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Abstract: The crustal fraction of moment of inertia in neutron stars is calculated using b-equilibrated nuclear matter

obtained from density dependent M3Y effective interaction. The transition density, pressure and proton fraction at the inner

edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability

conditions. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is

highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at

core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for

the radius of the Vela pulsar: R� 4:10þ 3:36M=M� km.
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1. Introduction

The pulsar glitches, which are discontinuities in rotational

frequency during the pulsars spin-down, involve from an

isolated component (consisting of superfluid neutrons in

crust) a sudden transfer of angular momentum to the entire

star through vortex unpinning. The sudden jumps in rota-

tional frequencies x which may be as large as Dx
x � 10�6 �

10�9 have been observed for many pulsars. The hypothesis

of experience of glitches [1] by all radio pulsars is sub-

stantiated by observation of glitches. A glitch is a sudden

increase in the frequency rotation of a rotation-powered

pulsar, which, due to braking provided by the emission of

radiation and high-energy particles, generally decreases

steadily. This sudden increase in the rotational frequency of

pulsar is due to a short time coupling of the faster-spinning

superfluid core of the pulsar to its crust, which are usually

decoupled. The transfer of angular momentum from core to

the surface caused by this brief coupling decreases the

measured time period. It is envisaged that the breaking of

the magnetic dipole of pulsar ensues coupling which

applies a twisting force to the crust causing a brief cou-

pling. The inner crust consists of a crystal lattice of nuclei

immersed in a neutron superfluid [2] where core to crust

transition occurs. With a regular array of rotational vortices

created due to rotation of the pulsar, the superfluid con-

sisting of neutrons (both deeper inside the star and within

the inner crust) is entangled. The reason that the rotational

frequency of a superfluid is proportional to the density of

vortices, as the pulsar slows down these vortices need to

gradually move outwards. Although in the crust the vor-

tices are pinned by their interaction with the nuclear lattice,

in the star’s deep inside this process is freely allowed.

Various theoretical models [3–7] differ in important

aspects of the stress release mechanism of glitch which are

associated with pinned vortices. The crust may get rear-

ranged due to the breaking of vortices or a cluster of vor-

tices may move macroscopically outward by overcoming

the pinning force suddenly. This phenomenon results in a

glitch due to sudden decrease in the angular momentum of

the superfluid within the crust causing a sudden increase in

angular momentum of the rigid crust itself. The common

feature of all the models is that they agree that the fun-

damental requirement is the presence of a rigid structure

which impedes the motion of rotational vortices present in
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a superfluid and which encompasses enough of the volume

of the pulsar to contribute significantly to the total moment

of inertia.

In the present work, the equation of state (EoS) used is

obtained from the density dependent M3Y effective

nucleon-nucleon (NN) interaction (DDM3Y) for which the

incompressibility K1 for the symmetric nuclear matter

(SNM), nuclear symmetry energy Esymðq0Þ at saturation

density q0, the isospin dependent part Ks of the isobaric

incompressibility and the slope L are in excellent agree-

ment with the constraints extracted from measured isotopic

dependence of the giant monopole resonances in even-A

Sn isotopes, from the neutron skin thickness of nuclei

recently, and from analyses of experimental data on isospin

diffusion and isotopic scaling in intermediate energy

heavy-ion collisions [8, 9]. The core-crust transition in

neutron stars is determined [10] by analyzing the stability

of the b-equilibrated dense nuclear matter with respect to

the thermodynamic stability conditions [11–15]. The mass–

radius relation for neutron stars is obtained by solving the

Tolman–Oppenheimer–Volkoff Equation (TOV) [16, 17]

and then the crustal fraction of moment of inertia is

determined using pressure and density at core-crust tran-

sition. Since in the Vela pulsar the angular momentum

requirements of glitches indicate that 1:4% of the star’s

moment of inertia drives these events, the allowed region

for masses and radii for Vela pulsar is determined from the

condition that the crustal fraction of the total moment of

inertia DI
I
[ 0:014 which sets a limit for its radius.

