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Abstract: In this paper, we present generalization of anisotropic analogue of charged Heintzmann’s solution of the

general relativistic field equations in curvature coordinates. These exact solutions are stable and well behaved in all respect

for a wide range of anisotropy parameter and charge parameter. We have found that these new solutions are suitable for the

modeling of super dense stars like neutron stars and quark stars because they yield a wide range of masses and radii with

simple mathematical expressions. By tuning different values of the few parameters, we can model various neutron stars and

quark stars which are compatible with the experimentally observed values of masses and radii. Therefore, we have

synchronized our solution with the observed values of some of the compact stars XTE J1739 - 217, EXO 0748 - 676,

PSR J1614 - 2230, PSR J0348 ? 0432 and PSR B0943 ? 10.
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1. Introduction

Almost 8 decades ago, Oppenheimer and Volkoff [1]

obtained the maximum mass of neutron star (NS) using

general relativistic equation of hydrostatic equilibrium

called TOV equation. In this model they assumed the

equation of state (EOS) for free Fermi gas of neutrons at

T = 0 and yield a maximum mass 0.71 M�. Since then

researchers are trying to explore alternative EOS which

may increase the maximum mass limit of neutron star. Due

to the lack of comprehensive knowledge of the internal

structure of neutron star, it is still a big puzzle to find the

exact EOS of such compact objects. In spite of such

incomprehensive knowledge, researchers are interested to

find analytic exact solutions of Einstein’s field equation by

assuming certain geometry of space–time that satisfies all

physical constraints. Such analytic solutions enable us to

find simple algebraic expressions of the EOS and the dis-

tribution of matter in the interior of stellar objects.

Due to the highly nonlinear nature of Einstein’s field

equations it is difficult to obtain new exact solutions. A

good collection of static, spherically symmetric perfect

fluid solutions are obtained by some authors [2, 3]. In this

paper we have presented a new class of anisotropic solu-

tions of Einstein–Maxwell’s field equations. Since the EOS

of neutron star (NS) which is bound by gravity and strange

quark star (SQS) bound by the strong quark–quark inter-

action are highly uncertain, there is a need to reconsider

their EOSs. For higher densities, the presence of aniso-

tropic nature of the fluid is highly possible because of

certain reasons which we have discussed in next few

sections.

Because of very intense surface magnetic field of a

newly born NS or SQS, the matter inside the stars may

generate pressure anisotropy [4]. Further, the pressure

anisotropy may cause if the stellar core is solid or presence

of type-IIIA superfluid [5]. Moreover, the possible forma-

tion of superfluid neutrons at critical temperature

Tc � 1010 K with energy gap Eg � 1 MeV, as a consequence

of BCS theory of neutrons [6]. Nowadays superfluidity

explains the sudden change in the time period of pulsars
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called ‘‘glitches’’. Inclusion of neutron superfluid is also

significant to discuss because it affects the neutrinos

emission rate through modified Urca process to investigate

its thermal evolution [7]. The EOS containing ground state

of npel matter associating nucleon–nucleon (NN) and NNN

interaction provide a stiff EOS with Mmax ’ 1:9–2.1 M�.

For higher densities (above the typical nuclear density,

q0), the electrons are replaced by pions (p�) and exist as

free pions at qJ1:5q0. This happens when the chemical

potential of electron exceeds the rest mass of pion [8].

Pions undergo ‘‘Bose–Einstein Condensation’’ forming

superconducting pions due to pion–nucleon strong attrac-

tion in the p-wave [9–12]. Due to the presence of super-

conducting pions at the interior of NS, the EOS get stiffer

which can support more maximum mass up to 3 M� with a

radius 14 km [13].

Above all these, if the density increase beyond 3q0;

kaons (K�) begin to contribute the EOS and start con-

densation due to strong attraction of s-wave kaon–nucleon

forming superconducting kaons causing anisotropy [14].

Further, the meson condensation can also lead to aniso-

tropy in pressure [11]. The inclusion of kaon condensation

gives soft EOS supporting a maximum mass of NS. 2M�
[15]. The existence of K;N;R� hyperons and D resonances

are possible at the core of NS where the density goes

beyond 1:2 � 1015 g cm�3 [16]. A model NS that contain

hyperons at the core, lead to a very soft EOS with Mmax ’
1:4M� [17]. The latest result for NS with hyperons inside

the core can support Mmax . 1:8–1.9 M�.

