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Abstract: In this paper, a generalized inhomogeneous Hirota equation with spatial inhomogeneity and nonlocal nonlin-

earity is investigated in detail. Firstly, the Darboux transformation is constructed based on corresponding nonisospectral

linear eigenvalue problem. This transformation has an essential difference from the isospectral case. Furthermore, the

nonautonomous soliton solutions are obtained via the Darboux transformation. Finally, properties of these solutions in the

inhomogeneous media are discussed graphically to illustrate the influences of the variable coefficients. It is found that the

velocity and amplitude of the solitons can be controlled by the inhomogeneous parameters. Especially, a special two-

soliton solution which are localized both in space and time exhibits the feature of the so-called rogue waves but with a zero

background.
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1. Introduction

Since the nonlinear evolution equations often describe the

underlying dynamics of real systems, they have attractive

applications in such fields as optics, plasma physics, con-

densed matter physics, fluids and arterial mechanics [1, 2].

Recently, much interest has arisen in the investigation of

equations with inhomogeneities. This is because there exist

many realistic physics problems in the inhomogeneous

systems. The solutions, in the inhomogeneous media, have

their potential applications in describing, e.g., the ultrashort

optical pulses in long-distance communication and spin

dynamics in an inhomogeneous classical continuum

biquadratic Heisenberg ferromagnetic spin chain [3–10].

The inhomogeneous nonlinear Schrodinger equation

(NLSE) which describes the transmission of solitons

through the varying dispersion-managed optical fiber have

been explored in various branches of physics [11, 12].

There have also been interesting studies of inhomogeneous

NLSEs, including the dc-ac system, the Painleve test of

inhomogeneous NLSEs and constructions of modified

NLSEs [13–20]. Another development of inhomogeneous

integrable equation is the problem of the Heisenberg spin

chain with a site-dependent interaction term. They can be

treated by the inverse scattering problem with variable

spectral parameters [21–23].

It is well known that the Darboux transformation (DT) is

a powerful means in the construction of solutions for

nonlinear evolution equations [24–26]. It is noticed that by

using the Darboux matrix, a unified explicit form of auto-

Backlund transformations can be obtained for some hier-

archies of isospectral nonlinear evolution equations, such

as isospectral KdV, MKdV, sine-Gordon and AKNS hier-

archy. This approach is to construct the Darboux matrix

first, and then to prove the gauge equivalence of the related

Lax pairs. However, it is hard to employ this method to

obtain the Backlund transformations for hierarchies of

nonisopspectral nonlinear evolution equations since the

demonstration of the t part of Lax pair is quite difficult.

The inhomogeneous system generally is a problem in

which the spectral parameter depends on the time or space

variables. A lot of excellent applications of the Darboux

matrix method to nonisospectral problems has been given
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in Refs. [27–35]. However, the Darboux transformation for

the nonisospectral AKNS hierarchy has an essential dif-

ference from the standard case, that its integral constants

may not be conserved by the transformation. So one may

not get the nontrivial soliton solution of the relevant non-

linear equation by acting the Darboux transformation on

the seed solution of the same equation. Recently, Zhou has

proved that the relation of the integral constants between

the relevant nonisospectral AKNS hierarchies can be cal-

culated through the asymptotic property of the elementary

solution [36]. Then the soliton solution of a certain dif-

ferential equation can be found by acting the Darboux

transformation on the seed solution of another equation.

And for some special cases, it becomes auto-Backlund

transformation [37]. All the developments show that a

systematic analysis based on DT for inhomogeneous inte-

grable equations with variable spectral parameters is

strongly feasible.

In this paper, we consider a generalized inhomogeneous

Hirota equation as follows

iqt þ il1 qþ i m1 þ l1 xð Þqx þ m2 þ l2xð Þ qxx þ 2 jqj2q
� �

þ 2l2 qx þ q

Z x

�1
jqj2dx0

� �
þ im qxxx þ 6 jqj2qx

� �
¼ 0;

