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by trichotomous noise
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Abstract: This paper studies the phenomenon of stochastic resonance (SR) in a bistable system with time delay driven by

trichotomous noise. Firstly, a method of numerical simulation for trichotomous noise is presented and its accuracy is

checked using normalized autocorrelation function. Then the effects of feedback strength and time delay on the system

responses and signal-to-noise ratio (SNR) are studied. The results show that negative feedback strength is more beneficial

than positive to promote SR. The effect of time delay on SR is related to the value of feedback strength. The influence of

the signal amplitude and frequency on SR is also investigated. It is found that large amplitude and small frequency of the

signal can promote the occurrence of SR. Finally, the influence of the amplitude and stationary probability of trichotomous

noise on SNR are discussed.
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1. Introduction

In recent years, considerable attention has been directed

towards time-delayed feedback stochastic systems due to

its potential applications in various fields, such as neural

networks [1, 2], biological control, economic market etc.

The time delay is ubiquitous in nature owing to the trans-

port of the key quantities (such as energy, matter, infor-

mation) within finite propagation time. Studies have

confirmed that time delay plays an important role in the

dynamic systems [3, 4]. In particular, many studies have

been devoted to the effects of time delay on stochastic

resonance (SR) [5–7].

Noise usually plays a disruptive role in nature. However,

the influence of noise on nonlinear systems has proven to

be of considerable interest in recent years. Many experi-

mental facts have clearly shown that noise can play a

constructive role in nonlinear systems, such as noise

enhanced stability [8–11] and noise induced stochastic

resonance [12–34]. SR is a cooperative phenomenon that

an external forcing signal may be enhanced by presence of

an optimal amount of noise. It is originally proposed by

Benzi in order to explain the periodic recurrences of the

Earth’s ice ages [12]. Later, SR has attracted considerable

attention and has been developed to be applied in a variety

of fields, such as biophysics [13–16], neural networks

[17, 18], complex networks [19], plasma physics [20],

social sciences [21], soft matter systems [22], colloidal

systems [23], magnetic systems [24]. There have been

many theoretical and experimental developments of

stochastic dynamic properties in conventional bistable sys-

tems [25, 26]. Since bistable system is an important system

in real applications. SR in this system has been widely

investigated in the fields of physics, chemistry, the other

natural and social sciences [27–30]. In particular, SR in

bistable systems with time delay driven by a variety of

noises has been studied, such as Gaussian white noise

[31, 32], colored noise [33], non-Gaussian noise [34].

Most of the previous studies for SR phenomenon are

subject to Gaussian noise, but an experimental research

shows that a lot of noises in the neural, biological and

physical systems are not Gaussian. Trichotomous noise is a

kind of three-level Markovian noise that is characterized by

three parameters: amplitude, correlation time and flatness

[35]. Due to its flexibility to model natural colored fluc-

tuation, trichotomous noise is useful in practical
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applications. Recently, the SR phenomenon in dynamic

systems driven by trichotomous noise has been investigated

[36–40]. It is noteworthy that these literatures are for the

non-delayed systems. Therefore, it is worth considering the

effects caused by time delay of SR in bistable system

subjected to trichotomous noise. The combination of tri-

chotomous noise and the time delay greatly increases the

statistical complexity of the system, thus many interesting

dynamics phenomenon have been found.

2. Generation of trichotomous noise

In this section, the trichotomous noise is introduced in

detail [35]. The noise is a random stationary Markovian

process that consists of jumps between three values a, b

and c. The jumps follow in time according to a Poisson

process, while the values occur with the stationary

probabilities:

PsðaÞ ¼ PsðcÞ ¼ q; PsðbÞ ¼ 1 � 2q: ð1Þ

The transition probabilities between the three states can be

obtained as follows:

Pða; t þ s a; tj Þ ¼ q� ðq� 1Þe�vs;