Due to the consequence of heavy ion collisions of

classical pion field, there is possible to form coherent pions

production [18]. A large fluctuation in the ratio of number

of charge-to-neutral pions is the cause during the collisions.

Further investigations suggested that such a large fluctua-

tion in pion ratio occurs due to ‘‘Disoriented Chiral Con-

densation (DCC)’’ [19, 20]. In order to observe DCC, a

large number of coherent pions must be produced. This

occurs through skyrmion and anti-skyrmion formation

[21]. As suggested by Wong [22], skyrmions are not single

baryon, but quantum mechanical superposition of baryons

and resonance states. Recently, Dong et al. [23] have dis-

cussed the astrophysical significance of skyrmion matters

in modeling compact stars. They have mentioned that half-

skyrmions may appear in dense baryonic matter when

skyrmions are put into on crystal which strongly affects the

nuclear tensor forces and influence the EOS. The matter

consists of half-skyrmions has a vanishing quark conden-

sation but non-vanishing pion decay constant and can be

interpreted as hadronic dual of strong-coupled quark mat-

ter. Dong et al. also suggested the change over from sky-

rmion to half-skyrmion matter alter the EOS from soft to

stiff at a density above nuclear density, resulting compact

stars as massive as *2.4 M�.

Recent observations have suggested some X-rays pul-

sars e.g. Her X - 1, RX J856.5 - 3754, XTE

J1739 - 285, PSR B0943 ? 10 etc. cannot be explained

by a neutron star model, rather a quark star model [4, 24,

25]. The possible existence of stable quark stars has been

studied earlier [26, 27]. The formation of strange quark

matter (SQM) inside a neutron star may take place in a

slow combustion [28–30] through weak interaction via

strangeness changing process. A theoretical determination

has been performed by Olesen et al. [31] showing the

conversion time scale may ranges from 0.1 s to a few

minutes depending on the NS temperature, baryon matter

EOS and Strange Quark Matter (SQM) parameters. Slow

combustion front is hydrodynamically unstable leading to a

supersonic detonation front with conversion time scale of

*0.1 ms [32]. Consequently, the supersonic detonation

would eject the outer layer of the neutron star leaving

behind a strange quark star. The conversion process to the

inner engines may emit long gamma ray bursts or probably

a rapidly rotating strange quark star is left behind. At

higher densities *1015 g cm-3, nuclear matter may be

anisotropic when its interactions are relativistic [33].

Recently Farook et al. [35] discussed stability problem of a

fluid sphere.

Considering the presence of some charges is also

important while modeling compact stars because the

gravitational collapse can be counter balanced by the

electric repulsion in addition to the pressure gradient. Some

authors have [34, 35] proposed models for charged perfect

fluid that inhibits the growth of space–time curvature to

avoid singularities. Thus it is enviable to study the impli-

cations of Einstein–Maxwell field equations with reference

to the general relativistic prediction of gravitational col-

lapse. For these purposes anisotropic and charged fluid ball

models are required. Including strong electric field due to

the inclusion of electric charge also cause pressure aniso-

tropy [36].

Dev and Gleiser [37] have revealed that pressure ani-

sotropy affects the physical properties, stability and struc-

ture of stellar matter. The stability of stellar bodies is

improved for positive measure of anisotropy when com-

pared to configurations of isotropic stellar objects. The

presence of anisotropic pressures in charged matter

enhances the stability of the configuration under radial

adiabatic perturbations as compared to isotropic matter,

[38]. Herrera and Santos [39] have also anticipated an

anisotropic model can be a stable model if and only if

�1\v2
? � v2

r . 0.

Many papers have been published by several authors

who obtained the parametric classes of exact solutions for

perfect fluid with charge and neutral fluids [40–42].

Note, more realistic models of super-dense stars should

incorporate not only charge but anisotropy too and indeed
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some authors have done so by using curvature coordinates

[43–45]. Recently anisotropic charge solution in isotropic

coordinates has been discussed by [46, 47] with all degree

of suitability. Regarding the stability of neutron stars and

quark stars, various models have been discussed in [48,

49]. Discussion has been made by [50–52] of collapsing

stars which include emission of radiation.