ð1Þ

where q(x, t) is a complex function with respect to the

spatial coordinates x and normalized time t, the subscripts

denote the temporal and spatial partial derivatives. The

terms qxx, jqj2q, qxxx and jqj2qx represent the group velocity

dispersion, self-phase modulation, third-order dispersion

and self-steepening, respectively. Here m; m1; m2; l1; l2 are

all real numbers and m1 þ l1 x; m2 þ l2 x are the linear

inhomogeneous coefficients. If m1 ¼ l1 ¼ l2 ¼ 0, Eq. (1)

reduces to the standard Hirota equation, which describes

the propagation of the femtosecond soliton pulse in the

single-mode fibers. Furthermore, the dynamics of disper-

sive optical solitons modeled by Hirota equation are stud-

ied by Biswas et al. [38–42]. If m1 ¼ l1 ¼ l2 ¼
m ¼ 0; m2 ¼ 1, Eq. (1) degenerates to the standard

Schrodinger equation, which describes the dynamics of

nonlinear spin excitation in the Heisenberg

ferromagnetism.

Consequently, Eq. (1) is one of the completely inte-

grable equations, the Lax pair of which can be given by the

AKNS method as follows

Wx ¼ UW ¼ �iJkþ U1ð ÞW;

Wt ¼ VW ¼ V1k
3 þ V2k

2 þ V3kþ V4

� �
W;

(
ð2Þ

where

J ¼
1 0

0 � 1

� �
;U1 ¼

0 q

�q� 0

� �
; ð3Þ

V1 ¼
�4im 0

0 4im

� �
;V2 ¼

�2iðm2þl2xÞ 4mq

�4mq� 2iðm2þl2xÞ

� �
;

ð4Þ

V3 ¼
iðm1 þ l1xÞ þ 2imjqj2 2imqx þ 2ðm2 þ l2xÞq
2imq�x � 2ðm2 þ l2xÞq� � iðm1 þ l1xÞ � 2imjqj2

 !
;

ð5Þ

V4 ¼
A B

�B� � A

� �
; ð6Þ

with

A ¼ il2

Z x

�1
jqj2dx0 þ i m2 þ l2xð Þjqj2 þ m qq�x � q�qx

� �
;

ð7Þ

B ¼ i m2 þ l2xð Þqx � mqxx � m1 þ l1xð Þq� 2mjqj2qþ il2q:

ð8Þ

In the above eigenvalue problem the spectral parameter k is
nonisospectral obeying the equation

kt ¼ �l1kþ 2l2k
2: ð9Þ

It is obvious that the compatibility condition Ut � Vx þ
½U;V � ¼ 0 generates Eq. (1), where the square brackets

denote the usual matrix commutator.

In Ref. [43], Porsezian et al. have investigated the sin-

gularity structure and the integrability properties of the

generalized x�dependent Hirota equation. Also, they have

constructed the associated Lax pairs and Backlund trans-

formation for the inhomogeneous equation. Eq. (1) has also

been earlier studied by constructing the equivalent spin

system and carrying out the inverse scattering analysis

[44, 45]. In Ref. [46], the authors have obtained the

N�soliton solution for Eq. (1) through the Hirota bilinear

method and symbolic computation. But, a little detail is

worth mentioning in the process of bilinearization. To be

specific, through the transformation

q ¼ g

f
ð10Þ

where g ¼ gðx; tÞ is a complex function and f ¼ f ðx; tÞ is a
real function, the bilinear form of Eq. (1) is found to be

Dx
2f � f ¼ 2 gg�; ð11Þ

iDt þ i m1 þ l1 xð ÞDx þ m2 þ l2 xð ÞDx
2

�

þ2 l2 Dx þ imDx
3 þ il1

	
g � f ¼ �2 l2 gfx:

ð12Þ

Here the well-known bilinear operator D is defined as
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Dm
t D

n
xG � F ¼ o

ot
� o

ot
0

� �m
o

ox
� o

ox
0

� �n

Gðx; tÞF x
0
; t

0
� �




x
0 ¼x;t

0¼t

ð13Þ

and the relation

Z x

�1
jqj2dx0 ¼

Z x

�1

Dx
0 2f � f
2f 2

dx
0 ¼ fx

f
ð14Þ

is used. Therefore, the asymptotic condition should satisfy

lim
x!�1

fx

f
¼ lim

x!�1

Z x

�1
jqj2dx0 ¼ 0 ð15Þ

which asks for special parameters in the expression of f and

this point is often ignored in the reference.