2. Core-crust transition in b-equilibrated neutron star

matter

The nuclear matter EoS is obtained using DDM3Y effec-

tive interaction. For asymmetric nuclear matter EoS both

the isoscalar and the isovector [18, 19] components are

needed to be taken into consideration. The nuclear matter

calculations uniquely determine the density dependence of

this interaction. This is done by solving simultaneously for

fixed values of the saturation energy per nucleon �0 and the

saturation density q0 of the cold SNM, the equations that

� ¼ �0 at q ¼ q0 together with vanishing of pressure
o�
oq jq¼ q0

¼ 0 at this density. The zero range potential is

allowed to vary freely with the kinetic energy part �kin of

the energy per baryon � over the entire range of � implying

that the effective interaction is momentum dependent. This

is not merely more logical, but also provides excellent

result for the SNM incompressibility K1 of the infinite

nuclear matter that does not suffer from the superlumi-

nosity problem [20]. In a Fermi gas model of interacting

baryons with isospin asymmetry X ¼ qn�qp
qnþqp

; q ¼ qn þ qp;
where qn, qp and q are the neutron, proton and baryonic

number densities respectively, the energy per baryon for

isospin asymmetric nuclear matter can be derived as [20]

�ðq;XÞ ¼ 3�h2k2F
10mb

� �
FðXÞ þ qJvC

2

� �
1� bqnð Þ ð1Þ

where mb is the baryonic rest mass, kF ¼ ð1:5p2qÞ
1
3 which

is equal to the Fermi momentum for SNM, the kinetic

energy per baryon �kin ¼ 3�h2k2F
10mb

h i
FðXÞ with FðXÞ ¼

ð1þXÞ5=3þð1�XÞ5=3
2

h i
and Jv ¼ Jv00 þ X2Jv01, Jv00 and Jv01

represent the volume integrals of the isoscalar and the

isovector parts of the M3Y effective interaction. The

isoscalar tM3Y
00 and the isovector tM3Y

01 components of M3Y

interaction potential are given by

tM3Y
00 ðs; �kinÞ ¼ þ 7999

expð�4sÞ
4s

� 2134
expð�2:5sÞ

2:5s

þ J00ð1� a�kinÞdðsÞ

tM3Y
01 ðs; �kinÞ ¼ � 4886

expð�4sÞ
4s

þ 1176
expð�2:5sÞ

2:5s

þ J01ð1� a�kinÞdðsÞ

ð2Þ

where s represents the relative distance between two

interacting baryons, J00 ¼ �276 MeV fm3, J01 ¼ þ228

MeV fm3 and the energy dependence parameter

a ¼ 0:005MeV�1. While the density dependence is deter-

mined from the nuclear matter calculations, the strengths of

the Yukawas are extracted by fitting its matrix elements in

an oscillator basis to those elements of G-matrix obtained

with Reid–Elliott soft core NN interaction. The ranges of

the Yukawas are selected to ensure OPEP tails in the rel-

evant channels as well as a short-range part which simu-

lates the r-exchange process [21]. The density dependence

of the interaction accounts for the Pauli blocking effects

and the higher order exchange effects [22]. Hence the

DDM3Y effective NN interaction is given by

v0iðs; q; �kinÞ ¼ tM3Y
0i ðs; �kinÞgðqÞ where the density depen-

dence is given by gðqÞ ¼ Cð1� bqnÞ [20] with the con-

stants of density dependence as C and b.
It is worthwhile to mention here that other density

dependent forms [23] of the M3Y-Reid effective NN

interaction can also provide description of nuclear matter

with different values of incompressibility. The density, the

pressure and the proton fraction at the inner edge separat-

ing the liquid core from the solid crust of the neutron stars

determined in the present work are in close agreement with

those obtained with other forms of density dependence

which correspond to high nuclear incompressibility.

The b-equilibrated nuclear matter EoS is obtained by

evaluating the asymmetric nuclear matter EoS at the isospin

asymmetry X ¼ 1� 2xp determined from the b-equilibrium
proton fraction xp [¼ qp

q ], obtained by solving

�hcð3p2qxpÞ1=3 ¼ � o�ðq;xpÞ
oxp

¼ þ2 o�
oX
. The requirement of
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thermodynamical method is that the system must obey the

intrinsic stability condition Vthermal [ 0 which is given by

[24]

Vthermal ¼ q2 2q
o�

oq
þ q2

o2�

oq2
� q2

o2�
oqoxp

� �2

o2�
ox2p

2
64

3
75 ð3Þ

and obviously, it goes to zero at the inner edge separating

the the solid crust from the liquid core since it corresponds

to a phase transition from the inhomogeneous matter at low

densities to the homogeneous matter at high densities. The

core-crust transition density qt, pressure Pt and proton

fraction xpðtÞ of the neutron stars are obtained [10] by set-

ting Vthermal ¼ 0 which goes to negative with decreasing

density.

