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Abstract: In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the

Riccati equation expansion method and the G0=Gð Þ-expansion method are used to construct exact solutions with parameters

of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions

and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the

proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential

equations in mathematical physics. We compare our results together with each other yielding from these integration tools.

Also, our results have been compared with the well-known results of others.
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1. Introduction

Nonlinear partial differential equations are widely used to

describe many important phenomena and dynamic pro-

cesses in physics, chemistry, biology, fluid dynamics,

plasma, optical fibers and other areas of engineering. As

mathematical models of phenomena, the investigation of

exact solutions of these equations will help us to under-

stand these phenomena better. In recent decades, various

effective approaches have been developed to construct the

exact traveling wave solutions of these equations. Sym-

bolic computations such as Mathematica or Maple are used

for seeking the exact solutions of the nonlinear PDEs.

Many powerful methods for solving the nonlinear PDEs are

appeared in open literature, such as the modified simple

equation method [1–6], the exp-function method [6–15],

the ðG0=GÞ-expansion method [16–21], the multiple exp-

function method [22, 23], the first integral method [24–26],

the generalized Kudryashov method [27, 28], the symmetry

method [29, 30], the soliton ansatz method [31–53], the

Riccati equation expansion method [34, 35] and so on.

The objective of this paper is to apply the modified

simple equation method, the exp-function method, the

soliton ansatz method, the Riccati equation expansion

method, and the G0=Gð Þ-expansion method for finding the

exact solutions, the solitary wave solutions and the

trigonometric function solutions of the following nonlinear

foam drainage equation [54]:

ut ¼
1

2
uuxx þ 2u2ux þ uxð Þ2; ð1Þ

where u ¼ u x; tð Þ. Eq. (1) is an important nonlinear

evolution equation appearing in the study of the drainage

of liquid foams. These methods are of the most direct

and effective algebraic methods for finding the exact

solutions, the solitary wave solutions and the trigono-

metric function solutions of nonlinear PDEs in mathe-

matical physics.

2. Description of the modified simple equation method

Suppose that a nonlinear PDE has the following form:
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Fðu; ut; ux; utt; uxt; uxx; . . .Þ ¼ 0; ð2Þ

where u ¼ uðx; tÞ is an unknown function, F is a poly-

nomial in u ¼ uðx; tÞ and its partial derivatives, in which

the highest order derivatives and nonlinear terms are

involved.

The main steps of the modified simple equation method

[1–6] are described as follows:

Step 1 First of all, we use the wave transformation:

uðx; tÞ ¼ UðfÞ; f ¼ kx þ wt; ð3Þ

where k and w are nonzero constants, to reduce the PDE (2)

into the following nonlinear ordinary differential equation

(ODE):

PðU;U0;U00;U000; . . .Þ ¼ 0; ð4Þ

where P is a polynomial in UðfÞ and its total derivatives

U0;U00;U000; . . . such that U0 ¼ dU
df , U00 ¼ d2U

df2
and so on.

Step 2 We suppose that Eq. (4) has the formal solution:

UðfÞ ¼
XN

i¼0

Ai

w0ðfÞ
wðfÞ

� �i

; ð5Þ

where Ai are constants to be determined, such that AN 6¼ 0.

The function wðfÞ is an unknown function to be determined

later, such that w0ðfÞ 6¼ 0.

Step 3 We determine the positive integer N in Eq. (5) by

balancing the highest order derivatives and the highest

nonlinear terms in Eq. (4).

Step 4 We substitute Eq. (5) into Eq. (4), then we cal-

culate all the necessary derivatives U0;U00; . . . of the

unknown function UðfÞ: As a result of substitutions, we get
a polynomial of w�j ðj ¼ 0; 1; 2; . . .Þ. In this polynomial,

we gather all the terms of the same power of w�j

ðj ¼ 0; 1; 2; . . .Þ, and equate them to zero. This operation

yields a system of algebraic equations which can be solved

to find Ai and wðfÞ. Thus, we can get the exact traveling

wave solutions of Eq. (2).

3. Description of the exp-function method

In this section, we give the main steps of the exp-function

method [6–15] as follows:

Step 1 We consider the Eqs. (2)–(4) of Sect. 2.