In the following, we first derive the representation of

DT for Eq. (1) to construct the nonautonomous soliton

solutions from zero seed solution. Furthermore, the one-

and two-soliton solutions are explicitly constructed by

using the transformation. These solutions are both suit-

ably controlled by the physical parameters associated

with the system and their dynamics are investigated

graphically.

2. Darboux transformation

Actually, a unified approach to construct DT for a class of

isospectral integrable systems is founded by C.H. Gu [24].

Meanwhile, various results are presented on nonisospectral

problems in which the spectral parameter depends on the

time or space variables [27–35]. In Ref. [36], Zhou has

generalized Gu’s formula for DT to the nonisospectral

AKNS hierarchy. He has showed that the DT for the

nonisospectral AKNS hierarchy is not an auto-Bäcklund

transformation except for some special cases. In order to

get more details about his method, the reader can see

Ref. [37]. Therefore, the Darboux transformation for the

nonisospectral AKNS problem (Eq. (2)) can be constructed

in the following way.

If q satisfies the asymptotic condition

lim
x!1

jxjkomx q ¼ 0 ð16Þ

for t and nonnegative integer k, m, let W1 ¼ ðf1; g1ÞT be the

known complex vector-valued eigenfunction of Eq. (2)

corresponding to the parameter k1 ¼ a1ðtÞ þ ib1ðtÞ, one

can easily prove that W2 ¼ ð�g�1; f
�
1 Þ

T
is the vector-valued

eigenfunction of Eq. (2) which relates to the parameter

k�1 ¼ a1ðtÞ � ib1ðtÞ. Here the symbol � denotes complex

conjugation. Set

DðkÞ ¼ pðkÞGðtÞTðkÞ ð17Þ

where

GðtÞ ¼ diag e
�2il2

R t

�1
b1dt

0

; e
2il2
R t

�1
b1dt

0
� �

; ð18Þ

pðkÞ ¼ det kI � HKH�1
� �� 	�1=2¼ k� k1ð Þ k� k�1

� �� 	�1=2
;

ð19Þ

TðkÞ ¼ kI � S; S ¼ HKH�1;H ¼ W1;W2ð Þ;K ¼ diag k1; k
�
1

� �
;

ð20Þ

here I is the identity matrix. Then the gauge transformation

Ŵ ¼ DðkÞW ð21Þ

is the Darboux transformation for Eq. (2) and Ŵ is the

vector eigenfunction satisfying the eigenvalue equations

Ŵx ¼ ÛŴ;

Ŵt ¼ V̂Ŵ;

8<
: ð22Þ

with Û and V̂ have the same forms as those of U and

V except for replacing q½0� with a new potential function

q½1�.
The appearance of factors pðkÞ and G(t) is the most

distinguishing feature of the present formalism. For the

standard isospectral AKNS hierarchy, all the factors

degenerate to vanish. Here, for equations with variable

spectral parameters the scalar factor pðkÞ is introduced to

make V̂ 2 slð2Þ. The gauge factor G(t) keeps the integral

constants invariant of V and V̂ . Also, the imaginary part of

spectral parameter should be taken to satisfy the condition

b1ðtÞ\0 to assure the asymptotic property of the elemen-

tary solution of Lax pair.

Under the DT, it is easy to find out that

Û ¼ G U1 þ i½S; J�ð ÞG�1: ð23Þ

Hence, we obtain the representation of one-fold DT as

q½1� ¼ e
�4il2

R t

�1
b1dt

0

q½0� � 2i
k1 � k�1
� �

f1g
�
1

jf1j2 þ jg1j2

" #
: ð24Þ

Iterating the transformation N times with N as a positive

integer, we can give the N-th iterated potential

transformation

q½N� ¼ e
�4il2

PN
j¼1

R t

�1
bjdt

0

� q½0� � 2i
XN
k¼1

e
4il2
Pk�1

m¼1

R t

�1
bmdt

0
kk � k�k
� �

fkg
�
k

jfkj2 þ jgkj2

2
4

3
5;

ð25Þ

where kk ¼ akðtÞ þ ibkðtÞðk ¼ 1; 2; . . .;NÞ are the different
nonisospectral parameters with negative imaginary parts

and Wk ¼ ðfk; gkÞT is the vector eigenfunction of Eq. (2)
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corresponding to the parameter kk and q ¼ q½k�1�. This

formula is used to construct multi-soliton solutions later.