In our solutions, we choose seed solution of [53] and

found the solutions by assuming appropriate functional

form of charge parameter and anisotropic parameter in

such a way that the obtained solution is well behaved in all

respects. Further, for a particular value of parameter it

reduces to [54]. The external field of such ball is to be

matched with Reissner–Nordström solution.

2. Conditions for well behaved solutions

Well behaved nature of the solutions for anisotropic fluid

sphere should satisfy the following conditions:

1. The solution should be free from physical and

geometric singularities, i.e. it should yield finite and

positive values of the central pressure, central density

and nonzero positive value of ðemÞr¼0 and ðekÞr¼0 ¼ 1.

2. Following [55, 56], the solution should have positive

value of ratio of trace of energy stress tensor to

energy density ðPr þ 2P?Þ=qc2, and less than 1(weak

energy condition) and less than 1/3 (strong energy

condition) throughout within the star, monotonically

decreasing.

3. The casualty condition should be obeyed i.e. velocity

of sound should be less than that of light throughout

the model. In addition to the above the velocity of

sound should be decreasing towards the surface

i.e. d
dr

dpr
dq \0 or d2pr

dq2 [ 0 and d
dr

dp?
dq \0 or d2p?

dq2 [ 0 for

0� r� rb i.e. the velocity of sound is increasing with

the increase of density and it should be decreasing

outward.

4. dp
dq � p

q should be satisfied everywhere within the ball.

The adiabatic index, c ¼ qþpr
pr

dpr
dq for realistic matter

should be c� 1.

5. The red shift z should be positive, finite and mono-

tonically decreasing in nature with the increase of r.

6. Electric field intensity E, such that Er¼0 ¼ 0; is taken

to be monotonically increasing.

7. The anisotropy factor D should be zero at the center

and increasing towards the surface.

8. For a stable anisotropic compact star, �1. v2
? �

v2
r . 0 must be satisfied [39].

3. Einstein–Maxwell field equations of anisotropic

charge fluid distribution

The interior metric of a static spherically symmetric matter

distribution in curvature coordinates is given by,

ds2 ¼ �ekdr2 � r2 dh2 þ sin2hd/2
� �

þ c2emdt2 ð1Þ

where k and m are functions of r only.

Einstein–Maxwell field equations for a non empty

space–time are

Rl
q �

1

2
Rdlq ¼ � 8pG

c4
Tl
q

¼ � 8pG
c4

p? þ qc2
� �

vlvq � p?d
l
q þ pr � p?ð Þvqvl

h

þ 1

4p
�FlrFqr þ

1

4
dlqFraF

ra

� ��

ð2Þ

where Rl
q is Ricci tensor, Tl

q is energy–momentum tensor,

R the scalar curvature, Fqr is the electromagnetic field

tensor, pr and p? denote radial and transverse pressure

respectively, q the density distribution, vl the four velocity

and vl is the unit space-like vector in radial direction.

For the metric Eq. (1) the Einstein–Maxwell’s field

equations of gravitation (Eq. (2))for a non-empty space–

time reduces to the following set of relevant equations:

8pG
c4

pr ¼
m0

r
e�k � 1 � e�k

r2
þ q2

r4
ð3Þ

8pG
c4

p? ¼ e�k m00

2
� k0m0

4
þ m02

4
þ m0 � k0

2r

� �
� q2

r4
ð4Þ

8pG
c2

q ¼ k0

r
e�k þ 1 � e�k

r2
� q2

r4
ð5Þ

where prime (0) denotes the differentiation with respect to r

and q the charge inside the radius.

By assuming the metric potential as that of [53]

em ¼ Bð1 þ c1r
2Þ3 ð6Þ

Eqs. (3) and (4) are reduced to

8pG
c4

p? � prð Þ ¼ D

¼ e�k m00

2
þ m02

4
� m0

2r
� 1

r2

� �

� k0e�k m0

4
þ 1

2r

� �
þ 1

r2
� 2q2

r4
ð7Þ

Assuming Y ¼ e�k and x ¼ c1r
2 by using Eq. (6), Eq. (7)

is reduced to
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dY

dx
þ 1þ x

1þ 4x

3x

1þ xð Þ2
� 1

x

" #

Y

þ 1þ x

1þ 4x

1

x
� D
c1

� 2E2

c1

� �
¼ 0

where E2 ¼ q2

r4
ð8Þ

Our task is to explore the solutions of Eq. (8) and obtain

a physically meaningful matter distribution by assuming

anisotropy D and electric field E.

