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Abstract: We present charged anisotropic Durgapal IV interior solutions of the general relativistic field equations in

curvature coordinates. These exact solutions can be used to model stable and well-behaved compact stars. Using these

solutions we have presented models of well-known neutron and quark stars such as PSR J1903?0327, RX-J1856.5-3754,

PSR B1913?16, PSR J0737-3039A and Cyg X-2. The equation of state (EoS) corresponding to the modeled objects are

studied using their compression moduli. According to our solutions it is found that the EoS for Cyg X-2 (neutron star) is

stiffer than any other object presented and therefore more massive. Furthermore, the EoS for RX J1856.5-3754 (Quark star)

is the softest one, rendering it least massive. These solutions satisfy all the energy conditions. Finally, all our presented

stellar models satisfy the equilibrium condition of Cooperstock and de la Cruz i.e. M2[Q2.
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1. Introduction

In 1916, Schwarzschild constructed the first exterior exact

solution of the Einstein field equations (EFEs) for a static

and spherically symmetric matter distribution that pre-

dicted the existence of a singularity or Black Hole (BH).

Later, Schwarzschild himself also constructed the first

exact interior solution with constant density. Although this

interior solution with constant density seems to be physi-

cally insignificant, it is historically important as it is the

first interior solution for a bounded configuration. At later

stages new parameters or degrees of freedom like the

cosmological constant, anisotropic pressure, charge, rota-

tion etc. are introduced into the EFEs. Entirely new classes

of interior Schwarzschild-like charged anisotropic solu-

tions have been obtained by Singh and Pant [1]. This

particular class of solution are distinct for pr [ p?, pos-
sessing the following salient features: (1) constant stability

factor, (2) p\ becomes repulsive near the surface, (3) the

causality condition is satisfied everywhere inside the stellar

configuration and (4) the solutions feature a non-singular

central density which decreases towards the stellar surface.

These new interior solutions with charge are matched to the

exterior Reissner–Nordström solution.

Efinger [2] has been interested in the behavior of

charged particles in general relativity and thus model a

static charged sphere. Historically charged solutions of the

EFEs do not draw much interest amongst researchers as

one expected that the contribution of the electromagnetic

field to the behavior of the stellar fluid is negligible. Since

the electric field is only along the radial direction, it affects

the radial pressure (pr) making it different from the trans-

verse pressure (p\). Today it is well known that inclusion

of electric charge makes the fluid anisotropic. Interest in

the study of anisotropic bounded configurations has

received widespread attention (Gron [3], de Leon [4] and

Roy et al. [5]).

Buchdahl [6], has derived an upper bound for the

compactness parameter M/R beyond which there is a for-

mation of singularity. By making a few physically rea-

sonable assumptions on the matter such as non-increasing

density w.r.t. the radial coordinate, a perfect fluid and the

exterior solution being the Schwarzschild vacuum solution,

he finds the upper bound of the compactness parameter to*Corresponding author, E-mail: ntnphy@gmail.com

Indian J Phys (November 2016) 90(11):1215–1223

DOI 10.1007/s12648-016-0870-5

� 2016 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-016-0870-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-016-0870-5&amp;domain=pdf


be 4/9. This is because of the quantity 1 - 2 M/R must be

strictly positive. However, this ratio can acquire a mini-

mum value of 1/9. This minimum limit arises from the

condition that g00 must be non-negative everywhere.

This upper bound is generalized for a charged aniso-

tropic object by Andréasson [7] where he imposes an

additional condition pr þ 2p? � q and found a sharp bound

given as M=R� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3Q2=R2
p

h i2

=9 called the Buch-

dahl–Andréasson bound. The radius of all configurations

satisfying Buchdahl–Andréasson condition is above the

gravitational radius given by rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � Q2
p

. For

the case of a neutral configuration Q = 0, we immediately

get rþ ¼ 2M which is the Schwarzschild limit. For the case

of Q ¼ R;M=R is essentially B1. Hence the upper bound

gives R = M and the configuration is within a gravitational

radius rþ ¼ M. The extreme conditions rþ ¼ R ¼ Q ¼ M

configuration is of Quasi-Black Holes. From the equation

of gravitational radius rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � Q2
p

, it is easily

seen that due to the inclusion of electric charge (for

Q = 0) makes rþ smaller without the formation of a sin-

gularity. Hence we can conclude that inclusion of electric

charge inhibits the formation of black hole and thus avoids

the mathematical singularity. This very idea is also pre-

sented by Ivanov [8] and Bonnor [9]. Mehra [10] has

constructed an interior solution that inhibits singularity.