3. Crustal fraction of moment of inertia in neutron

stars

The crustal fraction of the moment of inertia DI
I

can be

expressed as a function of gravitational mass of the star M

and its radius R by the following approximate expression [2]

DI
I
� 28pPtR3

3Mc2
1� 1:67n� 0:6n2

n

� �

� 1þ 2Pt

qtmbc2
ð1þ 7nÞð1� 2nÞ

n2

� ��1
ð4Þ

where n ¼ GM
Rc2

, qt and Pt are the density and the pressure,

respectively, at the core to crust transition. As obvious

from the above equation the major dependence is on the

value of Pt, since qt enters only as a correction term. The

fact that from the observations of pulsar glitches the crustal

fraction of the moment of inertia can be inferred, makes it

particularly interesting [25].

It has been shown that the glitches show a self-sus-

taining instability for which the star prepares over a waiting

time [2]. The glitches in the Vela pulsar suggests that the

angular momentum should be such that more than 1:4% of

the moment of inertia drives these events. Therefore, if

glitches originate in the liquid of the inner crust, it would

imply that DI
I
[ 1:4%.

4. Tolman–Oppenheimer–Volkoff equation and mass–

radius relation

In general relativity, the structure of a spherically sym-

metric body of isotropic material which is in static gravi-

tational equilibrium is given by the Tolman–Oppenheimer–

Volkoff (TOV) equation [16, 17]

dPðrÞ
dr

¼ � G

c4
½eðrÞ þ PðrÞ�½mðrÞc2 þ 4pr3PðrÞ�

r2½1� 2GmðrÞ
rc2

�

where eðrÞ ¼ ð�þ mbc
2ÞqðrÞ; mðrÞc2 ¼

Z r

0

eðr0Þd3r0
ð5Þ

where eðrÞ and P(r) are the energy density and pressure at a
radial distance r from the centre whereas m(r) is the mass

of the star contained inside radius r. The TOV equation can

be easily solved numerically for masses and radii using

Runge–Kutta method. The eðrÞ and P(r) are provided by

the EoS. The size of the star is determined by the boundary

condition PðrÞ ¼ 0 at the surface R of the star and the total

massM of the star integrated up to R is given byM ¼ mðRÞ
[26]. Being the initial value problem, the numerical solu-

tion of TOV equation requires single integration constant,

the pressure Pc at the center r ¼ 0 of the star calculated at a

given central density qc. The masses of slowly rotating

neutron stars are very close [27–29] to those obtained by

solving TOV equation.

The moment of inertia of a neutron star can be calculated

by assuming it to be rotating slowly with a uniform angular

velocity X [30, 31]. The angular velocity �xðrÞ of a point in
the star measured with respect to the angular velocity of the

local inertial frame is determined by the equation

1

r4
d

dr
r4j

d �x
dr

� �
þ 4

r

dj

dr
�x ¼ 0 ð6Þ

where

jðrÞ ¼ e�/ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GmðrÞ

rc2

r
: ð7Þ

The function /ðrÞ is constrained by the condition

e/ðrÞlðrÞ ¼ constant ¼ lðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

Rc2

r
ð8Þ

where the chemical potential lðrÞ is defined as

lðrÞ ¼ eðrÞ þ PðrÞ
qðrÞ : ð9Þ

Using these relations, Eq. (6) can be solved subject to the

boundary conditions that �xðrÞ is regular as r ! 0 and

�xðrÞ ! X as r ! 1. The moment of inertia of the star can

then be calculated using the definition I ¼ J=X, where the

total angular momentum J is given by

J ¼ c2

6G
R4 d �x

dr

			
r¼R

: ð10Þ

5. Theoretical calculations

The values of the saturation density q0 and the saturation

energy per baryon �0 of SNM used in the calculations are
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0.1533 fm�3 [32] and �15:26 MeV [33], respectively. The