In the conservation equation, there is a non-vanishing

term 2ðp? � prÞ=r, which represents a force because of

the anisotropic nature of the fluid. This force will be

outward when p? [ pr and inward when p?\pr [56].

Because of the existence of an outward force for p? [ pr,

it has more advantage for modeling more massive com-

pact objects with anisotropic fluid than with isotropic

fluid.

4. New class of solutions

To solve the above Eq. (8), we consider D and E of the

following form:

D
c1

¼ dx

1 þ xð Þ2s
and

E2

c1

¼ c1q
2

x2
¼ kx

2 1 þ xð Þ2n
ð9Þ

where k and d are non-zero positive constants, n and

s are real numbers. The anisotropy and electric intensity

are so assumed that the model is physically significant

and well behaved i.e. D and E remain regular and pos-

itive throughout the sphere as well as both should vanish

at the center of the star and increase towards the

boundary.

Substituting Eq. (9) into Eq. (8) we have,

dY

dx
þ 1 þ x

1 þ 4x

3x

1 þ xð Þ2
� 1

x

" #

Y

þ 1 þ x

1 þ 4x

1

x
� dx

1 þ xð Þ2s
� kx

1 þ xð Þ2n

 !

¼ 0

ð10Þ

which yield the following solution,

YðxÞ ¼ e�k

¼ x

ns 1 þ xð Þ
ns

x
þ ksþ nd� ns

2

� �
þ Ax

xþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4x

p

ð11Þ

where A is an arbitrary constant.

Now the expressions for density and pressures are given

by

1

c1

8pG
c4

pr ¼
1 þ xð Þ2n�2

x 7 ksþ ndð Þ � 9nsf g þ ksþ ndþ 9ns½ � þ knsx

2ns xþ 1ð Þ2n

þ A 7xþ 1ð Þ
xþ 1ð Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4x
p

ð12Þ

1

c1

8pG
c4

p? ¼ 1 þ xð Þ2n�2
x 7 ksþ ndð Þ � 9nsf g þ ksþ ndþ 9ns½ � þ knsx

2ns xþ 1ð Þ2n

þ A 7xþ 1ð Þ
xþ 1ð Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 4x
p þ dx

1 þ xð Þ2s

ð13Þ

1

c1

8pG
c2

q ¼
n 1 þ xð Þ2n

3 þ xð Þ 3s� dð Þ � ks nx 1 þ xð Þ2þ 1 þ xð Þ2n
3 þ xð Þ

h i

2ns 1 þ xð Þ2nþ2

� A 9xþ 3ð Þ
xþ 1ð Þ2

1 þ 4xð Þ3=2

ð14Þ
5. Properties of the new solutions

The central values of the pressures and density is given by

1

c1

8pG
c4

pr

� �

r¼0

¼ 1

c1

8pG
c4

p?

� �

r¼0

¼ ksþ ndþ 9ns

2ns
þ A[ 0

ð15Þ

a non-zero positive finite value.

1

c1

8pG
c2

q

� �

r¼0

¼ 9ns� 3ks� 3nd� 6A

2ns
[ 0;

a non-zero positive finite value

ð16Þ

Since the Zeldovich’s condition ½p=qc2�r¼0 � 1 has to be

satisfied at the center the super-dense star, we have

A� � 2ksþ 2nd
nsþ 3

ð17Þ

Differentiating Eqs. (12)–(14) with respect to x we get

1

c1

8pG
c4

dpr

dx
¼

�ks 2n2x 1 þ xð Þ2�n 1 þ xð Þ3þ 1 þ xð Þ2n
7x� 5ð Þ

h i
þ n 1 þ xð Þ2n

9s x� 3ð Þ þ d 5 � 7xð Þ½ �

2ns xþ 1ð Þ2nþ3
� 3A 14x2 þ x� 1ð Þ

1 þ xð Þ3
1 þ 4xð Þ3=2

ð18Þ

846 K N Singh and N Pant



The second-order differentiation for pressures and den-

sity are negative

1

c1

8pG
c4

d2pr

dx2

� �

r¼0

\0;
1

c1

8pG
c4

d2p?
dx2

� �

r¼0

\0;