Florides [11] has also considered charged perfect fluid

solutions that described the interior of bounded

configurations.

Cooperstock and de La Cruz [12] have discussed a

charged fluid distribution in equilibrium. Their studies

show that a necessary condition is to maintain equilibrium

of charged configuration: mðrÞ2 [ qðrÞ2. This condition

can be easily appreciated from the concept of Buchdahl–

Andréasson bound and its corresponding gravitational

radius. If mðrÞ2\qðrÞ2 is satisfied, then the gravitational

radius rþ becomes non-physical as the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðrÞ2 � qðrÞ2
q

is imaginary.

During the contracting stages of collapsing stars, there

would never be any free fall because of the virial theo-

rem, which says that a self-gravitating system would

become hotter and emit radiation, Mitra [13]. Conse-

quently, pressure gradient forces would always be present

even if a star loses hydrostatic equilibrium. Usually the

pressure is of kinetic origin, however for a hot star, there

is always some radiation pressure. Even by Newtonian

physics, there could be sufficiently hot and massive

configurations where hydrostatic equilibrium is main-

tained almost entirely by radiation pressure rather than

kinetic gas pressure. This idea was proposed long back by

Hoyle and Fowler, when they postulated that the so-called

‘‘Black Holes (BH)’’ at the center of quasars could be

Newtonian super-massive stars supported entirely by

radiation pressure (Hoyle and Fowler [14]; Fowler [15]).

A virial theorem in general relativity is obtained by Mitra

[16] showing that physical gravitational collapse must

always be accompanied by emission of radiation and no

pressure free or even adiabatic gravitational collapse.

Using these concepts Singh and Pant [17] modeled the

central engine of a quasar, which turns out to be a huge

radiation-supported star (Eddington’s Star) rather than a

true BH. Pant and Tewari [18] and Pant and Tewari [19]

have also presented similar models of radiating stars. The

inclusion of radiation not only makes the model more

physically viable but also plays a significant role in

avoiding the formation of a singularity or BH.

There have been numerous studies incorporating pres-

sure anisotropy in stellar models, e.g. a solid core com-

posed of type-IIIA superfluid, Kippenhahn and Weigert

[20]. Sokolov [21] has suggested that phase transitions

from normal states of pions to superconducting states can

generate pressure anisotropy. Sawyer [22] has also sug-

gested that a phase transition from normal state of meson to

condensate state leads to anisotropy. At such high densities

&1015 g cm3, nuclear matter may be anisotropic when its

interactions are relativistic [23]. During the post main-se-

quence of a star, due to flux conservation, its magnetic field

is confined in a smaller region and the surface magnetic

field reaches up to 1011–1013 G when it forms a NS. Weber

[24] has suggested that this immense magnetic field may

generate pressure anisotropy. Furthermore a strong mag-

netic field may affect the transport coefficients and may

render transport properties anisotropic. This can lead to

anisotropy in pressure as well, Yakovlev [25, 26]. If the

magnetic field exceeds 1018–1019 G, the virial theorem is

violated leading to dynamical instability during hydrostatic

equilibrium [27]. In other words, the magnetic energy must

not exceed the gravitational binding energy i.e. B2R3/

6 B 3GM2/5R.

The possible existence of stable quark stars is discussed

by Baym and Chin [28], Keister and Kisslinger [29].

Witten [30] has pointed out that Fe56 is not the true ground

state of the hadrons where nuclear fusion stops at the stages

of post-main sequences. Witten [30] has argued that there

is in fact no NS at all. Strange matter consisting roughly of

equal numbers of u, d and s quarks with small amount of

electrons to guarantee charge neutrality, is absolutely

stable at densities comparable to atomic nuclei. They can

exist in lumps of size ranging from a few fm to strange

stars of radius *10 km.

Recently, many articles have been presented not only for

charged configuration but also include pressure anisotropy.

Dev and Gleiser [31, 32], Marcelo and Dev [33] have

shown that the presence of anisotropic pressures in charged

matter enhances the stability of the configuration under

radial adiabatic perturbations as compared to isotropic
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matter. Herrera and Santos [34] have also discussed an

anisotropic model that can be a stable configuration if

�1� v2? � v2r � 0. There have been several recent investi-

gations of bounded fluid configuration incorporating charge

and pressure anisotropy: Pradhan and Pant [35], Singh

et al. [36, 37], Pant et al. [38] and Maharaj and Govender

[39, 40]. The study of charged stellar configurations in the

presence of pressure anisotropy and an equation of state are

studied by several authors utilizing curvature coordinates

(Takisa et al. [41], Takisa and Maharaj [42], Maharaj et al.