co-efficient of the volume term av of the liquid drop model

mass formula represents the saturation energy per baryon

and can be determined by fitting the atomic mass excesses

(experimental and estimated) from Audi–Wapstra–Thibault

atomic mass table [34] by minimizing the mean square

deviation. In such calculations the corrections for the

electronic binding energy [35] are included. In a recent

work that includes surface symmetry energy term, Wigner

term, shell correction and proton form factor correction to

Coulomb energy also, av turns out to be 15.4496 MeV and

when A0 and A1=3 terms are also included [36] it turns out

to be 14.8497 MeV. Using the usual value of a ¼ 0:005

MeV�1 for the parameter of energy dependence of the zero

range potential and n ¼ 2
3
, the values obtained for the

constants of density dependence C and b and the SNM

incompressibility K1 are 2.2497, 1.5934 fm2 and 274.7

MeV, respectively. The value of �15:26 	 0.52 MeV of

the saturation energy per baryon, more or less, covers the

entire range for which the values of C = 2.2497 ± 0.0420,

b = 1.5934	 0.0085 fm2 and the SNM incompressibility

K1 = 274.7	 7.4 MeV [20] are obtained.

The stability of the b-equilibrated dense matter in neu-

tron stars is investigated and the location of the inner edge

of their crusts and core-crust transition density and pressure

are determined using the DDM3Y effective NN interaction.

The results for the transition density, pressure and proton

fraction at the inner edge separating the liquid core from

the solid crust of neutron stars are calculated and presented

in Table 1 for n ¼ 2
3
. The symmetric nuclear matter

incompressibility K1, nuclear symmetry energy at satura-

tion density Esymðq0Þ, the slope L and isospin dependent

part Ks of the isobaric incompressibility are also tabulated

since these are all in excellent agreement with the recently

extracted constraints from the measured isotopic depen-

dence of the giant monopole resonances in even-A Sn

isotopes [37], from the neutron skin thickness of nuclei,

and from analyses of experimental data on isospin diffu-

sion and isotopic scaling in intermediate energy heavy-ion

collisions.

The calculations for masses and radii are performed

using the EoS covering the crustal region of a compact star

which are Feynman–Metropolis–Teller (FMT) [38],

Baym–Pethick–Sutherland (BPS) [39] and Baym–Bethe–

Pethick (BBP) [40] upto number density of 0.0582 fm�3

and b-equilibrated neutron star matter beyond. The values

of I obtained by solving Eq. (6) subject to the boundary

conditions stated earlier are listed in Table 2 along with

massesM, radii R and crustal thickness DR of neutron stars.

Once masses and radii are determined, DI
I
are obtained from

Eq. (4) and listed in Table 2. In Fig. 1, variation of mass

with central density is plotted for slowly rotating neutron

stars for the present nuclear EoS. In Fig. 2, the mass–radius

relation of slowly rotating neutron stars is shown. Using

Eq. (4) again the mass–radius relation is obtained for fixed

values of DI
I
, qt and Pt. This is then plotted in the same

figure for DI
I
equal to 0.014. For Vela pulsar, the constraint

DI
I
[ 1:4% implies that allowed mass-radius lie to the right

of the line defined by DI
I
¼ 0:014 (for qt ¼ 0:0938 fm�3,

Pt ¼ 0:5006 MeV fm�3). This condition is given by the

inequality R� 4:10þ 3:36M=M� km.

The calculations are performed for five different n val-

ues that correspond to SNM incompressibility ranging from

� 180 to 330 MeV. For each case, the constants C and b
obtained by reproducing the ground state properties of

SNM become different leading to five different sets of

these three parameters. We certainly cannot change

strengths and ranges of the M3Y interaction. In Table 3,

the variations of the core-crust transition density, pressure

and proton fraction for b-equilibrated neutron star matter,

symmetric nuclear matter incompressibility K1, isospin

dependent part Ks of isobaric incompressibility, neutron

star’s maximum mass with corresponding radius and

crustal thickness with parameter n are listed along with

corresponding Vela pulsar constraints. It is important to

mention here that recent observations of the binary mil-

lisecond pulsar J1614-2230 by Demorest et al. [41] suggest

that the masses lie within 1:97	 0:04 M� where M� is the

solar mass. Recently the radio timing measurements of the

pulsar PSR J0348 ? 0432 and its white dwarf companion

have confirmed the mass of the pulsar to be in the range

1.97–2.05 M� at 68.27% or 1.90–2.18 M� at 99.73%

confidence [42]. The observed 1.97	 0.04 M� neutron star

rotates with 3.1 ms and results quoted in Table 2 are for

non-rotating case. Similar work using M3Y effective

interaction using the so called CDM3Y6 [43] density

Table 1 Results of present calculations for n ¼ 2
3
of symmetric nuclear matter incompressibility K1, nuclear symmetry energy at saturation

