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Abstract: The cosmological application of the low energy effective action of string theory with perfect fluid type matter

(satisfying p ¼ cq) is reconsidered. First, its isotropic and anisotropic spacetime cosmological solutions are obtained for

general c. The scale factor duality is applied and checked for our model as well as in the presence of c of which possible

extension to nonvanishing c is pioneered before. The asymptotic behavior of the solutions is investigated because of the

complexity of the solutions. Second, as a quantization, we apply the canonical quantization and the corresponding

Wheeler–De Witt equation is constructed for this scalar–tensor theory. By solving the Wheeler–De Witt equation the wave

function is found for general value of c. On the basis of its wave function, the tunneling rate turns out to be just the ratio of

norms of the wave function for pre- and post-big-bang phases. This result shows that the rate grows as c gets value close to
a specific value. This resolves the undetermined value for the behavior of the scale factors.
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1. Introduction

The pre-big-bang cosmology (see for a review [1] and

references therein) has been initiated with the advent of the

application of stringy duality (see for a review [2] and

references therein) to cosmology. According to the pre-big-

bang cosmology, the universe is initially in the state of

string perturbative vacuum which evolves to high curvature

regime. The crucial technical point is the invariance of the

action under duality symmetry. This duality is called a

scale factor duality (SFD) [3] due to the following prop-

erty: inversion of the scale factor aðtÞ ! aðtÞ�1
with

simultaneous shift of /ðtÞ ! /ðtÞ � 6aðtÞ where a(t) and

/ðtÞ are scale factor and dilaton, respectively.

In string theory, there is a chance for string to wrap a

compact space because of its extension in spatial direction.

In this case the theory reveals additional symmetry due to

the property of physical invariance under the duality R !
1=R where R is a radius of compact space. It is called

T-duality in string theory or equivalently O(d, d) symmetry

[4]. The scale factor duality is very reminiscent of its

T-duality because it can be embedded into O(d, d) sym-

metry of string theory.

Because of the SFD in addition to the time reversal

symmetry there may exist two more branches leading to

four branches in spacetime. The interesting branch is

accelerating and contracting one. The accelerating phase in

t\0 is related to contracting phase in t[ 0 while the

contracting phase in t\0 is related to accelerating phase in

t[ 0. They are disconnected by cosmological big-bang

singularity.

The graceful exit problem [5] arises when the acceler-

ating (pre-big-bang) phase (inflating) does not stop and

does not turn to decelerating (post-big-bang) phase. Within

the low energy effective action the smooth connection of

two branches, accelerating and contracting phases, is

problematic and is a major concern here. In two dimen-

sions the contribution of quantum back reaction smoothly

connects these two branches [6]. In four dimensions the

conformal field theoretic consideration for the full stringy

correction would smoothly connect the two branches [7].

Instead of connecting the two branches we try to find the

possibility of quantum mechanical transition between the

two branches. We apply Wheeler–De Witt equation [8] for

this job. The Wheeler–De Witt equation is considered as a

transition from pre- to post-big-bang or as an anti-tunneling*Corresponding author, E-mail: sglkorea@hotmail.com
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[9–11] in string theory effective action (for a review

see[12]). The Wheeler–De Witt equation to the Brans–

Dicke type scalar–tensor theory with cosmological con-

stant is considered in [13]:

S ¼
R
d4x

ffiffiffiffiffiffiffi�g
p

e�/ðR� xðo/Þ2 � KÞ. The parameter x is

equal to �1 for low energy string effective action. In [14],

when K ¼ 0 and specific matter is included, the tunneling

probability is obtained. In [15], the tunneling probability is

calculated for specific matter coupled and non-zero x. In
this work, we consider the string effective action with a

perfect fluid type matter, i.e., the pressure and the energy

density have a relation such as p ¼ cq.

2. Classical solution: the behavior of the cosmological

model

In this section we study the scalar–tensor theory coming

from low energy string effective action. Besides gravity

and dilaton, the only contribution to the action comes

from a perfect fluid type matter. The extra contributions

to the action are supposed to be melted in the matter

term.