[43], Sunzu et al. [44, 45]). Charged compact stars obeying

a linear equation of state and pressure anisotropy is dis-

cussed by Ngubelanga et al. [46]. Utilising isotropic

coordinates and a transformation due to Kustaanheimo and

Qvist [47], they are able to derive exact solutions of the

EFE’s for charged, static spheres which have accounted for

the observed masses of strange star candidates. These

results are later generalized to include a quadratic equation

of state (Ngubelanga and Maharaj [48]).

2. Conditions for well-behaved solutions

In order to generate physically viable solutions describing

anisotropic fluid spheres the following conditions should be

satisfied:

1. The solution should be free from physical and

geometric singularities; i.e. it should yield finite and

positive values of the central pressure, central density

and nonzero positive value of emjr¼0 and ekjr¼0¼ 1.

2. Following Bondi [49] and Esculpi et al. [50], the

solution should have positive value for ratio of trace of

energy stress tensor to energy density (pr ? 2p\)/c
2q,

and less than 1 (weak energy condition) and less than

1/3 (strong energy condition) throughout the interior of

star, decreasing monotonically outward.

3. The casualty condition should be obeyed i.e. velocity

of sound should be less than that of light throughout

the model. In addition to the above the velocity of

sound should be decreasing towards the surface i.e.
d
dr

dpr

dq \0 or d2pr

dq2 [ 0 and d
dr

dp?
dq \0 or d2p?

dq2 [ 0 for

0 B r B rb i.e. the velocity of sound is increasing with

the increase of density and it should be decreasing

outwards.

4. dpr

dq � pr

q should be satisfied everywhere within the ball.

The adiabatic index, c ¼ prþq
pr

dpr

dq for realistic matter

should be c[ 1.

5. The red shift z should be positive, finite and mono-

tonically decreasing in nature with the increase in r.

6. Electric field intensity E, such that Er¼0 ¼ 0, is taken

to be monotonically increasing. The proper charges

density rðrÞ also has to be well behaved in the interior.

7. The anisotropy factor D should be zero at the center

and increasing towards the surface.

8. For a stable anisotropic compact star, �1� v2? �
v2r � 0 must be satisfied, Herrera and Santos [34].

9. For realistic stars, the compression modulus ke ¼ cpr

must be decreasing outwards.

3. Einstein–Maxwell field equations of anisotropic

charged fluid distributions

The interior metric of a static spherically symmetric matter

distribution in curvature coordinates is given by,

ds2 ¼ c2em rð Þdt2 � ek rð Þdr2 � r2 dh2 þ sin2 hd/2
� �

ð1Þ

The Einstein–Maxwell field equations for a charged and

anisotropic fluid distribution are given as

R
l
n �

1

2
Rg

l
n ¼ � 8pG

c4
T
l
n ð2Þ

The quantity T
l
n is the energy–momentum tensor

T
l
n ¼ p? þ qc2

� �

vlvn � p?d
l
n þ pr � p?ð Þvnvl

h

þ 1

4p
�FlaFna þ

1

4
dlnFabFab

� �� ð3Þ

where R
l
n is Ricci tensor, Tn

l is energy–momentum tensor, R

the scalar curvature, Fab is the electromagnetic field tensor,

pr and p? denotes radial and transverse pressure, q the

density distribution, vi the four velocity and vj is the unit

space-like vector in radial direction. The energy–momentum

tensor can be represented by a matrix as given below:

Ta
n ¼

qc2 þ E2 0 0 0

0 �pr þ E2 0 0

0 0 �p? � E2 0

0 0 0 �p? � E2

2

6

6

4

3

7

7

5

ð4Þ

Here E ¼ qðrÞ=r2 represents the electric field intensity due

to the presence of electric charge. The quantity Fa
n is the

electromagnetic field tensor defined by

Fa
n ¼ oAa

oxn
� oAn

oxa
ð5Þ

satisfying the Maxwell’s equations given as

1
ffiffiffiffiffiffiffi�g

p
o

oxa
ffiffiffiffiffiffiffi�g

p
Fa
n

� 	

¼ �4pjn and

F
ab
;n þ Fbn

;a þ Fna
;b ¼ 0

ð6Þ

Here the quantity g is the determinant of ga
n;Al ¼

u rð Þ; 0; 0; 0ð Þ with uðrÞ is the magnetic scalar potential.