3. Nonautonomous soliton solutions

It is now generally accepted that solitary waves in nonau-

tonomous nonlinear and dispersive systems can propagate

in the form of so-called nonautonomous solitons or soli-

tonlike similaritons. Nonautonomous solitons interact

elastically and generally move with varying amplitudes and

speeds. Dynamics of nonautonomous soliton in different

aspects such as soliton dispersion management, soliton

energy control, soliton intensity management and soliton

pulse width management are explained in Refs. [47–49].

Especially, in these papers, investigations have been made

to understand the properties of nonautonomous solitons

under the variation of nonlinearity parameter, dispersion

parameters and gain or loss terms. Propagation of nonau-

tonomous soliton in external potential is also discussed

[50, 51]. Meanwhile, it is found that the weak dissipations

also lead to change in the soliton parameters, the amplitude

and the velocity, the creation of small solitons and the

formation of a tail behind the initial soliton [52–54].

However, dissipative solitons in systems with high-order

nonlinear dissipation cannot survive in the presence of

trapping potentials of the rigid wall or asymptotically

increasing type. Solitons in such systems can survive in the

presence of a weak potential but only with energies out of

the interval of existence of linear quantum mechanical

stationary states [55]. In this section, we take q½0� ¼ 0 to

construct the nonautonomous soliton solutions of the gen-

eralized inhomogeneous Hirota equation in explicit forms.

3.1. One-soliton solution

To obtain the one-soliton solution for Eq. (1), we take

spectral parameter k1 ¼ a1 þ ib1 with

a1t ¼ �l1a1 þ 2l2 a21 � b21
� �

; b1t ¼ �l1b1 þ 4l2a1b1;

ð26Þ

then obtain the following eigenfunctions by directly

solving the corresponding Lax pair

f1 ¼ e�iq1 ; g1 ¼ eiq1 ; ð27Þ

with

q1 ¼ k1 x�
Z

m1k1 � 2 m2k
2
1 � 4m k1

3
� �

dt þ q10: ð28Þ

After the DT, we can get the one-soliton solution for

Eq. (1) as follows

q½1� ¼ 2b1sech 2h1ð Þe
�2i f1þ2l2

R t

�1
b1dt

0
� �

ð29Þ

with

h1 ¼ b1x�
Z

m1 b1 � 4 m2 a1 b1 þ 4 m b1
3 � 3a1

2b1
� �� 	

dt þ h10;

ð30Þ

f1 ¼ a1x�
Z

m1 a1 � 2 m2 a1
2 � b1

2
� ��

�4m a31 � 3a1b
2
1

� �
�dt þ f10;

ð31Þ

where h10; f10 are real constants.

From the single soliton, we can find that amplitude for

the envelope is determined by

2jb1j ¼

c1e
�l1t if l2 ¼ 0;
4c1

c2
1
tþc2ð Þ2þ64l2

2

if l1 ¼ 0; l2 6¼ 0;

4c1l21e
�l1 t

c2
1
e�l1 tþc2l1ð Þ2þ64l2

1
l2
2

if l1 6¼ 0; l2 6¼ 0;

8>>><
>>>:

ð32Þ

with a positive arbitrary real constant c1 and an arbitrary

real constant c2. It relies on time and has relationship with

l1 and l2, but it is independent from m; m1 and m2. The
trajectory of its wave center is described by

b1x�
Z

m1b1�4m2a1b1þ4m b1
3�3a1

2b1
� �� 	

dtþh10¼0:

ð33Þ

This analytical solution shows a feature of the nonau-

tonomous soliton: it evolves along a curve contrast with a

straight line of the usual soliton [56, 57]. The special case

of l2 ¼ 0 has been discussed by us before [58]. Here we

focus on other cases and depict jq½1�j2 in Figs. 1 and 2.

There is an important difference in the evolution

dynamics of the solution of the homogeneous case and the

inhomogeneous one. In the homogeneous case, the peak of

the pulse is located at the constant arbitrary position. In

contrast, the presence of inhomogeneity results in a mov-

able pulse. However, the results presented before are

qualitatively different since the characteristic scales of

inhomogeneity of the plasma density and the external

magnetic field are taken into account [59].