The one of the general extension of Einstein general

relativity is Brans–Dicke theory. In Jordan frame the action

reads

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
UR� x

ðrUÞ2

U

 !

; ð1Þ

where U is a Brans–Dicke scalar field and g is determinant

of the metric glm. By redefining U as e�/, this action turns

out to be an action more familiar to string theorists:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
e�/ R� xðr/Þ2
� �

: ð2Þ

As a reference, in [16], the similar action called p-brane

frame action is obtained for x ¼ �½ðD� 1Þðp� 1Þ � ðpþ
1Þ2�=½ðD� 2Þðp� 1Þ � ðpþ 1Þ2� where D is a spatial

dimension and p is a dimension of brane, respectively.

This action can be identified with the so called the low

energy effective string action with gravity glm and dilaton

field / only when x ¼ �1 (p ¼ 1 or one-brane). Now let

us consider the case that includes matter contribution. We

may regard its contribution as that of coming from all other

fields. As an example, in string theory there are branes

which are sources of various tensor fields. As stated these

branes will be treated as matter. We denote the matter term

as Sm. Therefore the final action of our main concern is

given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
e�/ R� xðr/Þ2
� �

þ Sm: ð3Þ

In [17], it is shown that the matter can be identified with

D-brane [18].

2.1. Isotropic case

In this subsection, we consider the spacetime as being

homogeneous and isotropic such that the metric reads

ds2 ¼ �dt2 þ e2aðtÞdxidx
i; ði ¼ 1; 2; 3Þ: ð4Þ

The matter is assumed to be a perfect fluid type satisfying

p ¼ cq where p is a pressure and q is an energy density,

respectively.

Suppose all fields are time dependent only, and from the

results of [19], the action can be written as

S ¼
Z

dte3a�/ �6 _a2 þ 6 _a _/� _/2 � q0e
�3ð1þcÞaþ/

� �
;

ð5Þ

where we have set x to �1 and a dot (�) means the

derivative with respect to time t. Interestingly, this action is

invariant under the change of a, / and c such as

a ! �a; / ! /� 6a; c ! �c: ð6Þ

When there is no matter (q ¼ 0 and c ¼ 0), this is origi-

nally called the SFD. Note that the possible extension of

the SFD to nonvanishing c was already discussed in Ref.

[3]. (The authors thank an anonymous reviewer for point-

ing out this.) In that case the matter is identified with

classical string sources. By applying the above changes we

see that the scale factor ea is replaced by e�a. As we have

seen above, by flipping the sign of c, SFD is still applicable

to the c 6¼ 0 case, namely the case of the existence of

matter. We will discuss more detail about this case later on.

From this invariant property of the action we can generate

other solutions from one solution. One of the striking point

of SFD is the appearance of two branches, super inflating

(or accelerating) and deflating one, respectively. Even

though they are disconnected classically, it seems quite

natural phenomena to a pre-big-bang cosmology.

Now let us try to find out the classical solution to study

the behavior of scale factor and dilaton. If we introduce s
such that
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dse3a�/ ¼ dt; ð7Þ

we get the following action:

S ¼
Z

ds �6a02 þ 6a0/0 � /02 � q0e
3ð1�cÞa�/

� �
; ð8Þ

where the prime (0) means the derivative with respect to s.
In order to simplify the action further, we introduce new

variables, X and Y such that

X ¼� 1

2
3ð1� cÞa� /ð Þ;

Y ¼ aþ 2c
1� 3c2

X:
ð9Þ

Then, we have the simplified action:

S ¼
Z

ds 3ð1� 3c2ÞY 02 � 4

1� 3c2
X02 � q0e

�2X

� �

:

ð10Þ

Here, it is easy to see that Y is free of interaction while

X is interacting with the potential term. Recalling the

SFD, we see X and Y transform under the duality like

transformation:

X ! X; Y ! �Y : ð11Þ

By varying the action we get the following equations of

motion:

X00 þ q0ð1� 3c2Þ
4

e�2X ¼ 0;