Also the jn is the 4-current density and defined by
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jn ¼ r
ffiffiffiffiffiffi

g00
p

dxn

dx0
ð7Þ

where r is the proper charge density. For a static fluid

configuration, the non-zero components of the four-current

density is j0 and function of r only because of spherical

symmetry. From Eq. (6) we get

F01 ¼ �e mþkð Þ=2 qðrÞ
r2

with qðrÞ ¼ 4p
Z

r

0

ek=2rw2dw

ð8Þ

For the metric Eq. (1), the Einstein–Maxwell field

equations reduce to the following system:

jpr ¼
m0

r
e�k � 1� e�k

r2
þ q2

r4
ð9Þ

jp? ¼ e�k m00

2
� k0m0

4
þ m

02

4
þ m0 � k0

2r

� �

� q2

r4
ð10Þ

jq ¼ k0

r
e�k þ 1� e�k

r2
� q2

r4
ð11Þ

rðrÞ ¼ e�k=2

4pr2
r2E
� �

0
ð12Þ

where a prime (0) denotes differentiation w.r.t. the radial

coordinate, j = 8pG/c4 and q is the charge enclosed within

a sphere of radius r. By assuming e�k ¼ Y ; em ¼ B 1þ xð Þ4
(Durgapal [51]) with x ¼ c1r

2, Eqs. (9) and (10) reduce to

dY

dx
þ 7x2 � 2x � 1

x 1þ 5xð Þ 1þ xð Þ Y þ x þ 1

1þ 5xð Þ
1

x
� D

c1
� 2E2

c1

� �

¼ 0

where D ¼ j p? � prð Þ:
ð13Þ

4. A new class of solutions

To solve Eq. (13) we assume that

D
c1

¼ dx 1þ 5xð Þ�2s

1þ xð Þ3
E2

c1
¼ c1q2

x2
¼ Kx 1þ 5xð Þ�2n

1þ xð Þ3
ð14Þ

Here d;K � 0 are the measure of the anisotropy and charge

respectively. We have assumed the anisotropy and electric

field intensity in such a way that Eq. (13) is integrable and

the solutions are well-behaved. Also anisotropy and electric

field intensity must be increasing from the center to the

surface in order to obtain physically acceptable solutions.

Choosing such forms of anisotropy and electric field in

Eq. (14) makes the solutions comparatively simpler.

Moreover, the choices in Eq. (14) ensure that the resulting

solutions of Eq. (13) are physically viable. With these

choices the solutions of Eq. (13) are

YðxÞ ¼ 1

x þ 1ð Þ2

7� 10x � x2

7
þ dx 1þ 5xð Þ�2s

2� 10s
þ Kx 1þ 5xð Þ�2n

2� 10n

" #

þ Ax 1þ 5xð Þ�2=5

x þ 1ð Þ2
ð15Þ

Now the pressures, density and proper charge density

reduce to

j
c1

pr ¼� 16 x2 þ 7x � 2ð Þ
7 1þ xð Þ3

þ A 7x � 1ð Þ
1þ xð Þ3 1þ 5xð Þ

2
5

� d 1þ 9xð Þ 1þ 5xð Þ�2s

10s � 2ð Þ 1þ xð Þ3

þ K 5nx � 10x � 1ð Þ 1þ 5xð Þ�2n

10n � 2ð Þ 1þ xð Þ3

ð16Þ

j
c1

p? ¼ j
c1

pr þ
dx 1þ 5xð Þ�2s

1þ xð Þ3
ð17Þ

j
c1

qc2 ¼ 8 x2 þ 2x þ 9ð Þ
7 1þ xð Þ3

þ A 19x2 þ 2x � 1ð Þ
1þ xð Þ3 1þ 5xð Þ7=5

� d 20sx2 þ 5x2 þ 20sx � 14x � 3ð Þ
10s � 2ð Þ 1þ xð Þ3 1þ 5xð Þ2sþ1

þ K 45nx2 þ 25nx � 15x � 3ð Þ
10n � 2ð Þ 1þ xð Þ3 1þ 5xð Þ2nþ1

ð18Þ

rðxÞ ¼ c1
ffiffiffiffi

K
p

4p
YðxÞ 3� 5 2n � 3ð Þx � 10nx2

1þ xð Þ5=2 1þ 5xð Þnþ1

 !