density Esymðq0Þ, the slope L and isospin dependent part Ks of the isobaric incompressibility (all in MeV) [9] are tabulated along with the density,

pressure and proton fraction at the core-crust transition for b-equilibrated neutron star matter and corresponding Vela pulsar constraint

K1 Esymðq0Þ L Ks

274:7	 7:4 30:71	 0:26 45:11	 0:02 �408:97	 3:01

qt ðfm�3) Pt ðMeV fm�3) xpðtÞ Vela pulsar R (km)

0.0938 0.5006 0.0308 R� 4:10þ 3:36M=M�
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dependence can predict � 2 M� neutron stars. For rotating

stars [29] present EoS predict masses higher than the lower

limit of 1.93 M� for maximum mass of neutron stars. We

Table 2 Radii, masses, total and crustal fraction of moment of inertia

and crustal thickness as functions of central density qc

qc R M I DI
I

DR
fm�3 km M� M� km2 Fraction km

2.00 8.6349 1.8277 70.88 0.0055 0.2462

1.90 8.7598 1.8467 73.83 0.0057 0.2523

1.80 8.8957 1.8651 77.00 0.0060 0.2598

1.70 9.0444 1.8824 80.38 0.0063 0.2696

1.60 9.2052 1.8980 83.97 0.0067 0.2806

1.50 9.3810 1.9109 87.70 0.0072 0.2951

1.40 9.5710 1.9197 91.52 0.0079 0.3121

1.39 9.5911 1.9203 91.91 0.0080 0.3144

1.38 9.6109 1.9208 92.29 0.0080 0.3161

1.37 9.6314 1.9213 92.67 0.0081 0.3185

1.36 9.6514 1.9217 93.05 0.0082 0.3203

1.35 9.6718 1.9220 93.43 0.0083 0.3222

1.34 9.6928 1.9223 93.81 0.0084 0.3248

1.33 9.7141 1.9225 94.18 0.0085 0.3275

1.32 9.7349 1.9226 94.55 0.0085 0.3296

1.31 9.7559 1.9227 94.93 0.0086 0.3318

1.30 9.7770 1.9226 95.30 0.0087 0.3340

1.20 9.9995 1.9173 98.85 0.0098 0.3620

1.10 10.2371 1.9004 101.88 0.0112 0.3970

1.00 10.4902 1.8675 103.94 0.0132 0.4441

0.90 10.7544 1.8127 104.42 0.0158 0.5066

0.80 11.0239 1.7285 102.47 0.0197 0.5929

0.70 11.2865 1.6064 97.04 0.0255 0.7148

0.60 11.5245 1.4369 87.06 0.0344 0.8952

0.59 11.5456 1.4170 85.78 0.0356 0.9175

0.58 11.5666 1.3965 84.44 0.0368 0.9411

0.57 11.5874 1.3753 83.04 0.0381 0.9663

0.56 11.6073 1.3536 81.58 0.0394 0.9924

0.55 11.6262 1.3313 80.07 0.0408 1.0193

0.50 11.7135 1.2104 71.65 0.0492 1.1792

0.45 11.7830 1.0734 61.88 0.0602 1.3897

0.40 11.8388 0.9206 51.00 0.0752 1.6801

0.30 12.0129 0.5808 28.54 0.1249 2.7618

0.25 12.3703 0.4103 19.24 0.1686 3.9149

0.24 12.5113 0.3779 17.73 0.1805 4.2542

0.23 12.6944 0.3464 16.35 0.1942 4.6511

0.22 12.9314 0.3159 15.14 0.2103 5.1189

0.21 13.2434 0.2867 14.12 0.2296 5.6802

0.20 13.6576 0.2587 13.31 0.2537 6.3643

0.19 14.2131 0.2323 12.74 0.2847 7.2125

0.18 14.9725 0.2075 12.47 0.3265 8.2904

0.17 16.0398 0.1845 12.59 0.3863 9.7057

0.16 17.5771 0.1634 13.25 0.4767 11.6254

0.15 19.8913 0.1445 14.77 0.6254 14.3634

0.14 23.5740 0.1278 17.88 0.8972 18.5215
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Fig. 1 Variation of mass with central density for slowly rotating

