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Abstract: In this study, the modified exp (—¢(1))-expansion function method is utilized in acquiring some new results to
the coupled nonlinear Maccari’s system. The Maccari’s system is a nonlinear model that describes the dynamics of isolated
waves, confined in a small part of space, in various fields such as hydrodynamic, plasma physics and nonlinear optics. We
construct some new results with a complex structure to this model, such as; the trigonometric and hyperbolic function
solutions. Under the suitable choice of the values of parameters, we plot the 2D, 3D and the contour graphs to some of the
obtained solutions in this study. We observed that our results may be helpful in detecting the movement of an isolated wave

in a small space to some practical physical problems.
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1. Introduction

Nonlinear evolution equations (NLEEs) are used to express
various complex phenomena arising in different fields of
nonlinear physical sciences, such as; mathematical physi-
cal, biological sciences, chemical processes and so on.
Recently, various analytical approaches have been devel-
oped to seek the solutions of different kinds of NLEE:s,
such as; the Q-function scheme and trial solution approach
[1], the Hirota method [2], the Pffafian method [3], the
homogeneous balance method [4], the improved tan(¢/2)-
expansion method [5], the extended (G'/G)-expansion
method [6], the extended tanh-function method [7], the
sine-Gordon expansion method [8-11], the homotopy
analysis method [12], the homotopy perturbation method
[13], the jacobi elliptic function method [14], the simple
equation method [15], the modified simple equation
method [16], the improved Bernoulli sub-equation function
method [17], the first integral method [18, 19], the modified
f Fan sub-equation method [20], the simplified Hirotas
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method [21], and many other mathematical approaches
[22-46].

However, the purpose of this study is to use the modified
exp (—¢(n))-expansion function method (MEFM) [47] to
investigate the solutions of the coupled nonlinear Mac-
cari’s system given by [48]

i0; + O + RO =0,

i+ S + RS =0,

iNt + Ny + RN =0,

R+Ry+(|0+S+NP), =0.

(1)

The coupled Maccari’s system is a complex nonlinear
model which describes the dynamics of isolated waves,
confined in a small part of space, in various fields such as
hydrodynamic, plasma physics and nonlinear optics
[48, 49].

Various computational approaches have been used to
search for the solutions of different kinds of the coupled
nonlinear Maccari’s system, this includes; the new exten-
sion of the (G’ /G)-expansion method [50], the first integral
method [19], the improved (G’ /G)-expansion method [51],
the tanh method [52], the Kudryashov method [53], the
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He’s semi-inverse variational principle [54], the mapping
method and Lie symmetry analysis [55] etc.

2. The MEFM

In this section, the analysis of the MEFM is presented.
Consider the following general form of nonlinear partial
differential equation:

Pt thy, ottty Uz, - . ) = 0. (2)
Step 1 Utilizing the wave transformation
f(xa t) :F(n)a n :V(x_kt)v (3)

Equation (2) reduces to the following nonlinear ordinary
differential equation (NODE):

Q(F,F2 FF',F",..) =0. (4)

Step 2 Supposing that the solutions of Eq. (4) take the
following form:

_ oA [‘37(15('7)]1. Aot Aie P+ A
0 Bjle¢))  Bo+Bie? + - 4 Bye o’
(5)

where A;,B;,(0<i<6,0<j<0o) are constants to be
obtained later, such that A; # o, B, # o, and ¢ = ¢(n)
solves the following equation:

¢'(n) = e ) 4 pe®tD 4 ). (6)
Equation (6) has the set of solutions as follows [56—58]:
Family 1 If p #0, 2> —4p >0,

F(n)

d(n) = ln( or 5 2

(7)
Family 2 If p # 0, 2> —4p <0,

() = ln( 7

2p
(8)

Family 3 If p=0,/#0and > —4p >0,
= ’ 9
¢(n) = —in| —o5—7)- 9)

Family 4 If p#£0, A#£0and 2> —4p =0,

Family 5 If p=0,/.=0and 1> —4p =0,

— /124pmnh< i24p(17+e)>}h>.