ð19Þ

By differentiating Eqs. (16)–(18) with respect to x we get

j
c1

dpr

dx
¼ 16 x2 þ 12x � 13ð Þ

7 1þ xð Þ4
� 12A 7x2 � 2x � 1ð Þ

1þ xð Þ4 1þ 5xð Þ
7
5

� Kf1 xð Þ

þ df2ðxÞ ð20Þ

j
c1

dp?
dx

¼ j
c1

dpr

dx
� d

10 1þ sð Þx2 þ 10s � 3ð Þx � 1

1þ xð Þ4 1þ 5xð Þ2sþ1

" #

ð21Þ

jc2

c1

dq
dx

¼ Kf3 xð Þ þ df4 xð Þ � f5 xð Þ

� 4A 51x3 � x2 � 13x � 3ð Þ
1þ xð Þ4 1þ 5xð Þ

12
5

ð22Þ

where

f1ðxÞ¼
7þ15x�100x2þ50n2x 1þxð Þ�5n 10x2þ25xþ3ð Þ

10n�2ð Þ 1þxð Þ4 1þ5xð Þ2sþ1

ð23Þ
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f2ðxÞ ¼
5s 9x2 þ 10x þ 1ð Þ þ 45x2 � 6x � 3

5s � 1ð Þ 1þ xð Þ4 1þ 5xð Þ2sþ1
ð24Þ

f3ðxÞ ¼
5n 90x3þ 9x2� 44x� 11ð Þþ 50n2x 9x2þ 14xþ 5ð Þ� 9 1þ 5xð Þ2

10n� 2ð Þ 1þ xð Þ4 1þ 5xð Þ2nþ1

ð25Þ

f4ðxÞ ¼
5s 25x3þ 3x2� x� 3ð Þþ 100s2x2 1þ xð Þþ 25x3þ 35x2� 29x� 15

5s� 1ð Þ 1þ xð Þ4 1þ 5xð Þ2 sþ1ð Þ

ð26Þ

f5ðxÞ ¼
8 10x4 þ 40x3 þ 61x2 þ 46x þ 33ð Þ

7 1þ xð Þ4
ð27Þ

5. Properties of the new solutions

The central pressures and density are non-singular finite

positive numbers, which are necessary for a physical sys-

tem and are given as

j
c1

pr


 �

r¼0

¼ j
c1

p?


 �

r¼0

¼ 32

7

¼ K

10n � 2
� d
10s � 2

� A[ 0 ð28Þ

This gives an upper limit on A as

A\
32

7
� K

10n � 2
� d
10s � 2

ð29Þ

The central density can be shown to be a finite value

j
c1

qc2

 �

r¼0

¼ 72

7
� 3K

10n � 2
þ 3d
10s � 2

� A[ 0 ð30Þ

The proper charge density possesses a finite value at the

center of the star and thus well behaved i.e.

rðr ¼ 0Þ ¼ 3c1
ffiffiffiffi

K
p

4p
[ 0 ð31Þ

It can also be shown that the pressures and density

decrease from the centre to the surface i.e.

j
c1

d2pr

dx2


 �

r¼0

\0;
j
c1

d2p?
dx2


 �

r¼0

\0;
jc2

c1

d2q
dx2


 �

r¼0

\0

ð32Þ

Further the square of speed of sound may be found as

v2r ¼ dpr

dq
; v2? ¼ dp?

dq
ð33Þ

In order to ensure that the causality condition is obeyed

we must have v2r=c2\1 and v\
2 /c2\ 1. For a

stable configuration under radial perturbation, the

stability factor must satisfy �1� v2? � v2r � 0 [33]. The

expression for gravitational red-shift and adiabatic index

can be written as

z ¼ e�m=2 � 1 ¼ 1þ xð Þ�2

ffiffiffi

B
p � 1; c ¼ pr þ qð Þ

pr

dpr

dq
ð34Þ

Since the central value of gravitational red-shift should

be non-zero positive finite, we have a constraint on B as

0\
ffiffiffi

B
p

\1. In order to compare the stiffness or softness of

the corresponding EoSs obtained from our solutions; the

best way is to compare the compression moduli, je defined

as (Haensel et al. [52])

ke ¼ cpr ð35Þ

Since we expect the core of the star to be more compact,

the value of compression modulus must be highest at the

center and decreases outwards.

