
ORIGINAL PAPER

From the density functional theory to the single-particle green function
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Abstract: An analysis shows that the ground state of inhomogeneous system of interacting electrons in the static external

field, which satisfies the thermodynamic limit, can be consistently described only using the Green function theory based on

the quantum field theory methods (diagram technique of the perturbation theory). In this case, the ground state energy and

the inhomogeneous electron density in such a system can be determined only after calculating the single-particle Green

function.
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1. Introduction

Although more than 50 years is elapsed from the time of

the publication of the known paper by Hohenberg–Kohn

[1], the principal problem of the density functional theory

(DFT) on the procedure for calculating the universal den-

sity functional has not yet been solved [2–4]. Moreover, in

the study of the electronic structure of matter, the reduced

density matrix functional theory (RDMFT) [5–8], dynam-

ical mean-field theory (DMFT) [9, 10], which are the

approximal schemes in the framework of the Green func-

tion theory (GFT) for the many-body system [11–14], have

gained wide acceptance in recent years. In this situation,

the problem of the relation between these theories arises

quite naturally [15–17]. To solve this problem in the pre-

sent paper the critical analysis of the main provisions of the

DFT is performed. This analysis shows that the consequent

description of the ground state of inhomogeneous inter-

acting electron system in a static external field is possible

only by using the Green functions theory. The Green

function theory, as is known, is based on the quantum field

theory methods (diagram technique of the perturbation

theory) and implies the consideration within the quantum

statistical theory.

2. Density functional for the external field potential

According to the Hohenberg–Kohn lemma which is often

referred to as the first Hohenberg–Kohn theorem, the same

inhomogeneous density nðrÞ cannot correspond to two

different local potentials v1ðrÞ and v2ðrÞ of the external

field in the ground state of the non-relativistic electronic

system (except for the case v1ðrÞ � v2ðrÞ ¼ const) [1].

This statement is mathematically rigorous and is beyond

question. Thus, the inhomogeneous density nðrÞ of the

non-relativistic ground-state electronic system uniquely

corresponds to the external field potential vðrÞ (to within

an additive constant). In other words, the inhomoge-

neous density nðrÞ in the ground state is the unique

functional of the external field vðrÞ (to within an addi-

tive constant),

nðrÞ � hWþðrÞWðrÞi0 ¼ nðr; ½v�Þ: ð1Þ

Here WþðrÞ and WðrÞ are, respectively, the field operators

of creation and annihilation for electrons (hereafter, we

omit spin indices), the angle brackets with zero index mean

averaging over the ground state of the electronic system in

the static external field.

The next stage of the DFT construction consists of the

statement that, according to Eq. (1), the external field

potential is the inhomogeneous ground-state density func-

tional [1, 18],

vðrÞ ¼ vðr; ½n�Þ þ const: ð2Þ
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From statement (2), the Hohenberg–Kohn theorem (or the

second Hohenberg–Kohn theorem) [1] immediately

follows, which states that in the ground state energy

E0 ¼ hK̂ þ Ûi0 þ
Z

vðrÞnðrÞdr ð3Þ

the universal density functional

F½n� ¼ hK̂ þ Ûi0; ð4Þ

can be separated. Here K̂ and Û are the kinetic energy and

electron interparticle interaction energy operators,

respectively. The term ‘‘universal’’ means that the

corresponding functional does not explicitly depend on the

external field potential vðrÞ. However, in this case, it should
be taken into account that the inhomogeneous density of the

ground state is a vðrÞ-representable function, i.e., the

function nðrÞ corresponds to the external field potential

vðrÞ, which immediately follows from the proof of the

Hohenberg–Kohn lemma. Furthermore, the inhomogeneous

density should be a N-representable function

N ¼
Z

nðrÞdr: ð5Þ

Thus, if statement (2) is valid, the ground state energy E0

becomes a functional of the inhomogeneous density nðrÞ
and the external field potential vðrÞ

E0ð½n�; ½v�Þ ¼ F½n� þ
Z

vðrÞ nðrÞdr: ð6Þ

Equation (6) is a basis for practical application of the DFT

[1–4, 18]. In fact, for the transition from the initial

functional E0½v� to the functional E0ð½n�; ½v�Þ in Eq. (6) the

Legendre transformation for the value F[n] is implied.

