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Abstract: We argue that the modified Landau–Raychaudhuri equations should first be analysed in a large class of

spacetimes and in dependence on various equations of states, before endorsing any conclusion about (non)singular Big

Bang. From the corrected entropy-area law in a large class of metrics, the generalized uncertainty principle (GUP) and the

modified dispersion relation (MDR) approaches, and various equations of states, the modified Friedmann equations are

derived. They are applied on Landau–Raychaudhuri equations in emergence of cosmic space framework from fixed point

method. We show that any conclusion about (non)singular Big Bang is simply badly model-dependent, especially when

utilizing GUP and MDR approaches, which can not replace a good theory for quantum gravity. We conclude that the

various quantum gravity approaches, metrics and equations of state lead to different modifications in Friedmann and

Landau–Raychaudhuri equations and thus to different (non)singular solutions for Big Bang theory.
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1. Introduction

General Relativity (GR) refers to infinite space curvature

(singularity) in black holes and at early stages of our

Universe. Quantum mechanics correctly describing physics

at small distances would be able to resolve such singularity

problem, where one quantity becomes infinite (undefined)

while another one approaches a certain value. As no real

good theory for quantum gravity is available so-far, the

entitlement of (non)singular begin of our University (Big

Bang) without gravity quantization would be seen as an

unwarranted claim. The current paper is devoted to clarify

this and warns from illusive conclusions based on

approaches stemming from consequences of minimal

length. These are not the other way around.

Black holes are well-known singular solutions of GR,

where considerable matter is concentrated in a tiny space.

They are much well characterized than singular Big Bang.

Black holes are characterized by mass (M), electric charge

(Q), angular momentum (J~) [1–3]. For instance, the prin-

ciple property that specifies Reissner–Nordström black

hole from de-Sitter–Schwarzschild-type is the electric

charge (Q). Corresponding to quantum geometry, SBH ¼
A=4‘2p [4–7] and the energy density q ¼ 3=2A, where A is

the cross-sectional area of the black hole horizon and ‘p ¼
ð�hG=c3Þ1=2 is the Planck length.

Various quantum gravity approaches tackle concrete

quantum description of some problems in presence of

gravitational fields. They estimate a minimal length which

is likely related to the Planck scale and modifies the

Heisenberg uncertainty principle, i.e. generalized (gravi-

tational) uncertainty principle (GUP) [8, 9]. So-far, GUP

has found many implications [10–16]. Nevertheless, GUP

can not replace a real good theory for quantum gravity.

Based on various astrophysical observations, energy–

momentum relation in c–TeV-rays and threshold anomalies

of ultra-high energy cosmic ray, the Lorentz invariance

violation [17–20], where the velocity of light (c) should

differ from the maximum attainable velocity of a material
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[9] could be confirmed. This inters the literature as modi-

fied dispersion relations (MDR) [21–30].

With emergent cosmic space, a special type of the

Universe evolution is meant that having the following

properties:

• almost static at the very beginning, i.e. t ! �1 but

becomes isotropic and homogeneous at large scales,

and

• ever existing, i.e. no timelike singularity took place.

The resulting Universe was/is large enough to apply even

classical description of spacetime and may be described by

some exotic matter equation-of-states. The latter likely

violates the energy conservation. Last but not least, the

acceleration of the Universe expansion agrees well with the

recent measurements on high redshift type Ia supernovae.

The scale factor that satisfies this type of the Universe

evolution is given as

aðtÞ ¼ a0 kþ exp lT1ð Þ½ �n: ð1Þ

k[ 0 to avoid timelike singularity. a0 [ 0 to assure pos-

itive scale factor, i.e. an expanding Universe. The same

role is played by n[ 0. T1 ¼ t � s is introduced by the

fractional action cosmology (FAC). In light of this, it is not

surprising to have non-singular begin, i.e. Big Bang, and

infinite end from the assumption of an emergent cosmic

space [31].

For the sake of completeness, we recall that the scale

factor expressed as power law, such as

aðtÞ ¼ Tn
1 ; ð2Þ

which leads to a slower expansion than that of an emergent

(and the other FAC’s logamediate and intermediate)

scenario.