6. Boundary conditions

The interior solution of a charged stellar model is expected

to match smoothly and continuously with the exterior

Reissner–Nordström solution given by

ds2 ¼ 1� 2GM

c2r
þ e2

r2

� �

c2dt2 � 1� 2GM

c2r
þ e2

r2

� ��1

dr2

� r2 dh2 þ sin2 hdu2
� �

ð36Þ

where M and e are the mass and total electric charge respec-

tively of the stellar object as seen by an external observer.

At the boundary of the star, M is the mass of the fluid

ball as determined by the external observer and r � rb is the

radial coordinate of the exterior region. Since Eq. (36) is

considered as the exterior solution, we shall arrive at the

following conclusions by matching with Eq. (1):

emb ¼ 1� 2GM

c2rb

þ e2

r2b

� �

¼ Bð1þ XÞ4 ð37Þ

e�kb ¼ 1� 2GM

c2rb

þ e2

r2b

� �

¼ YðXÞ ð38Þ

Here X ¼ c1r2b and qðr ¼ rbÞ ¼ e. For a vacuum exterior the

internal radial pressure must vanishing at the surface i.e.

prðr ¼ rbÞ ¼ 0 ð39Þ

Using Eq. (39), we can determine the constant of

integration A

A ¼ 1þ 5Xð Þ2=5

7X � 1

16 X2 þ 7X � 2ð Þ
7

� K 5nX � 10X � 1ð Þ
10n � 2ð Þ 1þ 5Xð Þ2n

"

þ d 1þ 9Xð Þ
10s � 2ð Þ 1þ 5Xð Þ2s

#

ð40Þ

Using Eqs. (37) and (38), we can determine the second

constant of integration B

Some analytic models of relativistic compact stars 1219



B ¼ 1

X þ 1ð Þ6
7� 10X � X2

7
þ KX 1þ 5Xð Þ�2n

2� 10n

"

þ dX 1þ 5Xð Þ�2s

2� 10s

#

þ AX 1þ 5Xð Þ�2=5

1þ Xð Þ6
ð41Þ

Using Eq. (37) the mass of the stellar system can be

found as

M ¼ c2rb

2G
1� B 1þ Xð Þ4þKX2 1þ 5Xð Þ�2n

2 1þ Xð Þ3

" #

ð42Þ

Over and above the discussions for physically

acceptable solutions, one should also check whether the

energy conditions are satisfied or not. Our presented

solutions need to satisfy all the energy conditions, such

as Null Energy Condition (NEC), Weak Energy Condition

(WEC), Strong Energy Condition (SEC) and Dominant

Energy Condition (DEC) throughout the interior region:

qþ pr � 0; qþ p? � 0; q� 0; qþ pr þ 2p? � 0;

q� p?j j& prj j; qþ E2 � 0; qþ p? þ E2 � 0;

qþ 2p? þ pr þ E2 � 0 ð43Þ

7. Results and discussions

It has been observed that the physical parameters

(pr; p?; q; pr=qc2; p?=qc2; v2r ; v2?; z, energy conditions, ke

and ðpr þ 2p?Þ=qc2Þ are positive at the center and within

the limits of a realistic equation of state and monotonically

decreasing (Figs. 1, 3–7). Furthermore, the anisotropic

parameter, electric field and adiabatic index possess mini-

mum at the center and increase outward (Figs. 2 and 6).

Thus the solutions are well behaved for all values of X; k

and d. By changing these parameters, we can model many
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different types of ultra-cold compact stars. We also note

from Fig. 8, the stability parameter satisfies the stability

condition �1� v2? � v2r � 0, which means that our pre-

sented solution for Cyg X-2 and all other models of com-

pact stars are stable. The proper charge density is finite at

the center and decreasing outward indicating the well-be-

haved nature (Fig. 9).