\/—12+4pm”<\/—;?+4p (He)) _z)
20"

$(n) = In(n + ), (11)

where A;,B;, (0<i<6,0<j< 0), €, 1, p are coefficients to
be obtained later, and o, ¢ are positive integers which can
be obtained by using the balancing principle.

Step 3 Substituting Eq. (5), its derivatives and Eq. (6)
into Eq. (4), yields an equation in e~ ?("), We collect a set
of algebraic equations from that equation by summing all
the coefficients of e~?() of the same power and equating
each summation to zero. To get the values of the param-
eters involved in the equation, we simply the set of alge-
braic equations with aid of the Wolfram Mathematica
package. Substituting the obtained values of the coeffi-
cients and one of Egs. (7-11) into Eq. (5), produces new
solutions to (2).

3. Theoretical calculation

In this section, the MEFM [47] is used to find the waves
solutions to Eq. (1).

To carry Eq. (1) into a single NODE, the following
assumptions are made:

Ox,y,1) =f(x,y,1)e
S(x,y,1) = g(x,y, 1) (12)
N(x,y,t) = h(x,y,t)e¥
where = i(kx + oy + ft +x), k, o, f, Kk are nonzero
constants, and i = v/—1.
Substituting Eq. (12) into Eq. (1), yields
i(f; + 2kf) + fo — (A+I)f + /R =0,
i(g: +2kgx) + gu — (A +K*)g +gR =0,
i(hy + 2khy) + hy — (24 k*)h + hR = 0,
Ri+Ry+((f+g+h)?),=0.

(13)

Utilizing the wave transformation; f = F(y), g = G(n),
h=H(n), R=R(n), n=x+y— 2kt on Eq. (13), gives

F" — (J+k*)F +FR =0,
G"— (A+K)G+GR =0,

H' — (. + K)H + HR = 0, (14)
2 A(F+G+H)* _
(1-2k) G+ =5 =0.
Integrating the fourth part of Eq. (14), yields
R=— (F+G+H). (15)

(1— 2k)

Substituting Eq. (15) into the remaining three parts of
Eq. (14), yields
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Fig. 1 The 3D and 2D graphs of Eq. (24)under . =3, =2, u=2,=—-15,k=15,By=1,B; =3,A0=5,e=4,t =15, -10<x< 10,

—5<y<5and y = 1.6 for 2D

Fig. 2 The 3D and 2D graphs of Eq. (27) under b =35, 1=3, =2, u=2, f=—-15, k=15, By=1,B =3, A40=5,e=4,1t=1.5,

—~10<x<10, —5<y<5 and y = 0.6 for 2D

F' — (A4 k)F — L~ (F+ G+ H)*F =0,

(1—-2k)
G'— (A +1)G — i (F+G+H)’G=0,  (16)
H" — (A+*)H — 255 (F + G+ H)’H = 0.

We carry Eq. (16) into a single NODE in F by setting

G =aF, H=bF, (17)

where a, b are arbitrary constants,

(1 = 2k)F" — (1 = 2k)(2 + K*)F — (1 + a+ b)*F* = 0.
(18)

Balancing F” and F? in Eq. (18), gives the following
relation:

o=0+1, (19)
choosing o = 1, yields 6 = 2.
Utilizing ¢ = 1 and 6 = 2 along with Eq. (5), gives

Pl — Ag+ Aje 0  Aye20()
) = g Breow

(20)

Inserting Eq. (20) and it’s second derivative into Eq. (18),
yields a polynomial in e~%). We collect a set of algebraic
equations from this equation and simplify the set of
equations with aid of the Wolfram Mathematica package to
find the values of the parameters involved in the equation.
For each set, substituting the obtained values of the
parameters into Eq. (20), gives the solutions to Eq. (1).
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Fig. 3 The 3D and 2D graphs of Eq. (31) under a =2.5, b =35, f=xk=15k=3,1=2,0=2, u=0.002, e =4, t = 1.5, -5<x<5,

—4<y<4 and y = 0.6 for 2D
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Fig. 4 The 3D and 2D graphs of Eq. (34) under k =0.05, 2=2, «=0.24, 4t =0.02, f=a=b=x=0.5, ¢ =0.65, t =15, —4<x<4,

—5<y<5 and y = 0.6 for 2D

Set 1
Ao(2By — 2By)
A = — A =
' By —2u, 0 270
1

= (242(1 + b)(2By — iB;)*
2A(z)(zBo_wlf( 2(1+b)(2By — iB)

+V2(\By — 2uB,)’

(14 v2/au— 25— 723, — 280)°A3)

(2Bo — 2uBy)"

22
k=—\2u-p-7.