neutron stars for the present nuclear EoS
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Fig. 2 The mass–radius relation of slowly rotating neutron stars for

the present nuclear EoS. The constraint of DI
I
[ 1:4% ð1:6; 7%Þ for

the Vela pulsar implies that to the right of the line defined by DI
I
¼

0:014 ð0:016; 0:07Þ (for qt ¼ 0.0938 fm�3, Pt ¼ 0.5006 MeV fm�3),

allowed masses and radii lie
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have used the same value of q0 ¼ 0.1533 fm�3 since we

want to keep consistency with all our previous works on

nuclear matter. We would like to mention that if instead we

would have used the value of 0.16 fm�3 [44] for q0, the
value of K1 would have been slightly higher by � 2 MeV

and correspondingly maximum mass of neutron stars by

� 0.01 M�.

6. Results and discussion

Recently, it is conjectured that the observed glitches in the

Vela pulsar require an additional storage of angular

momentum and to explain the phenomenon [45] the crust

may not be enough. Large pulsar frequency glitches can be

interpreted as sudden transfers of angular momentum

between the neutron superfluid permeating the inner crust

and the rest of the star. In spite of the absence of viscous

drag, the neutron superfluid is strongly coupled to the crust

due to non-dissipative entrainment effects. It is often

argued that these effects may put a constraint on the

maximum amount of angular momentum that during glit-

ches can possibly be transferred [46]. We find that the

present EoS can accommodate large crustal moments of

inertia and that large enough transition pressures can be

generated to explain the large Vela glitches without

invoking an additional angular-momentum reservoir

beyond that confined to the solid crust. Our results suggest

that the crust may be enough [47] which can be substan-

tiated from Table 2 that DI
I
[ 0:014 for pulsars with masses

1.8 M� or less. Newer observational data [48] claims

slightly higher estimate (1:6%) based on glitch activity.

This minute change neither affects the conclusions nor

warrants any new idea of the neutron superfluidity

extending partially into the core. However, if the phe-

nomenon of crustal entrainment due to the Bragg reflection

of unbound neutrons by the lattice ions is taken into

account then [45, 46] a much higher fraction of the moment

of inertia (7% instead of 1.4–1.6 %) has to be associated to

the crust. This causes drastic modification of the moment

of inertia of the superfluid component. If DI
I
[ 0:07 is

considered, then the corresponding allowed masses and

radii will be given by R� 7:60þ 3:71M=M� instead of

R� 4:10þ 3:36M=M� which is shown in Fig. 2. But from

Table 2 this would mean maximum mass � 1:M� which

contradicts the observed mass of Vela pulsar [49] and

suggests that this fraction can be at most 3.6% due to

crustal entrainment.

The results listed in Table 3 suggest that SNM incom-

pressibility do have some effect in determining the crustal

fraction of moment of inertia and on the Vela Pulsar Radius

Constraint like some other recent studies [50]. But the

incompressibility values of about 15 MeV window around

274.7 MeV corresponding to n ¼ 2
3
is experimentally sup-

ported. The present status of experimental determination of

the SNM incompressibility from the compression modes of

isoscalar giant dipole resonance (ISGMR) and isoscalar

giant dipole resonance (ISGDR) of nuclei suggests [51] that

due to lack of self consistency in HF-RPA calculations of

the strength functions of ISGMR result in shifts in the cal-

culated values of the centroid energies which may be larger

in magnitude than the present experimental uncertainties. It

is important to mention here that the predictions of low

values of K1 � 210–220 MeV) are due to the use of a not

fully self-consistent Skyrme calculations [51]. The Skyrme

parameterizations of SLy4 type with this drawback cor-

rected, predict higher values of K1 � 230–240 MeV [51].