In the present work, we systemically analyse the

dependence of the modified Landau–Raychaudhuri equa-

tions in a large class of spacetimes and in dependence on

various equations-of-states, etc. We implement different

approaches for GUP and MDR. For detailed calculations of

thermodynamics of three black hole metrics and their

connections to Friedmann equation, the readers are advised

to consult Ref. [32, 33]. We have estimated the corre-

sponding Friedmann equations and then applied these to

Landau–Raychaudhuri equations in emergence of cosmic

space framework from fixed point method [31]. We aim to

highlight the very strong model-dependence of singularity-

treatments based on GUP and MDR approaches. The

connections between current paper and references [32, 33]

are that the latter presents background for the earlier, i.e.

that of modified Landau–Raychaudhuri-equations and

(non)singularity Big Bang. The current paper deals with the

possible modifications on Landau–Raychaudhuri equations

and their (non)singularities due to many matrices, different

GUP/MDR approaches and various equations-of-state.

A very short reminder about GUP and MDR approaches

is given in Sect. 2. In Sect. 3.1, we compute the modified

thermodynamic quantities and the corresponding Fried-

mann equation in four dimensional de Sitter–Sch-

warzschild black hole. Section 3.2 is devoted to four

dimensional Reissner–Nördstrom black hole. The calcula-

tions for Garfinkle–Horowitz–Strominger black hole are

elaborated in Sect. 3.3. Detailed calculations are available

in Refs. [32, 33]. The present work introduces modifica-

tions of Landau–Raychaudhuri equations in Sect. 4.

Assuming that the cosmic background geometry is filled

with various types of relativistic equations-of-states, we

study the time derivative of Hubble parameter, dH/dt ver-

sus H for quadratic and linear GUP and MDR approaches

in Sect. 5. The final conclusion are detailed in Sect. 6. The

nonsingular solutions are strongly depending on metric

types, equations of state, and quantum gravity approaches.

2. Short reminder about minimal length and maximal

momentum approaches

There are various approaches for the measurable minimal

length and the maximal momentum [9, 32, 33]. They have

some indirect analogies with quantum gravity approaches,

for instance, the phase space can be discretized. For a

recent extensive review on GUP and MDP approaches and

their implications, see Refs. [8, 9].

• Quadratic GUP: quadratic order of momentum imple-

mented a minimal length dx0 � �ha is presented as [9],

dx dp� �h

2
1þ a2 ðdpÞ2
h i

; ð3Þ

where a ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðMp c2Þ

p
¼ a0lp=�h is a constant

coefficient referring to the gravitational effects in

Heisenberg uncertainty principle. The Hilbert

representation on momentum space can be satisfied

by space noncommutativity,

x̂ � wðpÞ ¼ i �h 1þ a2p2
� �

op wðpÞ;
p̂ � wðpÞ ¼ p0 wðpÞ:

ð4Þ

• Linear GUP: minimal length uncertainty dx0 � �ha and

maximum measurable momentum pmax � 1=4a are

implemented,

dx dp� �h

2
1� 2 a dp þ 4 a2dp2
� �

: ð5Þ

The Hilbert representation on momentum space in

space noncommutativity,
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x̂ � wðpÞ ¼ i �hð1� ap~0 þ 2 a2 p2
0Þop wðpÞ;

p̂ � wðpÞ ¼ p0 wðpÞ:
ð6Þ

The GUP parameter is defined as

a ¼ a0=ðMpcÞ ¼ a0‘p=�h, where c; �h and Mp are speed

of light and Planck constant and mass, respectively. The

Planck length ‘p � 10�35 m and the Planck energy

Mp c2 � 1019 GeV. a0 is the proportionality constant.

The bounds on a0, which are summarized in Refs. [32,

34–37], should be a subject of precise astronomical

observations, for instance gamma ray bursts [15].

• MDR approaches [21–30]:

p!� p!¼ ð p!Þ2 ¼ f ðE;m; ‘pÞ ’ E2 � l2 þ a1‘
2
pE4

þ a2‘
4
pE6 þO ‘6pE8

� �
: ð7Þ

The corresponding generalized uncertainty in OðE4Þ can

be estimated as follows.

E dx� 1� 3a1
2

‘2p

ðdxÞ2
� 5a2

2
� 23a21

8

� �
‘4p

ðdxÞ4
: ð8Þ

In natural units, ‘p can be omitted.

At apparent horizon of Friedmann–Lemaitre–Robertson–

Walker (FLRW) Universe, the modified Landau–Ray-

chaudhuri equations due to the correction on the entropy-

area relation can be obtained for different types of black

holes [38–40].