Y 00 ¼ 0:

ð12Þ

Then the solutions are given by

X ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinhð
ffiffiffi
c

p
sþ dÞ

" #

;

Y ¼As;

ð13Þ

where A, c and d are integration constants. By solving a

constraint equation

3ð1� 3c2ÞY 02 � 4

1� 3c2
X02 þ q0e

�2X ¼ 0; ð14Þ

A is determined to be as follows:

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c

3ð1� 3c2Þ2

s

! 2
ffiffiffi
c

p
ffiffiffi
3

p
ð1� 3c2Þ

: ð15Þ

We choose þ sign here. For A to be a non-singular value c
should satisfy c 6¼ �1=

ffiffiffi
3

p
.

This completes solving the equations of motion. We

have found a and / as a function of s. Explicitly, aðsÞ and
/ðsÞ are given by

aðsÞ ¼ 2
ffiffiffi
c

p
ffiffiffi
3

p
ð1� 3c2Þ

s� 2c
1� 3c2

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinhð
ffiffiffi
c

p
sþ dÞ

" #

;

/ðsÞ ¼3ð1� cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c

3ð1� 3c2Þ

s

sþ 2ð1� 3cÞ
1� 3c2

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinhð
ffiffiffi
c

p
sþ dÞ

" #

:

ð16Þ

Since the time t and a new variable s are related by

dt ¼ e3a�/ds, we obtain the following relation by using

Eq. (16)

Z
dt ¼

Z
ds

ð1� 3c2Þq0
4c

� �� 1

1�3c2

e
2
ffiffiffi
3c

p
c

1�3c2
s
sinhð

ffiffiffi
c

p
sþ dÞ

� �� 2

1�3c2 :

ð17Þ

To analyse aðsÞ as a function of t, let us look at the

asymptotic limits of the scale factor and time with respect

to s. In the limit s ! 1, we have

t� 4c

ð1� 3c2Þq0

� � 1

1�3c2 2c
ffiffiffiffiffi
3c

p

1� 3c2
� 2

ffiffiffi
c

p

1� 3c2

� ��1

e
2ðc
ffiffi
3

p
�1Þ
ffiffi
c

p

1�3c2
s

¼ 4c

ð1� 3c2Þq0

� � 1

1�3c2

� 2
ffiffiffi
c

p

1þ
ffiffiffi
3

p
c

� �

e
� 2
ffiffi
c

p

1þ
ffiffi
3

p
c
s
;

ea � 4c

ð1� 3c2Þq0

� � 1

1�3c2

e
2ð1�
ffiffi
3

p
cÞ
ffiffi
c

p
ffiffi
3

p
ð1�3c2Þ

s ¼ 4c

ð1� 3c2Þq0

� � 1

1�3c2

e
2
ffiffi
c

p
ffiffi
3

p
ð1þ
ffiffi
3

p
cÞs:

ð18Þ

We already have the condition c 6¼ �1=
ffiffiffi
3

p
and 2c

ffiffiffiffi
3c

p

1�3c2 �
2
ffiffi
c

p

1�3c2 ¼ �1=ð1þ
ffiffiffi
3

p
cÞ is negative for c[ � 1=

ffiffiffi
3

p
while

positive for c\� 1=
ffiffiffi
3

p
. Therefore, since

ffiffiffi
c

p
is positive,

we see that t ! 0 as s ! 1 for c[ � 1=
ffiffiffi
3

p
while t ! 1

as s ! 1 for c\� 1=
ffiffiffi
3

p
, respectively. Using the

relations in Eq. (18) the scale factor ea can be written as

ea � 4c

ð1� 3c2Þq0

� � 1

1�3c2 4c

ð1� 3c2Þq0

� �� 1

1�3c2

 

2c
ffiffiffiffiffi
3c

p

1� 3c2
� 2

ffiffiffi
c

p

1� 3c2

� �

tÞ
�1ffiffi
3

p

¼ 4c

ð1� 3c2Þq0

� � 1þ
ffiffi
3

p
ffiffi
3

p
ð1�3c2Þ

� 2
ffiffiffi
c

p

1þ
ffiffiffi
3

p
c

� �� 1ffiffi
3

p

t
� 1ffiffi

3
p
:

ð19Þ

As a function of t we see that the scale factor ea behaves

ea ! t�1=
ffiffi
3

p
. Likewise as s ! 0, we have the ralation

t� 4c

ð1� 3c2Þq0

� � 1

1�3c2

ð2
ffiffiffi
c

p
Þ�

2

1�3c2
1

s

� � 2

1�3c2

;

ea � 4c

ð1� 3c2Þq0

� � 1

1�3c2

ð2
ffiffiffi
c

p
Þ�

2c

1�3c2
1

s

� � 2c

1�3c2

:

ð20Þ
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Hence, we have t ! 1 when �1=
ffiffiffi
3

p
\c\1=

ffiffiffi
3

p
while

t ! 0 when c[ 1=
ffiffiffi
3

p
or c\� 1=

ffiffiffi
3

p
as s ! 0 . As a

function of time t, the scale factor is given by

ea � 4c

ð1� 3c2Þq0

� � 1

1�3c2

ð2
ffiffiffi
c

p
Þ�

2c

1�3c2

4c

ð1� 3c2Þq0

� �� 1

1�3c2

ð2
ffiffiffi
c

p
Þ

2

1�3c2 t

 !c

¼ 4c

ð1� 3c2Þq0

� � 1�c

ð1�3c2Þq0
tc:

ð21Þ

Therefore, we have the scale factor ea � tc. We summarize

that for �1=
ffiffiffi
3

p
\c\1=

ffiffiffi
3

p
, the behavior of time t is that

t ! 0ðs ! 1Þ and t ! 1ðs ! 0Þ. The scale factor

behaves ea � t�1=
ffiffi
3

p
and ea � tc, respectively. According to

the study in [20], this solution has a curvature singularity.

From our t and s relation, the singularity might have

originated in the behavior of finite running of t for full

range of s.

2.2. Anisotropic case

In this subsection, the anisotropic spacetime is considered.

Even though the present spacetime is observed as homo-

geneous and isotropic, near the big bang or in the very

early universe we can assume different spacetime. We will

consider the most simple anisotropic spacetime. The metric

of this spacetime is the following:

ds2 ¼ �dt2 þ e2a�2bdx2 þ e2ady2 þ e2aþ2bdz2: ð22Þ

Here b plays the role of breaking the isotropic property of

the spacetime. In this case the action can be written as

S ¼
Z

dte3a�/ �6 _a2 þ 6 _a _/þ 2 _b2 � _/2 � q0e
�3ð1þcÞaþ/

� �
:

ð23Þ

The above action respects the following symmetry which is

an analogue of SFD to the anisotropic spacetime:

a ! �a; b ! �b; / ! /� 6a; with c ! �c:

ð24Þ

Following the same procedure taken in the isotropic case

we simplify the action with the new introduction of

variables, V and W:

S ¼
Z

ds 3ð1� 3c2ÞV 02 þ 6b02 � 4

1� 3c2
W 02 � q0e

�2W

� �

;

ð25Þ

where

V ¼ aþ 2c
1� 3c2

W ; �2W ¼ 3ð1� cÞa� /: ð26Þ

The equations of motions for these variables are given by

V 00 ¼ 0; b00 ¼ 0;

W 00 þ q0ð1� 3c2Þ
4

e�2W ¼ 0:
ð27Þ

Suppose that q0 [ 0 and �1=
ffiffiffi
3

p
\c\1=

ffiffiffi
3

p
, then the

solutions for the above equations of motions are the

following:

V ¼ As; b ¼ Bs;

W ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0ð1� 3c2Þ

4c

r

sinh
ffiffiffi
c

p
s

" #

:
ð28Þ

The constraint equation eliminates one of the constants.