Step 2 According to the exp-function method, which is

developed by He and Wu [7], we assume that the wave

solution of Eq. (4) can be expressed in the following form:

UðfÞ ¼
Pc

n¼�d an expðnfÞPp
m¼�q bm expðmfÞ ; ð6Þ

where p, q, c, d are positive integers to be determined and

an; bm are constants to be determined too. We can write (6)

in the following equivalent form:

UðfÞ ¼ ac expðcfÞ þ � � � þ a�d expð�dfÞ
bp expðpfÞ þ � � � þ b�q expð�qfÞ : ð7Þ

Step 3We determine the values of c and p by balancing the

linear term of the highest order of Eq. (4) with the highest

order nonlinear term. Similarly, we determine the values of

d and q by balancing the linear term of the lowest order of

Eq. (4) with the lowest order nonlinear term.

Step 4 We substitute Eq. (7) into Eq. (4) and calculate

all the coefficients of expðjfÞ ðj ¼ 0; �1; . . .Þ. Setting all

the coefficients to zero, we get a set of algebraic equations

which can be solved by using the Maple. Consequently, we

can get the exact traveling wave solutions of Eq. (2).

4. Exact solutions to the nonlinear foam drainage

equation

In order to find the exact solutions of Eq. (1), we use the

wave transformation:

uðx; tÞ ¼ UðfÞ; f ¼ Kx þ Lt; ð8Þ

to reduce Eq. (1) into the following nonlinear ODE:

�LU0 þ 1

2
K2UU00 þ 2KU2U0 þ K2U02 ¼ 0; ð9Þ

where K and L are nonzero constants.

4.1. On solving Eq. (9) using the modified simple

equation method

To this aim, balancing UU00 with U2U0 in Eq. (9), we have

N ¼ 1: Thus we get the formal solution

UðfÞ ¼ A0 þ A1

w0ðfÞ
wðfÞ

� �
; ð10Þ

where A0;A1 are constants to be determined, such that

A1 6¼ 0. It is easy to see that:

U0ðfÞ ¼ A1

w00

w
� w02

w2

� �
; ð11Þ

U00ðfÞ ¼ A1

w000

w
� 3w0w00

w2
þ 2w03

w3

� �
: ð12Þ

Substituting Eqs. (10)–(12) into Eq. (9) and equating all the

coefficients of w�j ðj ¼ 1; 2; 3; 4Þ to zero, we respectively

obtain the following algebraic equations:
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w�1 : 2KA2
0 � L

� �
w00 þ 1

2
K2A0w

000 ¼ 0; ð13Þ

w�2 : L � 2KA2
0

� �
w02 þ 4KA0A1 �

3

2
K2A0

� �
w0w00

þ 1

2
A1K

2w0w000 þ A1K
2w002 ¼ 0; ð14Þ

w�3 : A0K2� 4A0A1K
� �

w03þ 2KA2
1�

7

2
K2A1

� �
w02w00 ¼ 0;

ð15Þ

w�4 : 2KA2
1 K � A1ð Þw04 ¼ 0: ð16Þ

Since A1 6¼ 0 and w0 6¼ 0; we deduce from Eq. (16) that

A1 ¼ K. Let us now discuss the following cases:

Case 1 If A0 ¼ 0, we deduce from Eqs. (13)–(15) that

w0 ¼ 0. This is an impossible case, which is rejected.

Case 2 If A0 6¼ 0, we deduce from Eqs. (13)–(15) that

2 2KA2
0 � L

� �
w00 þ K2A0w

000 ¼ 0; ð17Þ

2 L � 2KA2
0

� �
w02 þ 5K2A0w

0w00 þ K3w0w000 þ 2K3w002 ¼ 0;

ð18Þ

3K2 2A0w
0 þ Kw00ð Þw02 ¼ 0: ð19Þ

Since w0 6¼ 0; we deduce from Eqs. (17) and (19) that

w000

w00 ¼ �
2 2KA2

0 � L
� �

K2A0

; ð20Þ

w0 ¼ � K

2A0

w00: ð21Þ

Consequently, we deduce that

w00 ¼ c1 exp �
2 2KA2

0 � L
� �

K2A0

f

� �
; ð22Þ

w0 ¼ � K

2A0

w00 ¼ � c1K

2A0

exp �
2 2KA2

0 � L
� �

K2A0

f

� �
; ð23Þ

and then

w ¼ c2 þ
c1K3

4 2KA2
0 � L

� � exp �
2 2KA2

0 � L
� �

K2A0

f

� �
; ð24Þ

where c1 and c2 are arbitrary constants of integration.