_H � K

a2

� �
S

0 ðAÞ ¼ �4pðqþ pÞ; ð9Þ

where S
0 ðAÞ � dSðAÞ=dA:

3. Modified Friedmann equation

The corrections due to the various GUP and MDR

approaches have impacts on Friedmann equation. Detailed

calculations are given in Refs. [32, 33]. It is worthwhile to

recall that almost the same modifications are found in

Landau–Raychaudhuri equations, Sect. 4. To fit with the

scope of this paper, we just give the metric element and

then jump to modified Friedmann equations.

3.1. De Sitter–Schwarzschild black hole

In GR, the unique spherically symmetric vacuum solution

is the Schwarzschild metric [41]

ds2 ¼ � 1� 2M

r

� �
dt2 þ 1� 2M

r

� ��1

dr2 þ r2dX2:

ð10Þ

• Quadratic GUP: from the corrected entropy-area rela-

tion, the modified Friedmann equations can be deter-

mined. For apparent horizon of FLRW Universe, the

second Friedmann equation can be obtained [38–40]

_H � j
a2

� �
1þ a2p

4

1

s
þ a2p

4

� �2
1

2s2
þ � � �

" #

¼ �16p p þ qþ a2p
3

q2 þ 2
ða2pÞ2

27
q3 þ � � �

" #
:

ð11Þ

• Linear GUP: for apparent horizon of FLRW Universe,

we modify Friedmann equation by using corrected

entropy-area relation and unmodified entropy s ¼ A=4

_H þ j
a2

� �
1� a

ffiffiffi
p

p
ffiffi
s

p þ a
ffiffiffi
p

p
ð Þ2

s
þ � � �

" #

¼ �16p p þ q� 4
ffiffiffi
2

p

3
ffiffiffi
3

p a
ffiffiffi
p

p
q3=2 þ 1

3
ða

ffiffiffi
p

p
Þ2q2 þ � � �

	 

:

ð12Þ

• MDR approaches: the second Friedmann equation reads

_H � k

a2

� �
1� 3a1p

8s
� 5p2

32s
a21 � 4a2
� �

þ � � �
	 


¼ �16p p þ q� a1p
2

q2 � 5p2

12
a21 � 4a2
� �

q3 þ � � �
	 


:

ð13Þ

3.2. Reissner–Nördstrom black hole

The line element in Reissner–Nordström geometry which

has static electrical charged [42, 43] reads

ds2 ¼ f ðrÞdt2 � dr2

f ðrÞ � r2dX2; f ðrÞ ¼ 1� 2M

r
þ Q2

r2
:

ð14Þ

Two possible outer and inner horizons can be defined [42,

43],

r ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � Q2

p
; r ¼ rs �

Q2

rs

� Q4

rs
3
: ð15Þ

Therefore, when the black hole becomes electrically

charged, the event horizon shrinks, and another event

horizon appears near the singularity. The more charged the

black hole is, the closer the two horizons become [38]. As

more and more electric charge is thrown into the black

hole, the inner event horizon starts to get larger, while the

outer horizon starts to shrink [38].

• Quadratic GUP: according to position uncertainty

dx ¼ r, Eq. (15), the horizon area A ¼ 4pr2þ and the
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condition Q 	 r should be fulfilled. The modified

second Friedmann equation for charged black hole

corresponding to the interchange of the quantum

entropy, Eq. (9), is given as

_H � j
a2

� �
1þ ðapÞ2 1

4s
þ Q2

s2
þ 4

Q4

s3

� �	

þðapÞ4 1

8s2
þ Q2

s3
þ Q4

s4

� �
þ � � �



¼ �16p

p þ qþ 64

27
ðapÞ2Q2 q3 þ 8Q2q4

� �	

þ 512

27
ðapÞ4 q3

8
þ 2Q2q4 þ 2Q4

3
q5

� �
þ � � �



:

ð16Þ

• Linear GUP: for FLRW Universe, the modified

Friedmann equation becomes

_H � j
a2

� �


 1� 2
apffiffi

s
p þ a2p

s�pQ2
� 2ap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2pþ 4pQ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ 2Q2

p

4pQ2
ffiffi
s

p þ �� �
" #

¼�16p

pþq� 4
ffiffiffi
2

p

3
ffiffiffi
3

p apq3=2� a2

pQ2
q þ 3a2

8p3Q4
ln

3

2q

� �
þ �� �

	 