Solutions 1.1 When p # 0, 2> —4p > 0, we have

)

fl(xay)t) =
1

((/IBO — 2uBy) <—2ﬂ31 +Bo (l +VAE -4 fa”h[\l’l(é)])))
(Ao <_2MB1 \/ 2% = 4y tanh[¥, (€)]
+ B, (,12 — I 2P — A tan[‘ﬂ(f)]) );

(21)
gl(xay)t):afl(xyyat)a (22)
hl(xayat):bfl(x’y)t)’ (23)
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Fig. 5 The 3D and 2D graphs of Eq. 38) undera =2.5,b=3.5,k=3,A=15a=2, u=2, =15, k=15,e=4,r =15, -10<x<10,
—2<y<2and y = 1.6 for 2D
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Fig. 6 The 3D and 2D graphs of Eq. (41) under a =2.5,b =35, k=3, 1=15,0=2, u=2, =15 k=15, e=4,1 =15, -5<x<5,
—2<y<2and y = 1.6 for 2D

ol B i<,m”mﬁw) (24) 4 _ iV2K—1By - i\/2Q2k—1)(2Bo +iB)
(e3.0) = fix 3 )e , o= A ),
S1(6,,1) = afi(x,y, 1)e (7 ais MMHK) , (25) Ay = %’ B=2u—ik— %2

Ni(x,y, 1) = bfi (x, y, 1)’ (’ Vb ”"‘””’*") . (26)  Solutions 2.1 When p # 0, 2> — 4p > 0, we have
Rilxy) = ——020 (1 sy, 27) Bl = WA e 2/ e rannl ()

V2(1 +a+b) (/1 V=4 tanh[‘l’z(é)]) 7
(28)

1+2¢/2u—p-%

where Wy (&) =1/A* —du(e+ &), E =x+y— 2kt
Set 2 82(x,y,1) = afa(x,y,1), (29)

ha(x,y,1) = bf(x,y,1), (30)
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Fig. 7 The 3D and 2D graphs of Eq. (46) undera =2.5,b=35,k=3,A=150=2,=15k=15,e=4,t =15, -3<x<3, -2<y<2
and y = 0.6 for 2D

Fig. 8 The 3D and 2D graphs of Eq. (48) undera =2.5,b =035, k=3,A1=150=2, u=2,=15k=15,e=4,t=1.5, —13<x <13,
—13<y<13 and y = 1.6 for 2D

Qa(x,y,1) = fo(x, y, 1) "2 40, (31) . ik = T(72 = 4= /4= 77 tanl¥3(2)))
. Sflxy, 1) = ;
Sy(x,y,1) = afs(x, y, t)e/ TR (32) ’ V2(1 +a+b) (z —au =2 mn[\yg(s)])
Na(x,y,1) = bfs(x, y, 1) bt thres), (33) 35
g3(x,y,1) = afs(x,,1), 36
Ro(ry,0) = 220 (14 g, Gy 3

where W,(&) =14/ 2 —Ap(e + &), E = x4y — 2kt 03(x, v, 1) = fi(x, y, 1)ebctartBis)

(35)

(36)

=2k h3(x,y,1) = bfs (x,y,1), (37)
Solutions 2.2 When p # 0, 2> — 4p <0, we have . o
’ ’ S3(x,y,1) = afs(x,y, 1), (39)

(40)

Ns(x,y,1) = bfs(x, y, 1)e’ b,
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Fig. 9 The contour plots of (a) Eq. (24) and (b) Eq. (27)
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Fig. 10 The contour plots of (a) Eq. (31) and (b) Eq. (34)

f3(x7yat)
1 -2k
where W5(&) = 1\/4u— (e + &), E =x+y— 2kt

Solutions 2.3 When p =0, 1 #£0 and 1> —4p > 0, we
have

R3(xay»t)= - (1+a+b)7 (41)

e y.n) = 2T ()
g4(xa)’7t) :af4(x,y, t)7 (43)
ha(x,v,1) = bfa(x,y,1), (44)