Substituting Eqs. (22) and (23) into Eqs. (18) we deduce

that A0 ¼ �
ffiffiffi
L
K

q
; where LK [ 0:

Now, the exact solution UðfÞ takes the form:

UðfÞ ¼ A0 �
c1K2

2A0
exp � 2A0

K
f

� �

c2 þ c1K2

4A2
0

exp � 2A0

K
f

� �

2
4

3
5: ð25Þ

Consequently, we have the exact traveling wave solution of

Eq. (1) in the form:

u x; tð Þ ¼ A0 �
c1K2

2A0
exp � 2A0

K
Kx þ Ltð Þ

	 


c2 þ c1K2

4A2
0

exp � 2A0

K
Kx þ Ltð Þ

	 


8
<

:

9
=

;: ð26Þ

If we set c1 ¼ 4A2
0

K2 ; c2 ¼ 1; then we have the solitary wave

solution of Eq. (1)

u x; tð Þ ¼
ffiffiffiffi
L

K

r
tanh

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
; ð27Þ

while, if we set c1 ¼ 4A2
0

l
; c2 ¼ �1; then we have the

singular solitary wave solution of Eq. (1)

u x; tð Þ ¼
ffiffiffiffi
L

K

r
coth

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
: ð28Þ

4.2. On solving Eq. (9) using the exp-function method

Let us now determine the positive integers p, q, c, d of

Eq. (6). To this aim, we balance the highest order of UU00

and U2U0 in Eq. (9) to get

U fð ÞU00 fð Þ ¼ c1 exp ð2c þ 3pÞf½ � þ � � �
c2 exp 5pfð Þ þ � � � ; ð29Þ

and

U2 fð ÞU0 fð Þ ¼ c3 exp ð2p þ 3cÞf½ � þ � � �
c4 exp 5pfð Þ þ � � � ; ð30Þ

where ci ði ¼ 1� 4Þ are constants. From (29) and (30) we

have

2c þ 3p ¼ 2p þ 3c; ð31Þ

which leads to the result

p ¼ c: ð32Þ

In the same way, to determine the values of d, q we balance

the linear term of the lowest order in Eq. (9) to get

U fð ÞU00 fð Þ ¼ � � � þ d1 exp �ð2d þ 3qÞf½ �
� � � þ d2 exp �5qfð Þ ; ð33Þ

and

U2 fð ÞU0 fð Þ ¼ � � � þ d3 exp �ð2q þ 3dÞf½ �
� � � þ d4 exp �5qfð Þ ; ð34Þ

where di ði ¼ 1� 4Þ are constants. From Eqs. (33) and (34)

we obtain

� 2d þ 3qð Þ ¼ � 2q þ 3dð Þ; ð35Þ

which leads to the result

q ¼ d: ð36Þ
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For simplicity, we set p ¼ c ¼ 1 and q ¼ d ¼ 1: Thus

Eq. (9) has the formal solution

U fð Þ ¼ a1 expðfÞ þ a0 þ a�1 expð�fÞ
b1 expðfÞ þ b0 þ b�1 expð�fÞ ; ð37Þ

where ai; bi ði ¼ 0;�1Þ are constants to be determined

later.

Substituting Eq. (37) into Eq. (9) and collecting all the

coefficients of expðjfÞ ðj ¼ 0;�1;�2;�3Þ and equating

them to zero, we have the following set of of algebraic

equations:

Solving the above algebraic equations Eq. (38) using the

Maple, we have the following cases:

Case 1

L ¼ K3; a�1 ¼ �Kb�1; a0 ¼ 0; a1 ¼ Kb1;

b1 ¼ b1 ; b0 ¼ 0; b�1 ¼ b�1:
ð39Þ

Substituting Eq. (39) into Eq. (37) along with Eq. (8), we

obtain the following exact solution of Eq. (1):

uðx; tÞ ¼ K
b1 expðfÞ � b�1 expð�fÞ
b1 expðfÞ þ b�1 expð�fÞ

� �
: ð40Þ

If b�1 ¼ b1; then Eq. (1) has the solitary wave solution

uðx; tÞ ¼ K tanh K x þ K2t
� �	 


; ð41Þ

which is equivalent to the solution (27) if L ¼ K3:

If b�1 ¼ �b1; then Eq. (1) has the singular solitary wave

solution

uðx; tÞ ¼ K coth K x þ K2t
� �	 


; ð42Þ

which is equivalent to the singular solution (28) if L ¼ K3:

Case 2

L ¼ 1

4
K3; a�1 ¼ �Kb2

0

8b1

; a0 ¼ 0; a1 ¼
1

2
Kb1;

b�1 ¼
b2
0

4b1

; b1 ¼ b1; b0 ¼ b0:

ð43Þ

Substituting Eq. (43) into Eq. (37) along with Eq. (8), we

obtain the following exact solution of Eq. (1):

uðx; tÞ ¼ 1

2
K

4b2
1 expðfÞ � b2

0 expð�fÞ
4b2

1 expðfÞ þ 4b0b1 þ b2
0 expð�fÞ

� �
: ð44Þ

If b0 ¼ 2b1; then Eq. (1) has the solitary wave solution

uðx; tÞ ¼ 1

2
K tanh

1

2
K x þ 1

4
K2t

� �� �
; ð45Þ

which is equivalent to the solution (27) if L ¼ 1
4

K3:
If b0 ¼ �2b1; then Eq. (1) has the singular solitary wave

solution

uðx; tÞ ¼ 1

2
K coth

1

2
K x þ 1

4
K2t

� �� �
; ð46Þ

e3f : 2La0b
3
1 þ 4Ka3

1b0 þ K2a1a0b
2
1 � 2La1b0b2

1 � K2a2
1b1b0 � 4Ka2

1a0b1 ¼ 0;

e2f :
4La�1b3

1 þ 8Ka3
1b�1 þ 3K2a2

1b
2
0 þ 3K2a2

0b
2
1 � 6K2a1a0b1b0 � 4La1b�1b2

1 � 4K2a2
1b1b�1

þ4K2a1a�1b
2
1 � 8Ka2

1a�1b1 � 4La1b2
0b1 þ 4La0b

2
1b0 � 8Ka1a

2
0b1 þ 8Ka2

1a0b0 ¼ 0;

ef :

�6K2a1b0a�1b1 � 18K2a1b�1a0b1 þ 2La0b1b
2
0 þ K2a0a1b2

0 � K2a2
0b1b0 þ 4Ka2

0a1b0

þ11K2a2
1b0b�1 þ 13K2a�1b2

1a0 � 2La1b
3
0 � 4Ka3

0b1 � 24Ka1a0a�1b1 � 12La1b0b1b�1

þ10La�1b
2
1b0 þ 2La0b

2
1b�1 þ 4Ka2

1a�1b0 þ 20Ka2
1a0b�1 ¼ 0;

e0 :

6K2a1a0b�1b0 � 8La1b
2
�1b1 � 10K2a2

0b1b�1 � 16Ka1a
2
�1b1 � 8La1b2

0b�1 � 16Ka2
0a�1b1

þ12K2a2
1b2

�1 � 2K2a1a�1b
2
0 þ 12K2a2

�1b2
1 þ 6K2a0a�1b1b0 þ 8La�1b2

1b�1 þ 16Ka1a
2
0b�1

þ8La�1b1b
2
0 þ 16Ka2

1a�1b�1 � 24K2a1b�1a�1b1 ¼ 0;

e�f :

�6K2a1b0a�1b�1 � 18K2a�1b1a0b�1 � 2La0b�1b
2
0 þ K2a0a�1b

2
0 � K2a2

0b�1b0 � 4Ka2
0a�1b0

þ11K2a2
�1b0b1 þ 13K2a1b

2
�1a0 þ 2La�1b3

0 þ 4Ka3
0b�1 þ 24Ka�1a0a1b�1 þ 12La�1b0b1b�1

�10La1b2
�1b0 � 2La0b

2
�1b1 � 4Ka2

�1a1b0 � 20Ka2
�1a0b1 ¼ 0;

e�2f :
�4La1b

3
�1 � 8Ka3

�1b1 þ 3K2a2
�1b2

0 þ 3K2a2
0b2

�1 � 6K2a�1a0b�1b0 þ 4La�1b1b
2
�1

�4K2a2
�1b1b�1 þ 4K2a1a�1b2

�1 þ 8Ka2
�1a1b�1 þ 4La�1b

2
0b�1 � 4La0b2

�1b0 þ 8Ka�1a
2
0b�1 � 8Ka2

�1a0b0 ¼ 0;

e�3f : �2La0b3
�1 � 4Ka3

�1b0 þ K2a�1a0b2
�1 þ 2La�1b0b

2
�1 � K2a2

�1b�1b0 þ 4Ka2
�1a0b�1 ¼ 0: ð38Þ
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which is equivalent to the singular solution (28) if