Furthermore, it is possible to build bona fide Skyrme inter-

actions for which SNM incompressibility is in the range of

Table 3 Variations of the core-crust transition density, pressure and proton fraction for b-equilibrated neutron star matter, symmetric nuclear

matter incompressibility K1 and isospin dependent part Ks of isobaric incompressibility with parameter n

n qt Pt xpðtÞ K1 Ks Maximum mass Radius Crustal thickness

fm�3 MeV fm�3 MeV MeV M� km km

Expt. Values - - ! ! 250–270 �370 ± 120 1.97 	 0.04

1/6 0.0797 0.4134 0.0288 182.13 �293:42 1.4336 8.5671 0.4009

RðkmÞ� 4.48 ? 3.37M=M�

1/3 0.0855 0.4520 0.0296 212.98 �332:16 1.6002 8.9572 0.3743

RðkmÞ� 4.31 ? 3.36M=M�

1/2 0.0901 0.4801 0.0303 243.84 �370:65 1.7634 9.3561 0.3515

RðkmÞ� 4.19 ? 3.36M=M�

2/3 0.0938 0.5006 0.0308 274.69 �408:97 1.9227 9.7559 0.3318

RðkmÞ� 4.10 ? 3.36M=M�

1 0.0995 0.5264 0.0316 336.40 �485:28 2.2335 10.6408 0.3088

RðkmÞ� 3.99 ? 3.36M=M�
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250–270 MeV that is close to the theoretical values obtained

using relativistic EoS. Thus, from the ISGMR experimental

data, it may be concluded that K1 � 240 ± 20 MeV. The

constant of density dependence b has the dimension of cross

section for n ¼ 2
3
and can be interpreted as the isospin

averaged effective NN interaction cross section in ground

state SNM. For a nucleon in ground state of SNM, kF � 1.3

fm�1 and q0 � �hkFc � 260 MeV which yields ‘in medium’

effective cross section of �12 mb from the Dirac–Brueck-

ner–Hartree–Fock [52] calculations and the present result for

b ¼ 1:5934	 0:0085 fm2 is reasonably close. This value of

b corresponding to the value of the parameter n ¼ 2
3
and the

baryonic density of 0.1533 fm�3 provides nuclear mean free

path of about 4 fm which agrees well [53] with that obtained

from other method.

The rigorous way of dealing with core-crust transition is

producing a unified EoS and evaluating the density where

the clustered phase becomes energetically disfavored with

respect to the homogeneous solution [54]. It should be

clarified here that the crustal region of the compact star in

the present work consists of FMT?BPS?BBP up to

number density of 0.0582 fm�3 and b-equilibrated neutron

star matter up to core-crust transition number density of

0.0938 fm�3 which is far beyond 0.0582 fm�3, otherwise

we would have taken a unified EoS. The three different

methods to calculate the transition density are the ther-

modynamical spinodal (the method used in this work), the

dynamical spinodal within the Vlasov formalism and the

relativistic random phase approximation. It is shown that

the last two methods [55] give similar results, confirming

previous studies [56, 57]. The thermodynamical method

also gives a good estimate of the transition density [55, 58]

and involves simpler calculations.

7. Conclusions

In summary, the DDM3Y effective interaction which pro-

vides a unified description of elastic and inelastic scatter-

ing, proton-, a-, cluster- radioactivities and nuclear matter

properties, also provides an excellent description of the b-
equilibrated neutron star matter which is stiff enough at

high densities to reconcile with the recent observations of

the massive compact stars [27–29] while the corresponding

symmetry energy is supersoft as preferred by the FOPI/GSI

experimental data [59, 60]. The experimental range of

values quoted in Table 3 along with discussions provided

above justifies the parameter set of n ¼ 2
3
, C ¼ 2:2497	

0:0420 and b = 1.5934	 0.0085 fm2. The neutron star

core-crust transition density, pressure and proton fraction

determined from the thermodynamic stability condition to

be qt ¼ 0.0938 fm�3, Pt ¼ 0:5006 MeV fm�3 and

xpðtÞ ¼ 0:0308, respectively, along with observed minimum

crustal fraction of the total moment of inertia of the Vela

pulsar provide a limit for its radius. It is somewhat different

from the other estimates [2, 61] and imposes a constraint

R� 4:10þ 3:36M=M� km for the mass–radius relation of

Vela pulsar like neutron stars.
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