Initially, the value F is the functional F[v]. In this case, the

derivation of the variational equation for determining the

inhomogeneous density nðrÞ of the ground state is based on

the known inequality which is used to prove the

Hohenberg–Kohn lemma [1]

E
ð1Þ
0 �E

ð2Þ
0 þ hWð2Þ

0 jĤ1 � Ĥ2jWð2Þ
0 i: ð7Þ

Here E
ðiÞ
0 ¼ hWðiÞ

0 jĤijWðiÞ
0 i is the ground state energy of the

system with the Hamiltonian Ĥi which corresponds to the

wave function WðiÞ
0 . From the inequality (7), taking into

account Eq. (6), it immediately follows that

eð½n�; vÞ� eð½~n�; vÞ; ð8Þ

where the value eð½~n�; vÞ according the definition equals

eð½~n�; vÞ ¼ Fð~nÞ þ
Z

vðrÞ ~nðrÞdr: ð9Þ

Here ~nðrÞ ¼ ~nðr; ½~v�Þ is the inhomogeneous density of the

ground state, corresponding to the external field ~vðrÞ and

normalization condition
R
~nðrÞdr ¼ N. In other words, the

inhomogeneous density ~nðrÞ is a v-representable and N-

representable function. Note, that the value eð½~n�; vÞ is an

auxiliary function. Taking also Eqs. (6)–(9) into account, it

is easy to check that the quantity e only under the condition

~nðrÞ ¼ nðrÞ is identical to the ground state energy E0 in the

given external field vðrÞ: eð½n�; vÞ ¼ E0. Inequality (8) can

be presented as a variational equation for determining the

unknown function ~nðrÞ

deð½~n�; vÞ ¼ 0 ð10Þ

in the given external field vðrÞ at the given number of

particles N ¼
R
~nðrÞdr. Till now, the obtaining of the

general solution for Eq. (10) does not seem possible. Thus,

in the framework of the DFT to find the solution of this

equation the Lagrange multiplier method is used. Within

this method, the basic DFT equation for calculating the

inhomogeneous density ~nðrÞ
dF½~n�
d~nðrÞ þ vðrÞ ¼ k ð11Þ

follows from the variation equation dfeð½~n�; vÞ �
kð
R
~nðrÞdr� NÞg ¼ 0 which is equivalent to Eq. (10)

taking into account the condition
R
~nðrÞdr ¼ N ¼ const

and the definition (9). Here k is the Lagrange multiplier

which is independent of the variable r. The solution of

Eq. (11) for the inhomogeneous density ~nðrÞ,
corresponding to the external field ~vðrÞ, is identical to the

inhomogeneous density of the ground state nðrÞ,
corresponding to the given external field vðrÞ. Thus,

when using hypothesis (2) about the functional vðr; ½n�Þ,
the problem is reduced to the determination of the universal

density functional Fð½~n�Þ [Eq. (4)] and its variational

derivative. However, as noted above, a consistent

procedure for determining this universal functional has

not yet been developed. To resolve this situation, we will

proceed from the fact that the variational Eq. (11) is a

direct consequence of the hypothesis (2) about the

existence of the functional for the external field potential

vðr; ½n�Þ [18]. According to Eq. (9), the universal functional

variation dF which is related to the inhomogeneous density

variation d~nðrÞ, is caused by the variation of the total

number of particles dN ¼
R
d~nðrÞdr and the variation of

the external field potential d~vðrÞ. This statement is a

consequence of the fact that the inhomogeneous density

~nðrÞ should be an N-representable and v-

representable function. In other words, the variational

principle Eq. (10) cannot to be used in practical

calculations, if the trial function is not an N-

representable and v-representable function [2]. According

to the problem condition, the total number of particles N in

the system is given (N ¼ const) and is independent of the
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external field potential. Therefore, the variational Eq. (10)

should be written as

deð½~n�; vÞ ¼ 0; dN ¼
Z

d~nðrÞdr ¼ 0: ð12Þ

In this case

dF½~n�
d~nðrÞ ¼

Z
dFðN; ½~vðrÞ; ½~n�Þ�Þ

d~vðr1Þ
d~vðr1Þ
d~nðrÞ dr1 ð13Þ

and Eq. (11) takes the formZ
dFðN; ½~vðr; ½~n�Þ�Þ

d~vðr1Þ
d~vðr1Þ
d~nðrÞ dr1 jN¼const þ vðrÞ ¼ k: ð14Þ

Taking into account the determination Eq. (9) one can find

dFðN; ½~vðr; ½~n�Þ�Þ
d~vðrÞ ¼ d~E0ðN; ½~vðr; ½~n�Þ�Þ

d~vðrÞ � ~nðrÞ

�
Z

~vðr1Þ
d~nðr1Þ
d~vðrÞ dr1; ð15Þ

where ~E0 is the energy of the ground state in an external

field ~vðrÞ, which corresponds to the inhomogeneous

density ~nðrÞ. For simplicity, here and below the index N ¼
const is omitted. Substituting Eq. (15) into Eq. (14) and

taking into account the explicit equalities

d~E0ðN; ½~vðr; ½~n�Þ�Þ
d~vðrÞ ¼ ~nðrÞ;