L ¼ 1
4

K3:

Case 3

L¼1

4
K3; a�1¼�K2b2

0�4a2
0

8Kb1

; a0¼a0;

a1¼
1

2
Kb1; b�1¼

K2b2
0�4a2

0

4K2b1

; b1¼b1; b0¼b0:

ð47Þ

Substituting Eq. (47) into Eq. (37) along with Eq. (8), we

obtain the following exact solution of Eq. (1):

uðx; tÞ ¼ 1

2
K

4K2b21 expðfÞ þ 8Ka0b1 � K2b20 � 4a2
0

� �
expð�fÞ

4K2b21 expðfÞ þ 4K2b0b1 þ K2b20 � 4a20
� �

expð�fÞ

" #
:

ð48Þ

If a0 ¼ 0; b0 ¼ 2b1; then Eq. (1) has the solitary wave

solution

uðx; tÞ ¼ 1

2
K tanh

1

2
K x þ 1

4
K2t

� �� �
; ð49Þ

which is equivalent to the solution (45).

If a0 ¼ 0; b0 ¼ �2b1; then Eq. (1) has the singular

solitary wave solution

uðx; tÞ ¼ 1

2
K coth

1

2
K x þ 1

4
K2t

� �� �
; ð50Þ

which is equivalent to the singular solution (46).

Case 4

L¼1

4
K3; a�1¼0; a0¼�1

2
Kb0; a1¼

1

2
Kb1;

b�1¼0; b1¼b1; b0¼b0:
ð51Þ

Substituting Eq. (51) into Eq. (37) along with Eq. (8), we

obtain the following exact solution of Eq. (1):

uðx; tÞ ¼ 1

2
K

b1 expðfÞ � b0

b1 expðfÞ þ b0

� �
: ð52Þ

If b0 ¼ b1; then Eq. (1) has the solitary wave solution

uðx; tÞ ¼ 1

2
K tanh

1

2
K x þ 1

4
K2t

� �� �
; ð53Þ

which is equivalent to the solution (45).

If b0 ¼ �b1; then Eq. (1) has the singular solitary wave

solution

uðx; tÞ ¼ 1

2
K coth

1

2
K x þ 1

4
K2t

� �� �
; ð54Þ

which is equivalent to the singular solution (46).

Case 5

L¼1

4
K3; a1¼0; a0¼

1

2
Kb0; a�1¼�1

2
Kb�1;

b1¼0; b�1¼b�1; b0¼b0:
ð55Þ

The result of case 5 follows from the result of case 4 with

the interchanges a1 $ a�1; b1 $ b�1 and f $ �f.

5. The soliton ansatz method for solving Eq. (1)

In this section, we determine the 1-soliton solution of

Eq. (1) as follows:

5.1. The 1-soliton solutions of Eq. (1)

The 1-soliton solution of Eq. (1) is the ansatz:

uðx; tÞ ¼ A tanhP s; ð56Þ

with

s ¼ B Kx þ Ltð Þ; ð57Þ

where A is the amplitude, B is the inverse width of the

soliton, K is the frequency of the soliton and L is the soliton

velocity, while the exponent P is the order of the soliton

which is unknown at this stage. It is easy to see that

ut ¼ABPL tanhP�1 s� tanhPþ1 s
	 


; ð58Þ

ux ¼ABPK tanhP�1 s� tanhPþ1 s
	 


; ð59Þ

uxx ¼AB2K2P P � 1ð Þ tanhP�2 s� 2P tanhP s
	

þ P þ 1ð Þ tanhPþ2 s�:
ð60Þ

Substituting Eqs. (56)–(60) into Eq. (1) we have

�ABPL tanhP�1s� tanhPþ1s
	 


þ1

2
A2B2K2P

3P�1ð Þtanh2P�2sþ 3Pþ1ð Þtanh2Pþ2s
	 


�3A2B2K2P2 tanh2Psþ2A3BPK tanh3P�1s� tanh3Pþ1s
	 


¼0:

ð61Þ

From (61) equating the highest exponents 3Pþ1 and 2Pþ
2 give P¼1: Consequently, we get

2A2BK BK � Að Þ tanh4 sþ AB 2A2K � 3ABK2 þ L
� �

tanh2 s

þ AB ABK2 � L
� �

¼ 0: ð62Þ

Equating all the coefficients of tanhi s ði ¼ 0; 2; 4Þ to zero,

we get

ABK2 � L ¼ 0;

2A2K � 3ABK2 þ L ¼ 0;

BK � A ¼ 0:

ð63Þ

Solving Eq. (63) we have

A ¼ �
ffiffiffiffi
L

K

r
; B ¼ � 1

K

ffiffiffiffi
L

K

r
; ð64Þ

provided that LK [ 0:
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Now the 1-soliton solution of Eq. (1) is given by:

u x; tð Þ ¼
ffiffiffiffi
L

K

r
tanh

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
; ð65Þ

which is equivalent to the soliton solution (27).

5.2. Singular 1-soliton solutions of Eq. (1)

We assume that the singular 1-soliton solution has the

form:

u x; tð Þ ¼ A cothP s; ð66Þ

where P is the order of the singular soliton which is

unknown at this stage and s is given by (57). It is easy to

see that

ut ¼ ABPL cothP�1 s� cothPþ1 s
	 


; ð67Þ

ux ¼ ABPK cothP�1 s� cothPþ1 s
	 


; ð68Þ

uxx ¼AB2K2P P � 1ð Þ cothP�2 s� 2P cothP s
	

þ P þ 1ð Þ cothPþ2 s�: ð69Þ

Substituting Eqs. (66)–(69) into Eq. (1) we have

�ABPL cothP�1s�cothPþ1s
	 


þ1

2
A2B2K2P

3P�1ð Þcoth2P�2sþ 3Pþ1ð Þcoth2Pþ2s
	 


�3A2B2K2P2 coth2Psþ2A3BPK coth3P�1s�coth3Pþ1s
	 


¼0:

ð70Þ

From Eq. (70) equating the highest exponents 3Pþ1 and

2Pþ2 give P¼1: Consequently, we get

2A2BK BK � Að Þ coth4 sþ AB 2A2K � 3ABK2 þ L
� �

coth2 s

þ AB ABK2 � L
� �

¼ 0: ð71Þ

From (71) we have

A ¼ �
ffiffiffiffi
L

K

r
; B ¼ � 1

K

ffiffiffiffi
L

K

r
; ð72Þ

provided that LK [ 0:
Now the singular 1-soliton solution of Eq. (1) is given

by:

u x; tð Þ ¼
ffiffiffiffi
L

K

r
coth

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
; ð73Þ

which is equivalent to the singular soliton solution

(28).

6. Riccati equation expansion method and G0=Gð Þ-
expansion method for solving Eq. (1)

In this section, we use the above two methods for finding

the solitary wave solutions as well as the trigonometric

function solutions of Eq. (1). To this aim, we assume that

Eq. (1) has the formal solution

u x; tð Þ ¼ A/ sðx; tÞ½ �; ð74Þ

where / sðx; tÞ½ � is the amplitude component of the soliton

and s x; tð Þ ¼ B Kx þ Ltð Þ. A, B, K and L are respectively

the amplitude, the width, the frequency and the velocity of

the soliton.

Substituting Eq. (74) into Eq. (1), one obtains the fol-

lowing nonlinear ODE:

�L/0 þ 1

2
ABK2//00 þ 2A2K/2/0 þ ABK2/02 ¼ 0; ð75Þ

where 0 ¼ d
ds :

Eq. (75) can be solved to obtain the soliton amplitude

/ sð Þ using the Riccati equation expansion method and

G0=Gð Þ-expansion method, that are shown in details in the

following subsections:

6.1. Riccati equation expansion method for solving

Eq. (75)

In this subsection, we perform the Riccati equation

expansion method to Eq. (75). Suppose that / sð Þ satisfies
the Riccati equation in the form

/0 sð Þ ¼ l0 þ l2/
2 sð Þ; ð76Þ

where l0 and l2 are real constants. Exact solutions to

Eq. (76) are listed in [55] as follows:
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where s0 is a constant.