:

ð17Þ

• MDR approaches: the second Friedmann equation is

given as

_H � j
a2

� �
1þ 3a1p

2

1þ 8pQ

4s
� 3pQ2

s2

	 
	

� 5p2

128
a21 � 4a2
� � 1

s2
þ 2pQ

s3
� 3p2Q2

s4

	 

þ � � �




¼�16p pþ qþ a1p
2

ð1þ 24pQÞq2 � pQ2q3
� �h

þ32

27
p2ða21 � 4a2Þ

5

2
q3 þ 5pQ

16
q4 � pQ2q5

	 

þ � � �



:

ð18Þ

3.3. Garfinkle–Horowitz–Strominger black hole

Metric of Garfinkle–Horowitz–Strominger dilatonic black

hole is expressed as

ds2 ¼ 1� 2
M

r

� �
dt2 þ 1� 2

M

r

� ��1

dr2 þ rðr

� 2aÞ dX2; ð19Þ

where a ¼ Q2e
�2/
0 =2M.

• Quadratic GUP:

_H � j
a2

� �
1þ a2p

2

1

2s
�

ffiffiffi
p

p
a

s3=2
� pa2

s2

� �	

þ a2p
2

� �2
1

4s2
� pa2

s3

� �
þ � � �

#

¼ �16p p þ qþ a2p
q2

3
� 16

ffiffiffiffiffiffiffiffiffi
6p a

p

45
q5=2

� �	

� 64

27
ða2pÞ2 ða2 � 4a2Þ

4
q3 � a2pq4

� �
þ � � ��:

ð20Þ

• Linear GUP:

_H� j
a2

� �
1�a

ffiffiffi
p

p
ffiffi
s

p þðaþaÞap
s
þ���

	 


¼�16p pþq�4
ffiffiffi
2

p

3
ffiffiffi
3

p a
ffiffiffi
p

p
q3=2þ4

3
apðaþaÞq2þ���

	 

:

ð21Þ

• MDR approaches:

_H � j
a2

� �
1� 3pa1

8s
þ 3p3=2aa1

4s3=2
�
5p2 a21 � 4a2
� �
128s2

	

�
5p5=2a a21 � 4a2

� �
32s5=2

þ � � �
#
¼

� 16p p þ q� a1p
2

q2 þ 5
ffiffiffi
2

p

8
ffiffiffi
3

p þ a1p
3=2aq5=2

	

� 5p2

3
a21 � 4a2
� � q3

18
� 8

21

ffiffiffi
2

3

r
ap1=2q7=2

 !
þ � � �

#
:

ð22Þ

4. Modified Landau–Raychaudhuri equations

Modifications in Landau–Raychaudhuri equations for the

various types of black holes and from the different

approaches for the quantum gravity are discussed. From

corrections in the entropy-area relation and in various

thermodynamic quantities, we can estimate the time

derivative of the Hubble parameter dH/dt. More details can

be found in Ref. [32]. The resulting modified Landau–

Raychaudhuri equations for different metric types, various

equations-of-state and the MDR and GUP approaches are

elaborated in next sections.

4.1. de Sitter–Schwarzschild black hole

From Eqs. (11)–(13), the modified Landau–Raychaudhuri

equations in de Sitter–Schwarzschild black holes due to the

minimal length, the higher-order GUP and the MRD

approaches, respectively, can be determined as a result of
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modified entropy-area relation and the energy density [32,

33]. Starting from entropy-area and energy density rela-

tions, S ¼ A=4, and q ¼ 3=2A, respectively, with q ¼
3H2=8p in flat Universe, i.e. vanishing curvature constant

j, the derivatives of Hubble parameter with respect to the

comoving time, dH/dt, can be given in dependence on H,

from linear and quadratic GUP and MDR approaches,

receptively,

_H 1þ a2

4
H2 þ � � �

	 

¼ �3H2 2ð1þ xÞ þ 1

4
a2H2 þ � � �

	 

;

ð23Þ
_H 1þ a2H2 � aH þ � � �
� �

¼ �3H2 6ð1þ xÞ þ 3a2

8
H2 � 4aH þ � � �

	 

;

ð24Þ

_H 1� 3

8
a1H2 � 15

32
a21 � 4a2
� �

H4

	 


¼ �3H2 96 1þ xð Þ þ 18a1H
2 þ 45

8
a21 � 4a2
� �

H4

	 