The M–R diagram in Fig. 10 signifies that for increasing

radius, the mass of the compact star increases linearly till

up to a certain configuration. However, beyond this radius,

the mass seems to saturate and increases in very small

increments. Referring to the Fig. 4, one interesting fact of

the presented solution for Cyg X-2 is that the square of

velocity of sound vr
2 and v2? are constant up to some frac-

tion of radius from center to about 0.2 (*1.66 km) and

decrease very rapidly beyond this point. The constant

velocity of sound may be interpreted as the nature of quark

core exhibiting similarity with the MIT Bag model of non-

interacting quark matter. Moreover the constant behavior
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of the velocity of sound implies that the quark core is

highly compact and almost of uniform density (i.e. q0 ¼
1:48� 1015 g cm�3 and q r ¼ 1:66 kmð Þ ¼ 1:44�
1015 g cm�3Þ:

Moreover, from Fig. 4, it is clear that v2r � v2? from a

fraction of radius around 0.8 (:6.65 km) up to the sur-

face. This can be easily explained if we refer to Fig. 2

where the anisotropy factor D is almost constant from a

fraction of radius around 0.8 till up to the surface.

Therefore dD=dx is very small or almost zero, leading to

v2r � v2?. Our finding points to Cyg X-2 having a quark

core allowing us to propose that Cyg X-2 to be a ‘‘Hybrid

Star’’.

In Table 1 we have presented some physical quan-

tities of NS and QS models based on our solutions.

Here we have given masses, radii, central densities,

minimum time period of rotation and central pressures

for the corresponding compact stars. In Fig. 7, Cyg X-2

has the highest je and decreases rapidly, which may be

because Cyg X-2 has a quark core. For all the presented

stars, the mass to charge ratio M/Q is more than one

(Table 1) showing that M2 [Q2, which is required for

equilibrium configuration as given by Cooperstock and

de la Cruz [12].

Our presented models of super dense quark stars and

neutron stars are based on the assumptions that the surface

density for quark star is qb ¼ 4:6888� 1014 g cm�3 and

for neutron star is qb ¼ 2:7� 1014 g cm�3. The parame-

ters for PSR J1903?0327 are n ¼ 0:1; s ¼ 0:284;K ¼
0:1; d ¼ 0:4 and X ¼ 0:23. The observed mass is in

agreement with the experimentally observed value of

1:667� 0:021 M� as mentioned by Freire et al. [53].

For RX J1856.5-3754, the related parameters are n ¼
0:304; s ¼ 0:29;K ¼ 0:961; d = 0.118 and X ¼ 0:17. The

observed mass is between 0.5 and 1 M� and radius within

the range of 3.8–8.2 km, Kohri et al. [54], which is in

agreement with our presented models. PSR B1913 ? 16

can be modeled using the parameters as n ¼ 0:304; s ¼
0:29;K ¼ 0:857; d = 0.118 and X ¼ 0:17. Its observed

mass is 1:4398� 0:0002 M� as given by Weisberg et al.

[55] and is also in agreement with our model.

The parameters with values n ¼ 0:304: s ¼ 0:29;K ¼
0:921; d ¼ 0:1 and X = 0.17 may be used to model PSR

J0737-3039A. The observed mass according to Burgay

et al. [56] is B1.35 M� and therefore seems to be quite

reasonable with our predictions. Finally the parameters n ¼
0:38; s ¼ 0:5;K ¼ 0:4; d ¼ 0:3 and X = 0.245 would be

appropriate to model Cyg X-2. Its observed mass is 1:71�
0:21 M� as determined by Casares et al. [57] and found to

be well fitted with our exact solution.

8. Conclusions

We have presented a class of solutions of the Einstein–

Maxwell field equations which describe bounded charged

configurations with anisotropic pressures. We have shown

that our solutions can model both NS and QS, and predict

observed physical quantities such as masses and radii

Table 1 Calculated masses, radii, central densities and pressures, mass to charge ratios and minimum period of rotation of few well known

compact star candidates

Objects M=M� R (km) q0 ðg cm�3Þ p0 ðdyne cm�2Þ M/Q Pmin Type

RX J1856.5-3754 0.93 5.02 4.88 9 1015 11.5 9 1035 2.390 0.281 QS

PSR J0737-3039A 1.35 6.61 2.92 9 1015 6.72 9 1035 2.828 0.512 NS

PSR B1913?16 1.44 6.60 2.99 9 1015 6.82 9 1035 3.002 0.528 NS

PSR J1903?0327 1.67 7.66 2.45 9 1015 7.95 9 1035 6.007 0.710 NS

Cyg X-2 1.73 8.31 2.15 9 1015 7.28 9 1035 7.390 0.817 NS
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Fig. 10 Variation of mass with radius
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within acceptable statistical errors. And all the solutions

satisfy the Buchdahl–Andréasson condition as well as

Cooperstock and de la Cruz condition.
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