Substituting Eq. (76) into Eq. (75) leads to:

2AKl2 AþBKl2ð Þ/4 sð Þþ 2A2Kl0þ3ABK2l0l2� l2L
� �

/2 sð Þ
þ l2 ABK2l0�L

� �
¼0: ð81Þ

According to the homogeneous balance principle, setting

the coefficients of each power of / sð Þ in Eq. (81) to zero

gives

A ¼ �l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� L

l0l2K

r
; B ¼ � 1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� L

l0l2K

r
; ð82Þ

provided that l0l2KL\0:

If l0l2\0; then from (77) we have the soliton solution of

Eq. (1) in the form:

uðx;tÞ¼
ffiffiffiffi
L

K

r
tanh

ffiffiffiffi
L

K

r
xþ L

K
t

� �
��lns0

2

" #
; ifs0[0; ð83Þ

which is equivalent to the soliton solutions (Eqs. (27) and (65)).

Also, from Eq. (78) we have the singular soliton solution

of Eq. (1) in the form:

uðx;tÞ¼
ffiffiffiffi
L

K

r
coth

ffiffiffiffi
L

K

r
xþ L

K
t

� �
��ln �s0ð Þ

2

" #
; ifs0\0; ð84Þ

which is equivalent to the singular soliton solutions (28)

and (73).

If l0l2 [ 0; then from Eqs. (79) and (80) the trigono-

metric periodic solutions of Eq. (1) are given by:

uðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
� L

K

r
tan

ffiffiffiffiffiffiffiffi
� L

K

r
x þ L

K
t

� �
þ s0

" #
; ð85Þ

or

uðx; tÞ ¼
ffiffiffiffiffiffiffiffi
� L

K

r
cot

ffiffiffiffiffiffiffiffi
� L

K

r
x þ L

K
t

� �
þ s0

" #
: ð86Þ

6.2. G0=Gð Þ-expansion method for solving Eq. (75)

In this subsection, we perform the G0=Gð Þ-expansion
method to Eq. (75). Suppose that / sð Þ has the formal

solution

/ sð Þ ¼ G0 sð Þ
G sð Þ ; ð87Þ

where G ¼ G sð Þ satisfies the second order linear

differential equation in the form

G00 sð Þ þ kG0 sð Þ þ lG sð Þ ¼ 0; ð88Þ

where k and l are constants. It is easy to see that

/0 sð Þ ¼ � lþ k/ sð Þ þ /2 sð Þ
	 


; ð89Þ

and

/00 sð Þ ¼ klþ k2 þ 2l
� �

/ sð Þ þ 3k/2 sð Þ þ 2/3 sð Þ: ð90Þ

It is well known that the ratio ðG0=GÞ has the following

forms:

where c1 and c2 are arbitrary constants.

Substituting Eqs. (89) and (90) into Eq. (75) leads to:

2AK BK � Að Þ/4 sð Þ þ AKk
7

2
BK � 2A

� �
/3 sð Þ

þ 3

2
ABK2ðk2 þ 2lÞ � 2A2lK þ L

� �
/2 sð Þ

þ k L þ 5

2
AlBK2

� �
/ sð Þ þ l L þ AlBK2

� �
¼ 0: ð94Þ

According to the homogeneous balance principle, setting

the coefficients of each power of / sð Þ in Eq. (94) to zero

gives

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffi

� L

lK

s

; B ¼ � 1

K

ffiffiffiffiffiffiffiffiffiffiffi

� L

lK

s

; k ¼ 0; ð95Þ

provided that lKL\0:

Now, we consider the following cases:

Case1 If k2 � 4l[ 0; that is to say l\0; then from

(91), (74) and using (95), we have the hyperbolic solution

of Eq. (1):

uðx; tÞ ¼
ffiffiffiffi
L

K

r
c1 sinh

ffiffiffi
L
K

q
x þ L

K
t

� �h i
þ c2 cosh

ffiffiffi
L
K

q
x þ L

K
t

� �h i

c1 cosh
ffiffiffi
L
K

q
x þ L

K
t

� �h i
þ c2 sinh

ffiffiffi
L
K

q
x þ L

K
t

� �h i

8
><

>:

9
>=

>;

ð96Þ
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Substituting Eqs. (8), (10) and (12) obtained by Peng [21]

into Eq. (96), we have the following exact solitary wave

solutions of Eq. (1):

If c1j j[ c2j j 6¼ 0; then we obtain the soliton solution of

Eq. (1):

uðx; tÞ ¼
ffiffiffiffi
L

K

r
tanh

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
þ sgnðc1c2Þw1

( )
;

ð97Þ

if c2j j[ c1j j 6¼ 0; then we obtain the singular soliton

solution of Eq. (1):

uðx; tÞ ¼
ffiffiffiffi
L

K

r
coth

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
þ sgnðc1c2Þw1

( )
;

ð98Þ

where w1 ¼ tanh�1ð c2j j= c1j jÞ;w2 ¼ coth�1ð c2j j= c1j jÞ and

sgnðc1c2Þ is the well-known sign function.