:

ð25Þ

4.2. Reissner–Nördstrom black hole

In the same way, the modified Landau–Raychaudhuri

equations for Reissner–Nördstrom black hole can be

deduced from Eqs. (16)–(18) from the linear and quadratic

GUP and the MDR approaches, receptively,

_H 1þ a2

4
QH4 þ a2

4Q4

3p
H6 þ � � �

	 


¼ �3H2 2

3
ð1þ xÞ þ 2a2

3
ðQH2 þ Q2H4ÞH4 þ � � �

	 

;

ð26Þ
_H 1� aH þ a2ð1þ QÞH2 þ � � �
� �

¼ �3H2 2ð1þ xÞ � 4

3
aH þ a2

4
H2 þ � � �

	 

; ð27Þ

_H 1� a1 1þ 8Qð ÞH2 � 5

128
a21 � 4a2
� �

H4

	 


þ 5

6
ða21 � 4a2ÞH4 þ � � �



:

ð28Þ

4.3. Garfinkle–Horowitz–Strominger black hole

The modified Landau–Raychaudhuri equations can also

be determined in Garfinkle–Horowitz–Strominger black

hole from Eqs. (20)–(22) and the linear and quadratic

GUP and the MDR approaches, receptively,

_H 1þ a2

4
H2 þ a a2

2
H3 þ a a2

2
H4 þ � � �

	 


¼ �3H2 30ð1þ xÞ þ 60a2 1� 8

9
a2

� �
H2

	

� 48a2aH3 � 5ð8a2 þ 1Þa4H4 þ � � �
�
;

ð29Þ

_H 1� aH þ aða þ aÞH2 þ � � �
� �

¼ �3H2 2ð1þ xÞ � 4

3
aH þ aða þ aÞH2 þ � � �

	 

; ð30Þ

_H 1� a1ð1þ 3aÞH2 þ 5

32
a21 � 4a2
� �

H4

	 


¼ �3H2 2ð1þ xÞ � 3a1
8

1þ
ffiffiffi
3

8

r
a

 !
H2

"

� 5

128
a21 � 4a2
� �

H4



ð31Þ

5. Results and discussion

Figure 1 gives the dependence of dH/dt on H for various

types of singularities (black holes) and equations-of-state

and from different quantum gravity approaches, i.e. different

modified Landau–Raychaudhuri equations. The curves in

first two top panels are calculated assuming that the equation

of state is characterized by x ¼ �1 and�2=3, respectively.

Thesex-values cover the range that has been claimed in Ref.

[31], where nonsingular Big Bang has been proposed

according to infinite cosmic time resulted from the integra-

tion of Hubble parameter at arbitrary finite values of H [44].

Despite the normalization in Fig. 1, what matters is the

existence of two fixed points. It is obvious that nonsingu-

larity solution is only characterizing the de Sitter-Scha-

warzschild-type metric from linear GUP approach at

x ¼ �2=3 (b) and the Reissner–Nördstrom-type metric at

x ¼ �2=3 (f). At x ¼ �1 [top panels (a), (e), and (i)], and

for the whole class of spacetimes, there is no nonsingularity

from two fixed points method. The nonsingular solutions are

associated with infinitely-aged Universe [31].

For matter- and radiation-dominated background

geometry, x ¼ 0 [third panel from top (c), (g), and (k)] and

x ¼ 1=3 [bottom panels (d), (h), and (l)], respectively, the

nonsingular solutions appear only for Garfinkle–Horowitz–

Strominger-type metric from the quadratic GUP approach,

at x ¼ 0 (panel k). The other panels (c), (g), (d), (h), and

(l) refer to singular Big Bang. The entire set of parameters

is summarized in Table 1 as [32, 33]. It is apparent that a1
and a2 are nothing but a1‘2p and a2‘2p, respectively.
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However, in natural units, ‘p can be omitted. This means

that the parameters a, a1 and a2 are compatible with each

other and should have the same effect.

It is worthwhile to notice that our results show that the

implementation of MDR approaches results in no
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Fig. 1 (Color online) The top panel [(a), (e) and (i)] gives the time

derivative of the Hubble parameter, d H/d t, as function of H for de

Sitter–Schwarzschild (left-hand side), Reissner–Nördstrom (middle)

and Garfinkle–Horowitz–Strominger (right-hand panel) black holes

at x ¼ �1. The minimal length GUP (solid curve), higher order GUP

(dotted curve) and modified dispersion relation (dashed curve) show

different results and accordingly different (non)singular solutions.