We find the relation between them as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c

3ð1� 3c2Þ2
� 2B2

1� 3c2

s

: ð29Þ

To be a real value the sign inside the square root is required

to be a positive and B should satisfy

B2\
2c

3ð1� 3c2Þ : ð30Þ

Hence by rearranging the variables we get

a ¼ � 2c
1� 3c2

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinh
ffiffiffi
c

p
s

" #

;

/ ¼ � 4

1� 3c2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinh
ffiffiffi
c

p
s

" #

þ 3ð1� cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1� 3c2Þ �
2B2

1� 3c2

s

s;

3a� / ¼ � 2

1� 3c2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3c2Þq0

4c

r

sinh
ffiffiffi
c

p
s

" #

þ 3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1� 3c2Þ2
� 2B2

1� 3c2

s

s:

ð31Þ

Now the interpretations for the solutions are the

following. First let us consider the limit s ! 1. In this

limit, we find
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t � t0 � e

�2
ffiffi
c

p

1�3c2
sþ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
s
;

ea�b � e

�2c

1�3c2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
s�Bs

�ðt � t0Þ

� 2c

1�3c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
�B

� 2
ffiffi
c

p

1�3c2
þ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

;

ea � e
� 2c

1�3c2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ
� 2B2

1�3c2

q
s
�ðt � t0Þ

� 2c

1�3c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

� 2
ffiffi
c

p

1�3c2
þ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

:

ð32Þ

If we consider B and c with �1=
ffiffiffi
3

p
\c\1

ffiffiffi
3

p
such that

�2
ffiffiffi
c

p
=ð1� 3c2Þ þ 3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c=ð3ð1� 3c2ÞÞ � 2B2=ð1� 3c2Þ

p
\0;

ð33Þ

the limit s ! 1 corresponds to the finite time t ! t0.

Since the time t runs in finite range for a given param-

eter s ranging �1\s\1 the spacetime might have a

curvature singularity. Moreover as time approaches that

point t0 (this time would indicate a big bang) the scale

factors ea�b and ea behave differently showing the ani-

sotropic spacetime.

In the limit s ! 0, we have the following relations

t � t0 � s
�2

c

1�3c2 ;

ea�b � s
�2

c

1�3c2 �ðt � t0Þc;

ea � s
�2

c

1�3c2 �ðt � t0Þc:

ð34Þ

So we have t ! 1 as s ! 0. We see that the scale factors

ea�b and ea behave the same way corresponding to the

isotropic spacetime.

In the limit s ! �1, we have the following relations

t � t0 � e

2
ffiffi
c

p

1�3c2
sþ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
s
;

ea�b � e

2c

1�3c2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
s�Bs

�ðt � t0Þ

2c

1�3c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q
�B

2
ffiffi
c

p

1�3c2
þ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

;

ea � e
2c

1�3c2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ
� 2B2

1�3c2

q
s
�ðt � t0Þ

2c

1�3c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

2
ffiffi
c

p

1�3c2
þ3c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c

3ð1�3c2Þ2
� 2B2

1�3c2

q

:

ð35Þ

In summary, we see that in the limit s ! �1, t goes to

t0 and the scale factors ea�b and ea behave differently

which represents anisotropic universe while the scale

factors ea�b and ea become tc for s ! 0 (t ! 1) which

represents isotropic universe. This model is consistent in

the sense that the current universe is isotropic. In the later

section we find that the quantum mechanical analysis helps

pick out c.

3. Wheeler–De Witt equation

In this section we study the canonical quantization. We

construct the Wheeler–De Witt equation [8] based on the

action above as a way of quantization. The wave function

as a solution makes it possible to interpret the universe as

quantum mechanically: the wave function of the universe.

In this way, we finally calculate the probability of the

universe. In fact, here, we calculate the transition rate

between the two branches: pre- and post-big-bang universe

[9–11] (for a review see [12]).

First, from the Sect. 2, the Lagrangian for the action can

be read:

L ¼ 3ð1� 3c2ÞY 02 � 4

1� 3c2
X02 � q0e

�2X ¼ 0: ð36Þ

The canonical momenta for each X and Y are obtained by

applying pq ¼ oL=o _q. They are given by

pX ¼ � 8

1� 3c2
X0; pY ¼ 6ð1� 3c2ÞY 0: ð37Þ

Under the SFD, pX is invariant while pY changes it sign.