Z
d~vðr0Þ
d~nðr1Þ

d~nðr1Þ
d~vðrÞ dr1 ¼ dðr� r0Þ ð16Þ

one can obtain the exact equation for determination of the

inhomogeneous density in the framework of DFT

vðrÞ ¼ ~vðr; ½~n�Þ þ k; ð17Þ

where k is exactly the constant to within which the

Hohenberg–Kohn lemma is valid. Thus, if the hypothesis

(2) about the functional vðr; ½n�Þ existence is valid, the

solution of the DFT problem on the inhomogeneous density

calculation in a given external field is reduced to the

determination of such an inhomogeneous density ~nðrÞ
which corresponds to the external field ~v and leads to the

given external field potential vðrÞ. In the course of the

above derivation of Eq. (17), an explicit form of the uni-

versal density functional is not used, and the possibility of

calculating the variational derivative
dF½~n�
d~nðrÞ is caused only by

the requirement that the inhomogeneous density ~nðrÞ
should be an N-representable and v-representable function.

As a result, if the hypothesis about the existence of the

functional vðr; ½n�Þ is valid, the basic DFT problem is the

determination of the explicit form of this functional.

However, this problem can be solved only when con-

sidering one electron in the static external field [19], since

the inhomogeneous density nðrÞ in this case has the form

nðrÞ ¼ ju0ðrÞj2 ¼ u2
0ðrÞ; ð18Þ

where u0ðrÞ is the wave function of the ground-state

electron energy ~E0 in the static external field, which

satisfies the Schrödinger equation

ðK̂ þ ÛÞu0ðrÞ ¼ e0u0ðrÞ; ð19Þ

and, without loss of generality, is a real function. In this

case, it is clear that Eq. (2) takes the form

vðrÞ ¼ v½nðrÞ� þ const: ð20Þ

When considering more than two noninteracting electrons,

as shown in Ref. [19], the functional vðr; ½n�Þ cannot be

constructed. The existence of the universal density func-

tional for two noninteracting electrons is caused by elec-

tron energy degeneracy with respect to the spin quantum

number in the non-relativistic consideration. In the general

case, the initial functional nðr; ½v�Þ is nonlinear in the

external field vðrÞ. This means that, without violation of the

Hohenberg–Kohn lemma, the two possibilities are allowed:

1. the inverse problem on the determination of the

dependence of vðrÞ on nðrÞ has individual solutions

for each pair of functions nðrÞ and vðrÞ (or for certain
types (classes) of function pairs nðrÞ and vðrÞ);

2. the inverse problem has the universal solution

vðrÞ ¼ vðr; ½n�Þ.
Usually, this dilemma is not considered; however, it is

assumed that the universal solution vðr; ½n�Þ takes place,

which is valid for any external field and any number of

particles [20]. The similar problems have been also

discussed elsewhere [21, 22]. The essence of the problem

at hand can be expressed in other words. We introduce in

the consideration the operator P̂ relating the functions nðrÞ
and vðrÞ : nðrÞ ¼ P̂vðrÞ. In this case, the operator P̂ is such

that the equality P̂vðrÞ ¼ P̂fvðrÞ þ constg is valid. It

follows from Eq. (1) for the inhomogeneous density nðrÞ
that the operator P̂ is nonlinear. Thus, the problem of

determining the inverse operator P̂
�1

relating the functions

vðrÞ and nðrÞ as vðrÞ ¼ P̂
�1
nðrÞ has not a unique solution

in the general case. As a result, statement (2) about the

existence of the density functional for the external field

potential is not valid when considering the multielectron

system. Therefore, the proof of the existence of the

universal density functional F[n] [Eq.(4)] is absent

although the Hohenberg–Kohn lemma about the functional

nðr; ½v�Þ uniqueness [19, 20] is valid.