In Fig. 1, the soliton is central symmetric around the

peak point ð�1; 0Þ with parameter l1 ¼ 0; l2 ¼ 1. The

width experiences the process of decreasing-increasing

with time while the amplitude experiences increasing-de-

creasing. This means that at large times, the pulse has a

small amplitude and large width. The symmetric S-type

trajectory is clear in the contour plot. The one-dimensional

profiles of single soliton at different times and the
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monotonically increasing trajectory are also given. In

Fig. 2, the amplitude of the bright soliton also grows and

decays with time. But the velocities before and after the

peak time are different which can be observed clearly from

the non-symmetric contour plot. The slope of trajectory

shows that the collapsing process after the soliton ampli-

tude reaches the largest value is quicker and it vanishes

rapidly. Such explode-decay solitons have been reported in

many inhomogeneous systems [60–63].

3.2. Two-soliton solution

Soliton management can be realized by adjusting the

control parameters related with soliton dynamics and it is

meaningful to investigate the multi-soliton transmission. In

this section, we mainly focus on the propagation and

interaction between two solitons.

To calculate the two-soliton solution, we need a solution

of Eq. (2) with q ¼ q½1� and k ¼ k2 ¼ a2 þ ib2 to obtain

W2 ¼ ðf2; g2ÞT . The DT in Eq. (9) gives the required

solution such that

f2 ¼
k2 � k1ð Þe�iq2 þ k�1 � k1

� �
eiq2�2iq�

1 þ k2 � k�1
� �

e2i q1�q�
1ð Þ�iq2

k2 � k1ð Þ k2 � k�1
� �� 	1=2

1þ e2i q1�q�
1ð Þ

� �

� e
�2il2

R t

�1
b1dt

0

ð34Þ

g2 ¼
k2 � k1ð Þe2i q1�q�1ð Þþiq2 þ k�1 � k1

� �
e2iq1�iq2 þ k2 � k�1

� �
eiq2

k2 � k1ð Þ k2 � k�1
� �� 	1=2

1þ e2i q1�q�
1ð Þ

� �

� e
2il2
R t

�1
b1dt

0

ð35Þ

where

Fig. 1 One soliton via solution (29). (a) Intensity jqj2, (b) contour
plot of Fig. 1(a), (c) one-dimensional profiles of single soliton at

different times, t ¼ �4ðredÞ; 0ðgreenÞ; 4ðblueÞ (d) trajectory of the

single soliton in Fig. 1(a). Paremeters are m ¼ m1 ¼ m2 ¼ l2 ¼ 1;
l1 ¼ 0; a1 ¼ � t

2ðt2þ64Þ ; b1 ¼ � 4
t2þ64
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qi ¼ ki x�
Z

m1ki � 2 m2k
2
i � 4m ki

3
� �

dt þ qi0: ð36Þ

Until now, one can easily obtain the explicit two-soliton

solution given by

q½2� ¼ 2ie
�4il2

R t

�1
b1þb2ð Þdt0 A1 þ A2 þ A3 þ A4

B1 þ B2 þ B3 þ B4

ð37Þ

where the components assume the following form

A1 ¼ k1 � k�1
� �

k�2 � k�1
� �

k�2 � k1
� �

e2iq1 ; ð38Þ

A2 ¼ k�2 � k�1
� �

k2 � k�2
� �

k2 � k�1
� �

e2iq2 ; ð39Þ

A3 ¼ k1 � k�1
� �

k�1 � k2
� �

k1 � k2ð Þe2i q1þq2�q�
2ð Þ; ð40Þ

A4 ¼ k�2 � k1
� �

k�2 � k2
� �

k1 � k2ð Þe2i q1þq2�q�
1ð Þ; ð41Þ

B1 ¼ k1 � k2ð Þ k�2 � k�1
� �

; ð42Þ

B2 ¼ k�1 � k2
� �

k�2 � k1
� �

e2i q1�q�
1ð Þ þ e2i q2�q�

2ð Þ
h i

; ð43Þ

B3 ¼ k�1 � k1
� �

k2 � k�2
� �

e2i q1�q�
2ð Þ þ e2i q2�q�

1ð Þ
h i

; ð44Þ

B4 ¼ k1 � k2ð Þ k�2 � k�1
� �

e2i q1þq2�q�
1
�q�

2ð Þ: ð45Þ

We discuss the properties of the soliton interactions

under different cases which are portrayed in Figs. 3, 4, 5, 6.