With the inclusion of solutions X and Y, the two conjugate

momenta read

pX ¼� 8

1� 3c2
X0 ¼ � 8

ffiffiffi
c

p

1� 3c2
coshð

ffiffiffi
c

p
sþ dÞ

sinhð
ffiffiffi
c

p
sþ dÞ ;

pY ¼6ð1� 3c2ÞY 0 ¼ 12

ffiffiffi
c

3

r

¼ 4
ffiffiffiffiffi
3c

p
:

ð38Þ

The Hamiltonian is thus obtained by the relation H ¼
pq _q� L and then the result is given by

H ¼ 1

12ð1� 3c2Þ p
2
Y � ð1� 3c2Þ

16
p2X þ q0e

�2X: ð39Þ

The quantization is implemented through the

introduction of operators for each conjugate momentum

pX and pY such as pX ¼ ioX and pY ¼ ioY . By putting these

operators in the Hamiltonian we get the Wheeler–De Witt

equation

� 1

12ð1� 3c2Þo
2
Y þ

ð1� 3c2Þ
16

o2X þ q0e
�2X

� �

WðX;YÞ ¼ 0:

ð40Þ

By dividing by ð1� 3c2Þ=16 and in order to apply the

separation of variables we put WðX;YÞ as

WðX; YÞ ¼ WðXÞei
ffiffi
3

p
ð1�3c2Þ
2

kY ¼ eik
0Y ;where k0 ¼

ffiffiffi
3

p
ð1� 3c2Þ

2
k:

ð41Þ

Then, we simplify the equation further and obtain the

following equation:
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k2 þ o2X þ 16q0
1� 3c2

e�2X

� �

WðXÞ ¼ 0: ð42Þ

This is a well known Bessel equation. The solution is

WðXÞ ¼ Z�ikð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1� 3c2Þ

p
e�XÞ where Z�k is a linear

combination of Bessel functions of order �ik. In the limit

z ! 0 for Bessel function JmðzÞ, we see JmðzÞ ! zm. So we

choose m ¼ �ik. The solution for the pre-big-bang branch

near singularity is given by

WðX; YÞ ¼ J�ik 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

1� 3c2

r
e�X

� �

ei
ffiffi
3

p

2
ð1�3c2ÞkY : ð43Þ

The momentum conjugate is given by

pYW ¼ i
oW
oY

¼ �k0W ¼ �
ffiffiffi
3

p

2
ð1� 3c2ÞkW: ð44Þ

When X ! 1 (near singularity) the potential term,

q0e
�X , becomes negligible, so it is a free wave. For this

case the wave solution looks like Wð�Þ
þ1 � e�ikðY 0�XÞ

¼ e�ikð
ffiffi
3

p

2
ð1�3c2ÞY�XÞ. The eigenvalue of pX is given by

limX!1 pXW
ð�Þ
þ1 ¼ ioXW

ð�Þ
þ1 ¼ �kWð�Þ

þ1. Hence, the wave

functions WðþÞ
þ1 and Wð�Þ

þ1 represent that of the pre- and

post-big-bang branches, respectively. Here Y is timelike

and the minisuperspace metric is �dY2 þ dX2. When

X ! �1 we get the following:

lim
X!�1

W ¼ WðþÞ
�1 þWð�Þ

�1; ð45Þ

where

Wð�Þ
�1 ¼ 8p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

1� 3c2

r
e�X

� ��1
2

e
�ik
ffiffi
3

p

2
ð1�3c2ÞY�i4

ffiffiffiffiffiffiffi
q0

1�3c2

p
e�X�ip

4
�p

2
k
:

ð46Þ

The transition rate R between the two branches is then

given by

R ¼ jW�j2

jWþj2
¼ e�2pk ¼ e

�2p 2ffiffi
3

p
ð1�3c2Þ

k0
: ð47Þ

If we insert the value k0 with the help of the following

relation

pY ¼ 6ð1� 3c2ÞY 0 ¼ �k0 ¼ 6ð1� 3c2Þ2
ffiffiffi
c

3

r
1

1� 3c2
¼ 4

ffiffiffi
3

p
c;

ð48Þ

we see that the tunneling rate becomes divergent when

c ! 1=
ffiffiffi
3

p
. As an interpretation this means that after the

transition the universe is dominantly made up of a perfect

type matter with c close to the value 1=
ffiffiffi
3

p
. In this case the

scale factor behaves like tc � t
1ffiffi
3

p þ�
where �\\1.

We now discuss the Wheeler–De Witt equation for the

anisotropic case. Since the action is given by

S ¼
Z

ds 3ð1� 3c2ÞY 02 þ 6b02 � 4

1� 3c2
X02 � e�2X

� �

;

ð49Þ

the corresponding conjugate momenta are then read

PY ¼ 6ð1� 3c2ÞY 0; Pb ¼ 12b0; PX ¼ � 8

1� 3c2
X0:

ð50Þ

The Hamiltonian becomes

H ¼ P2
Y

12ð1� 3c2Þ þ
P2
b

24
� 1� 3c2

16
P2
X þ q0e

�2X : ð51Þ

By introducing PX ¼ �ioX , Pb ¼ �ib, and PY ¼ �ioY , the

Wheeler–De Witt equation HWðX; Y; bÞ ¼ 0 becomes

k2Y
12ð1� 3c2Þ þ

k2b

24
þ 1� 3c2

16
o2X þ q0e

�2X

 !

WðXÞ ¼ 0;

ð52Þ

where we put WðX; Y ; bÞ ¼ WðXÞeikYþikb . By introducing K

such that K2 ¼ 4k2Y
3ð1�3c2Þ þ

2k2b
3ð1�3c2Þ we have

o2X þ 16q0
1� 3c2

e�2X

� �

WðXÞ ¼ 0 ð53Þ

and the solution is WðX; Y ; bÞ ¼ Z�iKðzÞe�ikY�ikb where

z ¼ 4
ffiffiffiffiffiffiffiffiffi
q0

1�3c2

q
e�X . We can proceed the same steps as was

taken above and calculate the probability for this case and

we see that the anisotropic effect is not effective in our

transition rate between pre- and post-big bang. As was seen

above the probability becomes maximum when c approa-

ches to 1=
ffiffiffi
3

p
.

4. Results and discussion

The cosmological behavior has been obtained for general c
for both isotropic and anisotropic spacetime. The solution

of scale factor has a curvature singularity and the pre- and

post-big-bang branches are disconnected by the singularity.

They can not be smoothly connected classically. As a way

to solve this, so called graceful problem, the quantum

approach is introduced. In this work the canonical quanti-

zation has been proceeded using the Wheeler–De Witt

equation. By solving the Wheeler–De Wit equation the

wave function of the universe is obtained. We identify each

corresponding wave function as the two branches: pre- and

post-big-bang branch, respectively. The probability of

tunneling between the two branches has been studied and it

diverges as c approaches the boundary value: c ¼ 1=
ffiffiffi
3

p
.
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This turns out to suggest that the most probable universe

being created/observed is dominated by this specific mat-

ter. It would be interesting to consider the third quantiza-

tion and Hartle-Hawking’s boundary condition [21] instead

of Vilenkin’s one [22] studied in our work.

5. Conclusions

In this work we have considered scalar–tensor theory

coming from low energy string action with matter. The

action can be considered as a truncated low energy string

theory action. In some sense it is Brans–Dicke theory with

the parameter x fixed: x ¼ �1. The matter is treated as a

perfect fluid type satisfying the relation p ¼ cq, where p

and q are pressure and energy density, respectively. When

c is replaced by �c, we have seen that the scale factor is

still applicable.

We have discussed the somewhat general cosmological

model of isotropic as well as anisotropic spacetime. It is

open to consider further the anisotropic spacetime such as

Taub–NUT, for example.
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