3. Results and discussion

3.1. Virial theorem and the reduced density matrix

We would like to retain the main idea in describing the

multielectron system, i.e., to use functions of a small
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number of spatial variables, rather than many-particle wave

functions. We take into account that the inhomogeneous

density nðrÞ is a diagonal element of the reduced density

matrix

cðr; r0Þ ¼ hWþðrÞWðr0Þi0 ¼ cðr; r0; ½v�Þ; nðrÞ ¼ cðr; rÞ:
ð21Þ

Thus, the statement similar to the Hohenberg–Kohn lemma

for the inhomogeneous density nðrÞ is valid for the

function cðr; r0Þ, i.e., the functional cðr; r0; ½v�Þ is unique.

Therefore, instead of statement (2), we can assume that the

external field potential is the functional of the reduced

density matrix,

vðrÞ ¼ vðr; ½c�Þ þ const: ð22Þ

In this case, instead of the universal density functional F[n]

[ Eq. (4)], we obtain the universal functional of the reduced

density matrix,

U½c� ¼ hK̂ þ Ûi0: ð23Þ

The statement (23) is a basis of the RDMFT which, in

contrast to the DFT, is valid for both the arbitrary number

of noninteracting electrons and for the self-consistent

Hartree-Fock approximation [5–7]. We should mention

that Eq. (23) is directly related to the Hilbert theorem [23]

which establishes the single-valued correspondence

between the reduced density matrix in an inhomogeneous

system and the nonlocal external field static potential.

Let us also pay attention that the DFT results do not

follow from the RDMFT, although the assumption that the

reduced density matrix is the inhomogeneous density

functional cðr; r0Þ ¼ cðr; r0; ½n�Þ is often used [5–7]. In

addition to the absence of the corresponding proof, the

results of the self-consistent Hartree-Fock approximation

cannot be used within the DFT [24]. However, the possible

existence of the universal functional of the reduced density

matrix is based on Eq. (22) which, as in the case of Eq. (3)

for the DFT, cannot be proved. As a result, we face with

the absence of a regular procedure for determining the

universal functional U½c� [Eq. (23)] when considering the

inhomogeneous system of interacting electrons. In this

context, we note that if we take the existence of the uni-

versal density functional F[n] [Eq. (4)] as a postulate, the

existence of the functional vðr; ½n�Þ will be a strict result of
the DFT [25]. In fact, this means that the existence of the

density functional for the external field potential given by

Eq. (2) follows from the existence of the universal density

functional (4). It is clear that a similar statement is valid

within the RDMFT as well, i.e., Eq. (23) follows from

Eq. (22). Thus, the used method for proving the existence

of the universal reduced density functional U½c� is strictly
speaking incorrect. In this situation, we cannot consider the

statement (10) as a postulate, at least, until proved other-

wise, e.g., with respect to the universal functional F[n].

Therefore, we can formulate the problem as follows. Let

the reduced density matrix cðr; r0Þ is known a priori. We

should indicate a method for calculating the ground state

energy E0 for the system of interacting electrons in the

static external field vðrÞ by the known reduced density

matrix cðr; r0Þ. In solving the posed problem, we should

take into account the fact that the system under consider-

ation is in the volume V which is as a rule defined by the

volume of a ‘‘box’’ with infinite potential walls (closed

system). Therefore, the wave function W0 of such a system

vanishes once at least one spatial variable of the wave

function appears on the surface S bounding the volume V,

W0jS ¼ 0. This condition is equivalent to the boundary

condition ‘‘at infinity’’ for wave functions in quantum

mechanics, where V ! 1 [26]. Thereby, at first sight,

taking into account the boundary condition for wave

functions, the passage to the limit V ! 1 makes it pos-

sible to ‘‘get rid’’ of the parameter V. However, the result of

the passage to the limit V ! 1 depends strongly on the

relation between the total number of particles N and the

volume V occupied by the system [27, 28]. In this regard,

two cases are possible when considering the limit V ! 1:

1. the quantum-mechanical consideration of the finite

number of electrons N in the static external field

providing finite motion of electrons. Such a consider-

ation is typical for describing electrons in atoms,

molecules and corresponds to the condition for the

inhomogeneous density, which can be written as

lim
v!0

nðrÞ ¼ 0: ð24Þ

2. the quantum-statistical consideration where the

transition to the thermodynamic limit V ! 1;N !
1; N=V ¼ �n ¼ const 6¼ 0 is performed. Here �n is the

average density of the number of particles (electrons in

the case at hand) in the system. Such a consideration is

typical for describing electrons in condensed media. In

this case, the condition

lim
v!0

nðrÞ ¼ �n ð25Þ

is valid, which means that the inhomogeneous density nðrÞ
is identical to the average density �n of the number of

particles in the absence of external field vðrÞ.
Thus, the difference between the considered cases is

associated with the notion of the average density �n of the

number of particles, which is obviously independent of the

external field potential vðrÞ. When considering the case (1),

the system of interacting electrons is in an external field

vðrÞ providing finite motion in a finite space region. Using

the virial theorem, it can be shown [29] that
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E0 ¼ hK̂i0 �
Z

f2nðrÞ þ r � rrnðrÞgvðrÞdr: ð26Þ

Other words, according to Eqs. (21) and (26) the energy of

ground state of the considering system in an external field

vðrÞ can be found by use the known reduced density matrix

cðr; r0Þ since the average kinetic energy equals

hK̂i0 ¼ � �h2

2m

Z
fr2

r0cðr; r0Þgdðr� r0Þdrdr0; ð27Þ

where m is the electron mass. However, in the case (2), it is

insufficient to know the reduced density matrix cðr; r0Þ for
determining the ground state energy of the inhomogeneous

system of interacting electrons, corresponding to the ther-

modynamic limit. An exception is the system of nonin-

teracting electrons [Eq. (27)], and the use of the self-

consistent Hartree-Fock approximation. Thus, when con-

sidering the inhomogeneous system of interacting elec-

trons, corresponding to the thermodynamic limit, in the

general case, there is no reason for statements given in

Eqs. (22) and (23).

3.2. Single particle Green function and Fermi-liquid

theory

To get rid of the need to use the statements for the external

field potential, similar to Eqs. (2) and (22), it is necessary

to specify such a function for describing the inhomoge-

neous electronic system in the static external field, which

uniquely defines the ground state energy of the system

under consideration.

The solution of this problem is possible based on the

Gibbs grand canonical distribution with specified chemical

potential l, introducing the time single-particle Green

function

gðr; t; r0; t0Þ ¼ �ihT̂f ~Wðr; tÞ ~Wþðr0; t0Þgi0; ð28Þ

where ~W
þðr0; t0Þ and ~Wðr; tÞ are the field operators of

creation and annihilation, respectively, for electrons in the

Heisenberg representation with exact system Hamiltonian,

and T̂ is the temporal ordering operator [30]. Hereafter,

Planck’s constant is �h ¼ 1. We should underline that the

present analysis is performed for the non-relativistic

electrons in an external scalar field. This also means the

consideration is performed in Euclidian space. The

description of the relativistic electron system goes out of

the frame of this paper. From Eq. (28), it immediately

follows that

cðr; r0Þ ¼ �i lim
t0!tþ0

gðr; t; r0; t0Þ: ð29Þ

Hence, for the Green function gðr; t; r0; t0Þ, the statement

similar to the Hohenberg–Kohn lemma for the

inhomogeneous density nðrÞ is valid, i.e., the functional

gðr; t; r0; t0; ½v�Þ is unique. In other words, the Green

function gðr; t; r0; t0Þ is the v-representative function for

the non-relativistic electron system. In this case, this

function is calculated using the well developed methods of

the quantum field theory (diagram technique for the the

perturbation theory) [30]. In particular, for the Green

function gðr; r0;xÞ which is the Fourier transform of the

function gðr; t; r0; t0Þ with respect to the variable ðt � t0Þ,
the inhomogeneous Dyson equation

g�1ðr; r0;xÞ ¼ g�1
0 ðr; r0;xÞ � Rðr; r0;xÞ ð30Þ

is valid, where the electron self-energy Rðr; r0;xÞ is the

functional of the exact Green function gðr; r0;xÞ. The last

one is an infinite functional series in powers of the

electron-electron interaction potential and single-particle

Green functions,

Rðr; r0;xÞ ¼ Rðr; r0;x; ½g�Þ; ð31Þ

g0ðr; r0;xÞ is the Green function for the system of

noninteracting ground-state electrons [30],

g0ðr; r0;xÞ ¼
X

e0;k [ l

u�
0kðr0Þu0kðrÞ
x� e0k þ i0

þ
X
e0;k\l

u�
0kðr0Þu0kðrÞ
x� e0k � i0

:

ð32Þ

Here u0kðrÞ and e0k are the electron wave function and the

energy, respectively, which are defined by the single-

particle Schrödinger equation (see Eq. (19)). In this case,

Eq. (29) takes the form

cðr; r0Þ ¼ �i lim
t!þ0

Z 1

�1

dx
2p

gðr; r0;xÞ expðixtÞ: ð33Þ

In this case, the chemical potential l can be found for a

given average density (taking into account the electron

spin),

�n ¼ �nðlÞ ¼ � i

V
lim
t!þ0

Z
d3r

Z 1

�1

dx
2p

gðr; r;xÞ expðixtÞ:

ð34Þ

On this basis, it can be shown that the quantity hK̂ þ Ûi0 is
the universal functional G([g]) of the single-particle Green

function gðr; r0;xÞ [9, 31],

G½g� ¼hK̂ þ Ûi0 ¼ �i lim
t!þ0

Z
d3rd3r0

�
Z 1

�1

dx
2p

expðixtÞ � 1

2m
r2

r0gðr; r0;xÞ
� ��

dðr� r0Þ þ 1

2
Rðr; r0;x; ½g�Þgðr; r0;xÞg: ð35Þ

Using Eq. (35), we can construct the Luttinger-Ward [32]

and the Kadanoff-Baym [33] dynamic variation procedure
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for determining the single-particle Green function [34].

Thus, using the GFT based on the quantum field theory

methods, we obtain the consistent description of the ground

state of the inhomogeneous electronic system in the static

external field, which satisfies the thermodynamic limit,

without the consideration of the problem of the functional

for the external field potential (see Eqs. (2) and (22)).

In this case, an important remark should be made. As

follows from Eq. (35), the functional G([g]) essentially

depends on the functional Rðr; r0;x; ½g�Þ. At the same time,

according to Eq. (30), this functional directly defines the

single-particle Green function, i.e., Eq. (30) is a functional

equation for calculating the Green functions gðr; r0;xÞ.
Wherein, the functional Rðr; r0;x; ½g�Þ is nonlinear. This

makes the Dyson equation (30) non-linear, so it may also

lead to unphysical solutions (see Ref. [35] for a recent

discussion). If we have the solution to Eq. (30), inhomo-

geneous density nðrÞ is determined from Eqs. (21) and

(33). It is also worth noting that the whole ground-state

energy can be written just in terms of the Green’s function

using the so-called Galitskii-Migdal formula [36] (see [15]

for more details)

E0 ¼
Z

drdr0
Z l

�1

dx
2p

� 1

2m
r2

r0 þ vðr0Þ þ x

� ��

Imgðr; r0;xÞdðr� r0Þg: ð36Þ

This means that when constructing approximations for

determining the single-particle Green function, the self-

consistency procedure should be performed between

solutions corresponding to the functional Eq. (30) and the

Luttinger–Ward–Kadanoff–Baym dynamic variational

method. Various approximations for calculating the

single-particle Green function are presented in Refs. [9–

17], including the relation with the RDMFT and DMFT. It

is clearly seen from Eq. (36) that the ground state energy of

the inhomogeneous system of interacting electrons,

satisfying the thermodynamic limit, is uniquely defined

by the single-particle Green function. As it is easy to

verify, in the case of noninteracting electrons and in the

self-consistent Hartree-Fock approximation, when under

the condition x\l

Imgðr; r0;xÞ ¼ p
X
e0;k\l

u�
0kðr0Þu0kðrÞdðx� e0kÞ ð37Þ

(see Eq. (32)), to determine the ground state energy of the

inhomogeneous system of electrons, it is sufficient to know

the reduced density matrix cðr; r0Þ (see Eq. (33)). This

circumstance can be used to describe the inhomogeneous

system of interacting electrons, considering it as a system

of weakly interacting quasiparticles, as is the case in the

Landau-Silin theory for the homogeneous Fermi liquid [37,

38]. In this case, as shown in [39], the ground state energy

of the homogeneous system of interacting electrons is a

functional of the reduced density matrix. To determine

such a functional for the inhomogeneous system of inter-

acting electrons, the wave-function approach to the Gibbs

grand-canonical ensemble has been proposed in [17],

which minimizes the Gibbs grand potential, expressed as a

functional of many-particle wave functions in Fock space

and their probabilities. However, the applicability of the

Landau-Silin theory are violated for strongly correlated

Fermi systems (see [40] and references therein).

4. Conclusions

Thus, in general case, the ground state of the inhomogeneous

electronic system in the static external field, which corre-

sponds to the thermodynamic limit, is completely defined by

the single-particle Green function. Only after its calculation,

the inhomogeneous density and the ground state energy of

the system under consideration can be determined.
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