The second [(b), (f) and (j)], third [(c), (g) and (k)] and fourth [(d),
(h) and (l)] panels from top to bottom top are the same but at

x ¼ �2=3, 0, 1/3, respectively

Table 1 Summarizing the parameters of GUP approaches [32, 33]

a a1 a2 Q a

0.01 2a/3 41a2=45 1 0.001
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nonsingular solutions for all metric-types and all equa-

tions of state. We find that the MDR approaches are

confirmed by various observations [17–21], especially for

the violation of Lorentz invariance principle, for instance

an experimental test can be performed by setting upper

bounds to a. The modification to the dispersion relation is

equivalent to assigning to the velocity of light (c) a value

differs from the maximum attainable velocity of a

material body. This small adjustment of c leads to a

modification in the energy–momentum relation and

results in dv of gamma ray burst, which is found non-

vanishing [17–21]. The latter means that the vacuum

dispersion relation becomes sensitive to the type of

quantum gravity effect. For details on other astronomical

observations, the readers can consult Ref. [15]. In addi-

tion to that, another argumentation in favor for MDR is

the possibility that the relation connecting energy and

momentum in Special Relativity (SR) may be modified at

Planck scale because of the threshold anomalies of ultra-

high energy cosmic ray (UHECR). This enters the liter-

ature as the modified dispersion relations (MDR) [21–30]

and can provide new sensitive tests for SR. Successful

searches would reveal a surprising connection between

particle physics and cosmology [17–20]. A short list of

astronomical observations supporting MDR is given in

[15]. This includes early-type galaxies, whether distant

neutrinos feel z-shift? and the time delay in ultra high-

energy cosmic rays, etc. Both linear and quadratic GUP

approaches are more controversial than MDR. That the

latter are orthogonal to the misleading conclusion of Ref.

[31] should not hold under.

We have calculated the deceleration parameter q ¼
dH�1=dt � 1 and found that the values of q-parameter vary

with x; the types of the equations of state. At x ¼ 0 and

1 / 3, q becomes positive and at w ¼ �2=3, q switches to

negative values. q is undefined (infinite), at x ¼ �1,

Table 2. The comparison with corresponding results based

on the modified Friedmann equation proposed in Ref. [31]

shows clear irregularities.

Eq. (60) in [31] can be solved. It results in an inverse

function. With a first-order approximation, it turns to be a

naive exercise to prove that the slope becomes infinite,

especially when t vanishes, i.e. very regular singular

solution, Figs. 2 and 3.

Table 2 Values of deceleration parameter q in various metrics, equations of state and GUP and MDR approaches compared with Ref. [31]

Approach Black hole x ¼ �1 x ¼ �2=3 x ¼ 0 x ¼ 1=3

Quadraic GUP De Sitter–Schwarzschild –ve ?ve ?ve ?ve

Linear GUP –ve ?ve ?ve ?ve

MDR –ve ?ve ?ve ?ve

Quadraic GUP Reissner–Nordstrom –ve ?ve ?ve ?ve

Linear GUP –ve ?ve ?ve ?ve

MDR –ve ?ve ?ve ?ve

Quadraic GUP Garfinkle–Horowitz–Strominger –ve ?ve ?ve ?ve

Linear GUP –ve ?ve ?ve ?ve

MDR –ve ?ve ?ve ?ve

Linear GUP Ref. [31] Undefined –ve ?ve ?ve
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Fig. 2 The dependence of t on H is determined from linear GUP approach for various equations of states and two spacetimes; Reissner–

Nördstrom (a) and Garfinkle–Horowitz–Strominger (b)

Emergence of cosmic space and minimal length in quantum gravity 1101



The two fixed point method as done in Ref. [31] is ques-

tionable. Accordingly, the conclusion is apparently a mis-

interpretation. To illustrate this, we solve H in dependence

on t, where H has the dimension of t�1. In Figs. 2 and 3,

imaginary solutions are classified as nonphysical and they

are not shown here. According to the two fixed point method,

Fig. 1 should have two cases of non-singularity. These are

• at x ¼ �2=3 from linear GUP in de Sitter Sch-

warzschild and Reissner–Nördstrom spacetimes, and

• at x ¼ 0 from quadratic GUP in Garfinkle–Horowitz–

Strominger spacetime.