In Fig. 3, two solitons propagate along same directions

with different velocities and trajectories. The collision

occur at the interaction area and both amplitudes increase

initially and gradually decrease with a phase change. The

smaller pulse with faster velocity overtakes the greater

Fig. 2 One soliton via solution (29). (a) Intensity jqj2, (b) contour
plot of Fig. 2(a), (c) one-dimensional profiles of single soliton at

different times, t ¼ �3ðredÞ;�3 ln 2ðgreenÞ;�1ðblueÞ (d) trajectory

of the single soliton in Fig. 2(a). Paremeters are m ¼ m1 ¼ l1 ¼ l2 ¼

1; m2 ¼ �1; a1 ¼
e�2t

2ðe�2t þ 64Þ, b1 ¼ � 4e�t

e�2t þ 64
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pulse with lower velocity. Furthermore, the propagation of

the greater pulse owns a S-type trajectory which implies

temporary change of propagation direction. Whereas,

Fig. 4 describes two parallel solitons whose amplitudes

also undergo an increasing-decreasing process. The two

solitons travel along paralleled curve trajectories due to the

influence of inhomogeneous parameters. A special two-

soliton solution which are localized both in space and time

is presented in Fig. 5. It exhibits the similar feature of the

so-called rogue waves, but it is based on a zero background

rather than a plane wave background. Although the

significant difference in amplitude at tiny different times

leads to the observation of only one peak, in fact, the

profiles before and after the interaction are demonstrated in

Fig. 6 to exhibit the essence of two solitons. This

figure indicates a sharp compression and strong

amplification of the nonautonomous soliton under the

action of inhomogeneity. More on the similar soliton

interactions can be seen, e.g., in Refs. [64–67].

4. Conclusions

In this paper, an inhomogeneous nonlinear Hirota equation

is investigated following the Darboux transformation

method. The representation of the DT is given by a detailed

Fig. 3 Two soliton via solution (37). (a) Head-on interactions, (b)
contour plot of Fig. 3(a), (c) soliton profiles of Fig. 3(a) at

t ¼ �5ðredÞ; 3ðgreenÞ, (d) soliton profiles of Fig. 3(a) at

t ¼ 3ðredÞ; 10ðgreenÞ. Parameters are m ¼ m1 ¼ m2 ¼ l2 ¼ 1;l1 ¼ 0;

a1 ¼ � t

2ðt2 þ 64Þ;b1 ¼ � 4

t2 þ 64
; a2 ¼ � t þ 1

2½ðt þ 1Þ2 þ 64�
; b2 ¼ �

4

ðtþ1Þ2þ64
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deduction. Based on the DT, the analytic one- and two-

soliton solutions are given. All of these solutions have

parameters denoting the contribution of inhomogeneity,

which can be used to control the dynamics of solitons. We

expect that our results can find applications in some real

physical cases. We hope that our results will be verified in

some physics experiments in the future, which will be

helpful to understand the generation mechanism and find

Fig. 4 Two soliton via solution (37). (a) Paralleled solitons, (b) contour plot of Fig. 5(a). Parameters are m ¼ 5; m1 ¼ m2 ¼ l2 ¼ 1;l1 ¼ 0;

a1 ¼ � t � 1

2½ðt � 1Þ2 þ 1�
, b1 ¼ � 1

2½ðt � 1Þ2 þ 1�
,a2 ¼ � t þ 1

2½ðt þ 1Þ2 þ 1�
, b2 ¼ � 1

2½ðt þ 1Þ2 þ 1�

Fig. 5 Two soliton via solution (37). (a) Intensity jqj2, (b) soliton profiles of Fig. 5(a) at t ¼ 0:2ðredÞ, t ¼ 0:6ðgreenÞ. Parematers are

m ¼ m1 ¼ m2 ¼ l1 ¼ 1, l2 ¼ 2, a1 ¼
e�2t þ e�t

2½ðe�t þ 1Þ2 þ 4�
, b1 ¼ � e�t

2½ðe�t þ 1Þ2 þ 4�
, a2 ¼

e�2t � 3e�t

4½ðe�t � 3Þ2 þ 4�
, b2 ¼ � e�t

2½ðe�t � 3Þ2 þ 4�
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possible applications of the nonautonomous wave in real-

istic systems.
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