Pða; t þ s b; tj Þ ¼ qð1 � e�vsÞ;
Pða; t þ s c; tj Þ ¼ qð1 � e�vsÞ
Pðb; t þ s a; tj Þ ¼ ð1 � 2qÞð1 � e�vsÞ;
Pðb; t þ s b; tj Þ ¼ 1 � 2qð1 � e�vsÞ;
Pðb; t þ s c; tj Þ ¼ ð1 � 2qÞð1 � e�vsÞ
Pðc; t þ s a; tj Þ ¼ qð1 � e�vsÞ;
Pðc; t þ s b; tj Þ ¼ qð1 � e�vsÞ;
Pðc; t þ s c; tj Þ ¼ q� ðq� 1Þe�vs

ð2Þ

Here s[ 0, 0\ q\ 1/2, v[ 0. P(b, t ? s|a, t) is the

conditional probability that the variable n(t) will assume

the value b at some time t ? s given that it is a at the

earlier time t, denoted by Pab. Others can be defined

similarly. The law of total probability at each value

demands

Pða; t þ s x; tj Þ þ Pðb; t þ s x; tj Þ þ Pðc; t þ s x; tj Þ ¼ 1;

x ¼ a; b; c ð3Þ

The process is completely determined by Eqs. (1) and (2).

Thus, the mean value hn(t)i and correlation function

hn(t ? s)n(t)i of the trichotomous noise in the steady state

can be calculated as:

nðtÞh i ¼ aqþ bð1 � 2qÞ þ cq ð4Þ

nðt þ sÞnðtÞh i ¼ ½aqþ bð1 � 2qÞ þ cq�2 þ fa2q

þ b2ð1 � 2qÞ þ c2q� ½aqþ bð1 � 2qÞ
þ cq�2ge�vs ð5Þ

We can easily find that v is the reciprocal of the noise

correlation time scor, namely v = 1/scor. The noise

intensity D is defined as

D¼2

Z 1

0

nðsÞnð0Þh is� nðsÞh i2
s

� �
ds

¼2
a2qþb2ð1�2qÞþc2q�½aqþbð1�2qÞþcq�2

v

¼2scor a2qþb2ð1�2qÞþc2q�½aqþbð1�2qÞþcq�2
n o

ð6Þ

From the above, we are now in a position to generate

realizations of a stochastic process for a trichotomous

noise. The numerical algorithm of the sequence generation

of n(t) is similar to that of dichotomous noise [41, 42]. First

of all, let the particle be located initially at xn = a. To

determine whether the particle moves at time t ? Dt to

other two sites xn?1 = b, xn?1 = c or remains at the same

site xn?1 = a, we consider the transition probabilities

Paa, Pab, Pac given by Eq. (2). A random number Rn from

a uniform distribution on [0, 1] is generated using Matlab,

which is used to compare with the transition probabilities.

If Rn\Paa, we accept the value of the noise a, i.e.,

xn?1 = a; otherwise, if Paa\Rn\Paa ? Pab, we accept

the value xn?1 = b; otherwise xn?1 = c.

If the value of the noise is xn?1 = s(s = b, c), then we

compare the transition probabilities Psa, Psb, Psc with

another uniformly distributed random number Rn?1

between 0 and 1. If Rn?1\Psa, the value of the noise at

t ? 2Dt is xn?2 = a; otherwise, if Psa\Rn?1\ -

Psa ? Psb, we accept the value xn?2 = b; otherwise

xn?2 = c. By repeating the procedure we obtain a sequence

of random numbers n(t) switching among three values a,

b and c.

Figures 1(a) and 1(b) show the profiles of the asym-

metric trichotomous noise for the states

a = 3, b = 0, c = -1. Figs. 1(c) and 1(d) show the pro-

files of the symmetric trichotomous noise for the states

a = 1, b = 0, c = -1. One can observe clearly that the

residence time extends with the increase of noise intensity

under the same states and q. When q = 1/2, the trichoto-

mous noise reduces to dichotomous noise, as shown in

Fig. 1(d).