These singularities are simply missing in Figs. 2 and 3. At

x ¼ �2=3, the solutions from linear GUP in de Sitter

Schwarzschild (reported in [31]) and Reissner–Nördstrom

spacetimes are apparently nonphysical. At x ¼ 0 from

quadratic GUP in Garfinkle–Horowitz–Strominger space-

time, the dependence of t on H is given in top right-hand

panel of Fig. 3, which is obviously singular; H diverges at

vanishing t.

6. Conclusions

In light of the present results, conclusions as the ones

drawn in Ref. [31] is badly simply model-dependent. In the

present paper, we emphasize that the (non)singular solu-

tions are strongly (just three of out of twelve cases)

dependent on the metric types, the equations of state, and

the quantum gravity approaches.

Defining Landau–Raychaudhuri singularity solutions

based in Ref. [44] should have been proposed after addi-

tional investigations for the time dependence of Hubble

parameter, Figs. 2 and 3, and scale factor, etc. Further

systematic studies should be first conducted before for-

mulating an edge-cutting conclusion about (non)singular

solutions. One should not lose sight of the various theo-

retical studies and astrophysical observations potentially

approving the singular solutions, when applying quantum

corrections to Freidmann and/or Landau–Raychaudhuri

equations.

Last but not least, the absence of a good theory for

quantum gravity should not lead real scientists to make any

conclusions about (non)singular Big Bang. Horava–Lif-

shitz gravity is conjectured as a good candidate for quan-

tum gravity. In an ongoing work [45], we have estimated

the impacts of various equations-of-state on the (non)sin-

gular Big Bang solutions based on Horava–Lifshitz gravity

(detailed and non-detailed balance). The present work aims

to emphasize the very strong model-dependence of studies

based on GUP and MDR approaches.

References

[1] A V Frolov, K R Kristjansson and L Thorlacius et al. Phys. Rev.

D 72 021501 (2005)

[2] P K Townsend Black Holes: Lecture Notes, arXiv:gr-qc/

9707012

[3] T Padmanabhan Phys. Rep. 406 49 (2005).

 0

 0.3

 0.6

 0.9

 1.2

 0  2  4  6  8  10

t

H

 Quadratic GUP

(a) De Sitter-Schwarzschild BH.

ω = -2/3
ω = 1/3

ω = 0

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  2  4  6  8  10

t

H

 Quadratic GUP
(b) Reissner

-Nordstrom BH.

ω = -2/3
ω = 1/3

ω = 0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  2  4  6  8  10

t

H

 Quadratic GUP
(c) Garfinkle-Horowitz-Strominger BH.

ω = -2/3
ω = 1/3

ω = 0

 0

 0.01

 0.02

 0.03

 0.04

 0  1  2  3  4  5  6  7  8  9  10

t

H

 MDR

(d) De Sitter-Schwarzschild BH.

ω = -2/3
ω = 1/3

ω = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

t

H

 MDR
(e) Reissner-Nordstrom BH.

ω = -2/3
ω = 1/3

ω = 0

 0

 0.3

 0.6

 0.9

 1.2

 0  2  4  6  8  10

t

H

 MDR
(f) Garfinkle-Horowitz-Strominger BH.

ω = -2/3
ω = 1/3

ω = 0

Fig. 3 The same as in Fig. 2 but from quadratic GUP (top panel (a), (b) and (c)] and MDR [bottom panel (d), (e) and (f)] approaches and the

whole class of spacetimes

1102 A Tawfik and A Diab

http://arxiv.org/abs/gr-qc/9707012
http://arxiv.org/abs/gr-qc/9707012


[4] J D Bekenstein Lett. Nuovo. Cim. 4 737 (1972)

[5] J D Bekenstein Phys. Rev. D 7 2333 (1973);

[6] J D Bekenstein Phys. Rev. D 9 3292 (1974)

[7] S W Hawking Commun. Math. Phys. 43 199 (1975)

[8] A N Tawfik and A M Diab Rep. Prog. Phys.78 126001 (2015)

[9] A Tawfik and A Diab Int. J. Mod. Phys. D 23 1430025 (2014)

[10] A Tawfik JCAP 1307 040 (2013)

[11] A F Ali and A Tawfik Adv. High Energy Phys. 2013 126528

(2013)

