigated in
detail by means of linear spectrum analysis. Finally, the
solitons of high dimensional vector NLS equations with
PT-symmetric potential in the presence of four-wave
mixing are considered. More results about high dimen-
sional case would be discussed in the future.
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