In order to check the accuracy of the numerical method

for generating the trichotomous noise n(t), Fig. 2 shows the
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plots of the normalized correlation function hn(t ? t0)n(t)i/
hn(t)2i versus t0 of the noise for a = 1, b = 0,

c = -1, q = 0.3 for several values of scor. In this condi-

tion, we can calculate the noise intensity D according to

scor from Eq. (6) that is, when scor = 0.5, 2, 5,

D = 0.6, 2.4, 6. The analytical results have a good agree-

ment with the numerical simulation results when the noise

correlation time scor is relatively small, i.e., scor B 2. In the

following section, all the values of the noise intensity D are

found to be satisfactory (D B 1).

3. Model system

Delay plays very important role in dynamics systems. Refs.

[43–46] concern the time delay inserted in the linear term

of the different models. Refs. [47, 48] study the nonlinear

case. Here we consider a typical time-delayed

bistable system [49] driven by trichotomous noise and a

periodic cosinoidal signal. Our prototypical model is the

overdamped particle motion in the double-well quartic

potential, which can be described by the following Lan-

gevin equation:

dxðtÞ
dt

¼ � oUðxðtÞ; xðt � sÞÞ
ox

þ nðtÞ þ A0 cosðx0tÞ

¼ xðtÞ � xðtÞ3 þ exðt � sÞ þ nðtÞ þ A0 cosðx0tÞ ð7Þ

where s is the time delay in the linear term and e is the

feedback strength, A0 and x0 are the amplitude and the

frequency of the signal, respectively. n(t) is symmetric

trichotomous noise with a = -c, b = 0 as defined in

Sect. 2. According to Eq. (7), we can calculate and obtain

two stable points x1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
1 þ e

p
, x2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
1 þ e

p
and the

unstable point x0 = 0 in the absence of the external

Fig. 1 (a, b) are the profiles of

asymmetric trichotomous noise

for the states a = 3,

b = 0, c = -1.

(a) D = 1, q = 0.3,

(b) D = 5, q = 0.3, (c, d) are

the profiles of symmetric

trichotomous noise for the states

a = 1, b = 0, c = -1.

(c) D = 0.2, q = 0.3,

(d) D = 1, q = 0.5

Fig. 2 Plots of the normalized correlation function versus t0 for

a = 1, b = 0, c = -1, q = 0.3, for three different noise profiles

with given correlation times scor = 0.5, 2 and 5. The red lines refer to

analytical results from Eq. (5), and the blue filled circles, rhombuses

and triangles represent numerical simulation results
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periodic force. It means that the locations of unstable point

and stable points are not affected by the time delay. The

potential function of Eq. (7) can be obtained by means of

small delay approximation method as Ref. [31].

UðxÞ ¼ �ð1 þ esÞ 1

2
x2 � 1

4
x4

� �
� 1

2
eð1 þ esÞx2 þ ð1 þ esÞ

A0 cosðxtÞx ð8Þ

Fig. 4 The system responses for different values of the feedback strength e with fixed noise strength s = 0.2 and the other parameters

D = 0.1, a = 1, q = 0.3, A0 = 0.15, x0 = 0.05 (a) e = -0.3, (b) e = -0.1, (c) e = 0, (d) e = 0.4

Fig. 3 (a) The potential profile U(x) without the trichotomous noise for different values of signal amplitude A0. Other parameters are

e = -0.3, s = 0.2, x0 = 0.05. (b) The potential profile U(x) with the trichotomous noise in the presence and in the absence of the periodic

driving signal. Other parameters are a = 1, b = 0, c = -1, D = 0.1, q = 0.3, e = -0.3, s = 0.2, x0 = 0.05
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Notice that the depth and width of potential wells is related

to the time delay s and feedback strength e.
Figure 3(a) shows the potential profile of the

bistable system in the average and limiting positions due to

amplitude of the periodical driving. It is clearly shown that

the depth in left well extends while in right well reduces

with the increase in signal amplitude A0. Moreover,

Fig. 3(b) shows the potential profile in the limiting posi-

tions due to the three values of the trichotomous noise:

a = 1, b = 0, c = -1 in the presence and in the absence

of the periodical driving signal. All these profiles of the

potential will give more insight in understanding the phy-

sics and therefore to obtain good explanation of results

obtained in the SNR behavior and system responses in the

following section.