[12] A F Ali and A Tawfik Int. J. Mod. Phys. D 22 1350020 (2013)

[13] A Tawfik, H Magdy and A Farag Ali Gen. Rel. Grav. 45 1227

(2013)

[14] A Tawfik and A Diab Electron. J. Theor. Phys. 12 9 (2015)

[15] A Tawfik, H Magdy and A F Ali Phys. Part. Nucl. Lett. 13 59

(2016)

[16] I Elmashad, A F Ali, L I Abou-Salem, J-U Nabi and A Tawfik

SOP Trans. Theor. Phys. 1 1 (2014)

[17] S Coleman and S L Glashow Phys. Rev. D 59 116008 (1999)

[18] D Colladay and V A Kostelecky Phys. Rev. D 58 116002 (1998)

[19] F W Stecker and S L Glashow Astropart. Phys. 16 97 (2001)

[20] S R Coleman and S L Glashow Phys. Lett. B 405 249 (1997)

[21] G Amelino-Camelia, J Ellis, N F Mavromatos, D V Nanopoulos

and S Sarkar Nature 393 763 (1998)

[22] G Amelino-Camelia Nature 410 1065 (2001)

[23] G Amelino-Camelia and T Piran Phys. Rev. D 64 036005 (2001)

[24] G Amelino-Camelia, M Arzano and A Procaccini Phys. Rev. D

70 107501 (2004)

[25] G Amelino-Camelia, M Arzano and A Procaccini A Int. J. Mod.

Phys. D 13 2337 (2004)

[26] G Amelino-Camelia, M Arzano, Y Ling and G Mandanica

Class. Quantum Gravity 23 2585 (2006)

[27] K Nozari and A S Sefiedgar Phys. Lett. B 635 156 (2006)
[28] R Aloisio, P Blasi, P L Ghia and A F Grillo Phys. Rev. D 62

053010 (2000)

[29] T Jacobson, S Liberati and D Mattingly Phys. Rev. D 66 081302

(2002)

[30] K Nozari and A S Sefidgar Chaos Solitons Fractals 38 339

(2008)

[31] A F Ali Phys. Lett. B 732 335 (2014)

[32] A Tawfik and A Diab Int. J. Mod. Phys. A 30 1550059 (2015)

[33] A Tawfik and E Abou El Dahab Int. J. Mod. Phys. A 30 1550030
(2015)

[34] A Farag Ali, S Das and E C Vagenas Phys. Rev. D 84 044013

(2011)

[35] W Chemissany, S Das, A F Ali and E C Vagenas JCAP 1112
017 (2011)

[36] S Das and E C Vagenas Phys. Rev. Lett. 101 221301 (2008)

[37] S Das and E C Vagenas Can. J. Phys. 87 233 (2009).

[38] K Nozari and B Fazlpour Acta Phys. Polon. B 39 1363 (2008)

[39] R G Cai, L M Cao and Y P Hu JHEP 08 090 (2008)

[40] T Zhu, J-R Ren and M-F Li Phys. Lett. B 674 204 (2009)

[41] S M Carroll Spacetime and Geometry: An Introduction to

General Relativity (USA: University of Chicago) (2004)

[42] H Reissner Ann. Phys. 50 106–120 (1916)

[43] G Nordström On the Energy of the Gravitational Field in Ein-

steins Theory Proc. Kon. Ned. Akad. Wet. 20 p 1238 (1918)

[44] A Awad Phys. Rev. D 87 103001 (2013)

[45] A Tawfik and E Abou El Dahab Friedmann–Lemaitre–Robert-

son–Walker Cosmology with Horava–Lifshitz Gravity: Impacts

of Various Equations of State. AHEP (Submitted)

Emergence of cosmic space and minimal length in quantum gravity 1103


	Emergence of cosmic space and minimal length in quantum gravity: a large class of spacetimes, equations of state, and minimal length approaches
	Abstract
	Introduction
	Short reminder about minimal length and maximal momentum approaches
	Modified Friedmann equation
	De Sitter--Schwarzschild black hole
	Reissner--Nördstrom black hole
	Garfinkle--Horowitz--Strominger black hole

	Modified Landau--Raychaudhuri equations
	de Sitter--Schwarzschild black hole
	Reissner--Nördstrom black hole
	Garfinkle--Horowitz--Strominger black hole

	Results and discussion
	Conclusions
	References