Qu(x,y,1) = falx, y, 1)e/ o), (45)
S4(x,v,1) = afy(x,y, 1) TR (46)
Na(x,y, 1) = bfa(x,y, 1) C i), (47)
Ry(x,y,1) = —%(l—ka%—b), (48)

where W4(&) =1i(e+ &), & =x+y— 2kt

4. Results and discussion

In this section, we discuss the results to Eq. (1) obtained by
using the available techniques in the literature and the
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Fig. 11 The contour plots of (a) Eq. (38) and (b) Eq. (41)

Fig. 12 The contour plots of (a) Eq. (42) and (b) Eq. (48)

reported results in this study. Baskonus et al. [48] have
applied the sine-Gordon expansion method to this model
and obtained some complex hyperbolic function solutions.
Rostatny et al. [19] have employed the first integral method
to seek the solutions of Eq. (1) and some complex hyper-
bolic and exponential function solutions were obtained. In
this study, by using the MEFM, we successfully con-
structed some new soliton, singular periodic waves and
singular soliton solutions to Eq. (1). When we compare our
results with the results reported in Baskonus et al. [48] and
Rostatny et al. [19], we observed that all the results
obtained in this study by using the modified exp (—¢(#))-
expansion function method are newly constructed solutions
with some similar structure to the results obtained by

(b)

20 \ \ \ \ \ \ \
-20 -15 -10 -5 0 5 10 15 20

Baskonus et al. [48] and Rostatny et al. [19]. It shows that
the modified exp (—¢())-expansion function approach
gives an efficient and reliable mathematical tool for
obtaining variety of solutions to various nonlinear evolu-
tion equations.

It can be seen that; solutions (24)—(27) and (31)—(34) are
soliton solutions, solutions (38)—(41) are singular periodic
wave solutions and solutions (45)—(48) are singular soliton
solutions. A soliton is a localized wave of translation that
arises from a balance between nonlinear and dispersive
effects, the singular periodic waves is a solitary wave with
discontinuous derivatives whose wave propagates in a
periodic pattern and the singular soliton solutions is a
solitary wave with discontinuous derivatives; examples of
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such solitary waves include compactions, which have finite
(compact) support, and peakons, whose peaks have a dis-
continuous first derivative [59, 60]. The perspective view
of the soliton (34) can be seen in the 3D graphs which are
depicted in Figs. 1, 2, 3 and 4, respectively. The perspec-
tive view of the singular periodic wave solutions (38) and
(41) can be seen in the 3D graphs which are depicted in
Figs. 5 and 6, respectively. The perspective view of the
singular soliton solutions (45) and (48) can be seen in the
3D graphs which are depicted in Figs. 7 and 8, respec-
tively. The propagation pattern of the wave along the x-
axes for each solution can be seen through the 2D graphs in
Figs. 1, 2, 3, 4, 5, 6, 7 and 8. The contour plot is an
alternative of the 3D graph where the fixed value of ¢ is
considered. The contour plots in Figs. 9 and 10 illustrate
the stable propagation of the exact soliton solutions. The
contour plots in Fig. 11 illustrate the unstable propagation
of the exact singular periodic wave solutions. The contour
plots in Fig. 12, also illustrate the unstable propagation of
the exact singular soliton solutions. The jumps in discon-
tinuities can be observed in the (a) parts of Figs. 11 and 12.

5. Conclusions

In this study, the modified exp (—¢(#))-expansion function
approach is utilized acquiring some travelling wave solu-
tions to the nonlinear Maccari’s system. We successfully
constructed some soliton, singular soliton and singular
periodic wave solutions. All the obtained solutions verified
the considered model in this study. We also present the 2D,
3D graphs and the contour plots to some of the obtained
solutions in this study. From the reported results, it shows
that the MEFM is easy and manageable in finding varieties
of travelling wave solutions to complex nonlinear models.
All the computations in this paper are carried out with help
of the Wolfram Mathematica software. To the best of our
knowledge, the application of MEFM to the considered
model in this article has not been submitted to the literature
beforehand.
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