If c1j j[ c2j j ¼ 0; then we have the soliton solution of

Eq. (1):

uðx; tÞ ¼
ffiffiffiffi
L

K

r
tanh

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
; ð99Þ

which is equivalent to the soliton solutions Eqs. (27), (65)

and (83).

If c2j j[ c1j j ¼ 0; then we have the singular soliton

solution of Eq. (1):

uðx; tÞ ¼
ffiffiffiffi
L

K

r
coth

ffiffiffiffi
L

K

r
x þ L

K
t

� �" #
; ð100Þ

which is equivalent the singular soliton solutions

(Eqs. (28), (73) and Eq. (84)).

If c1j j ¼ c2j j; then we have the trivial solution which is

rejected.

Case 2 If k2 � 4l\0; that is to say l[ 0; then from

Eqs. (92), (74) and using Eq. (95), we have the trigono-

metric periodic solution of Eq. (1):

uðx; tÞ ¼
ffiffiffiffiffiffiffiffi
� L

K

r
c1 cos

ffiffiffiffiffiffiffi
� L

K

q
x þ L

K
t

� �h i
� c2 sin

ffiffiffiffiffiffiffi
� L

K

q
x þ L

K
t

� �h i

c1 sin
ffiffiffiffiffiffiffi
� L

K

q
x þ L

K
t

� �h i
þ c2 cos

ffiffiffiffiffiffiffi
� L

K

q
x þ L

K
t

� �h i

8
><

>:

9
>=

>;
:

ð101Þ

If we set c1 ¼ 0; then we have the trigonometric periodic

solution of Eq. (1):

uðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
� L

K

r
tan

ffiffiffiffiffiffiffiffi
� L

K

r
x þ L

K
t

� �" #
; ð102Þ

while, if we set c2 ¼ 0; then we have the trigonometric

periodic solution of Eq. (1):

uðx; tÞ ¼
ffiffiffiffiffiffiffiffi
� L

K

r
cot

ffiffiffiffiffiffiffiffi
� L

K

r
x þ L

K
t

� �" #
: ð103Þ

The solutions (Eqs. (102) and (103)) are equivalent to the

trigonometric periodic solutions (Eqs. (85) and (86)).

7. Physical explanations for some solutions

In this section, we illustrate the applications of the results

established above. Solitary wave solutions describe dif-

ferent nonlinear waves. These solutions have a remarkable

property that keeps its identity upon interacting with other.

Using the software Maple, the plots of some obtained

solutions have been shown in Figs 1, 2, 3 and 4. For more

convenience, the graphical representations of u(x, t) for

Fig. 1 Plot the soliton solution (27) when L ¼ 1

Fig. 2 Plot the singular soliton solution (28) when L ¼ 1
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Eqs. (27), (28), (85) and (86) of Eq. (1) are shown in

Figs. 1, 2, 3 and 4 when K ¼ 1 and �10� x; t � 10.

8. Conclusions

In this paper, we have applied the modified simple equation

method, the exp-function method, the soliton ansatz

method, the Riccati equation expansion method and the

G0=Gð Þ-expansion method to calculate the exact solutions,

the solitary wave solutions and the trigonometric function

solutions for the nonlinear foam drainage equation

(Eq. (1)). On comparing our results with the well-known

results obtained in [54], we conclude that our results for

Eq. (1) are new and not published elsewhere. Further, the

different methods used in this paper are powerful and

effective techniques in finding the exact traveling wave

solutions and the solitary wave solutions for a wide range

of nonlinear problems. In Sect. 7, we have given some

figures expressing the behavior of the obtained solutions of

Eq. (1) which give some perspective readers how the

behavior solutions are produced. Finally, our results have

been checked with the aid of the Maple by putting them

back into the original Eq. (1).
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