4. Numerical results

Due to the existence of time delay and trichotomous noise,

the random response is not essentially Markovian. Thus, it

is difficult to derive the analytic expression of SNR. In this

paper, we use SNR metric to quantify the SR by means of

numerical simulation. The definition of SNR is given as

follows [50]:

SNR ¼ 10 log
S

N
dB ¼ 10 log

Sðx0Þ
Nðx0Þ

dB ð9Þ

The signal power S = |Y(x0)|2 is the magnitude of

output power spectrum Y(x) at input frequency x0. The

background noise spectrum N(x0) at input frequency x0 is

some average of |Y(x)|2 at nearby frequencies.

Figure 4 shows the system responses for different values

of feedback strength e with fixed noise strength. It is clearly

shown that the switching between the two wells decreases

with increase in feedback strength. Thus, the larger feed-

back strength may suppress the occurrence of SR. In order

to further study the influence of the feedback strength on

SR behavior, the SNR, as a function of the noise intensity

for different values of the feedback strength e, are dis-

played in Fig. 5. We observe a maximum SNR for small e
with increased noise intensity D, indicating the existence of

SR. In addition, with increasing e, the maximum of SNR

decreases and the position of the maximum shifts towards

the larger value of noise intensity, which show that the SR

Fig. 5 SNR as a function of noise intensity D for different values of

the feedback strength e. Other parameters are same as Fig. 4

Fig. 6 (a) SNR as a function of noise intensity D and time delay s. (b) SNR as a function of noise intensity D for different values of time delay s.

Other parameters are e = -0.3, A0 = 0.15, x0 = 0.05, a = 1, q = 0.3
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is weakened. The reason for this phenomenon is that the

depth and width of the potential wells increase with the

increase of e under fixed s, since the particles need larger

noise D to cross the barrier. Figs. 4 and 5 are in good

agreement with each other. In conclusion, the increase of

the feedback strength e leads to the weakening of SR

phenomenon.

The plots of SNR under noise intensity D and time delay

s with negative feedback strength e = -0.3 are presented

in Fig. 6. It can be seen from Fig. 6(a) that the curves of

SNR always have a peak as increasing the noise intensity

which indicates the occurrence of SR phenomenon. The

height of the peaks increases slightly with increasing time

delay s. To see it more clearly, the SNR as a function of the

noise intensity D for different time delay s = 0.1, 0.3, 0.8

are given in Fig. 6(b). These two figures demonstrate that

larger time delay has a positive effect on enhancing the

SNR in the case of negative feedback strength.

Similarly, the influence of the time delay s on SNR is

presented with positive feedback strength e = 0.2 in Fig. 7.

The SNR as a function of noise intensity D and time delay

s is presented in Fig. 7(a). Note that each curve has a peak

and the value of the peak decreases with increase in time

delay. Thus, in the case of positive feedback strength, the

larger time delay suppresses the SR phenomenon. In par-

ticular, the curves of SNR for different time delay

Fig. 7 (a) SNR as a function of noise intensity D and time delay s. (b) SNR as a function of noise intensity D for different values of time delay s.

Other parameters are e = 0.2, A0 = 0.15, x0 = 0.05, a = 1, q = 0.3

Fig. 8 (a) SNR as a function of noise intensity D and signal amplitude A0. (b) SNR as a function of noise intensity D for different values of

signal amplitude A0. Other parameters are x0 = 0.05, e = -0.3, s = 0.5, a = 1, q = 0.3
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s = 0.1, 0.3, 0.8 are shown in Fig. 7(b). Comparing

Figs. 6 and 7, all the peaks in Fig. 6 have larger values

than that in Fig. 7, and the peak’s positions shift to larger

noise intensity, which have a good agreement with the

above-mentioned results in Figs. 4 and 5.

In Figs. 8 and 9, the influence of signal amplitude and

frequency on SNR is studied. The SNR as a function of

noise intensity D and signal amplitude A0 are investigated

in Fig. 8(a). It can be seen that, for any value of A0, the

curves of SNR always have a peak with increasing noise

intensity D, which is characteristic of the SR phenomenon.

Also, the height of the peaks increases gradually while the

position on the x-axis almost remains unchanged with

increase of A0. In Fig. 8(b), the SNRs are plotted as a

function of the noise intensity D with signal amplitude

A0 = 0.05, 0.08, 0.12, 0, 16, respectively. Therefore it is

concluded that larger amplitude A0 leads to the promotion

of SR phenomenon.

Compared to Fig. 8, the phenomenon observed from

Fig. 9 is opposite. Figure 9 shows the effect of signal fre-

quency x0 on SNR. It can be seen that, for x0 C 0.06, the

SNR first decreases rapidly and reaches a minimum, then it

increases monotonically until it reaches a maximum, and

then it decreases with increasing the value of D. The

maximum of SNR decreases with the increase in frequency

x0 i.e., the larger frequency suppresses the occurrence of

Fig. 9 (a) SNR as a function of noise intensity D and signal frequency x0. (b) SNR as a function of noise intensity D for different values of

signal frequency x0. Other parameters are A0 = 0.15, e = -0.3, s = 0.5, a = 1, q = 0.3

Fig. 10 SNR as a function of noise intensity D for different values of (a) the noise amplitude a and (b) the noise stationary probability q with

e = -0.3, s = 0.5, A0 = 0.15, x0 = 0.05. (a) q = 0.3, (b) a = 1
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SR. Concerning the behavior shown in the Fig. 9, it is

worthwhile to note that for small noise intensity D, the

presence of the minimum in the SNR versus the noise

intensity is a typical behavior observed experimentally and

predicted theoretical [51, 52].

Further the influence of trichotomous noise parameters

on SNR to be considered. In Fig. 10(a), SNR is a function

of noise intensity D for different amplitudes a. Within a

certain range of a, the non-monotonic structure of SNR

affirms the occurrence of SR. The SNR curve changes

slightly with the increase of a. Note that when the ampli-

tude a is too large, the SR phenomenon disappears. Fig-

ure 10(b) shows SNR as a function of the noise intensity

D with different stationary probability q. For any values of

q, there exists a peak in each curve of SNR, which denotes

the existence of SR. With increasing q, the height of peaks

gradually increases and the position of the peak shifts

towards larger noise intensity, which indicates that the SR

can be enhanced by increasing q. In conclusion, SR can be

enhanced by adjusting noise parameters.

5. Conclusion

In this paper, we have focused on the SR phenomenon in a

time-delayed bistable system subjected to trichotomous

noise by using numerical simulation.

First, an algorithm for numerically generating a tri-

chotomous noise is created and its accuracy is checked

using normalized autocorrelation function. The agree-

ment between analytical results and numerical results is

found to be satisfactory. Second, the effects of the

feedback strength and time delay on the system

responses and SNR are discussed in detail. The results

indicate that an increase in the feedback strength leads to

the weakening of SR phenomenon i.e., the negative

feedback strength is more beneficial to promote SR than

positive feedback. Also, the effect of time delay on SNR

with negative feedback strength is opposite to the posi-

tive one. Third, the influence of signal amplitude and

frequency on SNR is observed. It is found that larger

amplitude signal lead to the promotion of SR phe-

nomenon and larger signal frequency suppressed the

occurrence of SR. Finally, the influence of trichotomous

noise parameters on SR phenomenon is focused. The

results show that SR occurs only with a certain range of

noise amplitude and it is more beneficial for occurrence

of SR phenomenon with large stationary probability.
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