1

c1

8pG
c2

d2q
dx2

� �

r¼0

\0

Signifying that pressures and density are decreasing

outward and maximum at the center. In the light of

Eqs. (18), (19) and (20), the speed of sound can determine

by

v2
r ¼

dpr

dx

	
dq
dx

and v2
? ¼ dp?

dx

	
dq
dx

ð21Þ

For a stable anisotropic model, �1\v2
? � v2

r . 0 needs

to be satisfied. Now the expression for gravitational red-

shift (z) and adiabatic index (c) are given by

z ¼ e�
m
2 � 1 ¼ 1 þ xð Þ�

3
2

ffiffiffi
B

p � 1 and c ¼ qþ pr

pr

dp

dq
ð22Þ

Since the central value of gravitational red-shift to be

non-zero positive finite, we have 0\
ffiffiffi
B

p
\1.

Differentiating Eq. (22) with respect to x we get,

dz

dx

� �

x¼0

¼ � 1

2
ffiffiffi
B

p \0 ð23Þ

The expression on Eq. (23) is negative, implying that

the gravitation red-shift is maximum at the center and

decreases outward.

d

dx

E2

c1

� �

x¼0

¼ k

2
[ 0 and

d

dx

D
c1

� �

x¼0

¼ d[ 0 ð24Þ

Equation (24) signifies the electric field and anisotropy

are minimum (i.e. zero) at the center and monotonically

increasing outward.

6. Boundary conditions

The interior solutions so obtained are matched with the

exterior solution of Reissner–Nordström solution given by

ds2 ¼ 1 � 2GM

c2r
þ e2

r2

� �
c2dt2 � 1 � 2GM

c2r
þ e2

r2

� ��1

dr2

� r2ðdh2 þ sin2hd/2Þ
ð25Þ

where M is the mass of the fluid ball as determined by the

external observer and r� rb is the radial coordinate of the

exterior region. Since Eq. (25) is considered as the exterior

solution, thus we shall arrive at the following conclusions

by matching with Eq. (1) at the boundary r ¼ rb:

emb ¼ 1 � 2GM

c2rb
þ e2

r2
b

� �
¼ B 1 þ Xð Þ3 ð26Þ

q r ¼ rbð Þ ¼ e ð27Þ

e�kb ¼ 1 � 2GM

c2rb
þ e2

r2
b

� �

¼ X

ns 1 þ Xð Þ
ns

X
þ ksþ nd� ns

2

� �

þ AX

X þ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4X

p ð28Þ

And prðr ¼ rbÞ ¼ 0; providedX ¼ c1r
2
b ð29Þ

Using Eq. (29), we can determine the constant A and

obtained as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4X

p
1 þ Xð Þ2n�2

X 9ns� 7 ksþ ndð Þf g � ks� nd� 9ns½ � � knsX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4X

p

2ns 7X þ 1ð Þ 1 þ Xð Þ2n�2

ð30Þ

Equating Eqs. (26) and (28), we get obtain the

expression of B

1

c1

8pG
c4

dp?
dx

¼
�ks 2n2x 1 þ xð Þ2�n 1 þ xð Þ3þ 1 þ xð Þ2n

7x� 5ð Þ
h i

þ n 1 þ xð Þ2n
9s x� 3ð Þ þ d 5 � 7xð Þ½ �

2ns xþ 1ð Þ2nþ3

� 3A 14x2 þ x� 1ð Þ
1 þ xð Þ3

1 þ 4xð Þ3=2
þ d 1 þ x� 2sxð Þ

1 þ xð Þ2sþ1

ð19Þ

1

c1

8pG
c2

dq
dx

¼
ks 2n2x 1 þ xð Þ2�n 1 þ xð Þ3þ 1 þ xð Þ2n

xþ 5ð Þ
h i

� n 1 þ xð Þ2n
5 þ xð Þ 3s� dð Þ

2ns xþ 1ð Þ2nþ3
þ 3A 30x2 þ 23xþ 5ð Þ

1 þ xð Þ3
1 þ 4xð Þ5=2

ð20Þ

Singularity free charged anisotropic solutions of Einstein–Maxwell field equations 847



B ¼ X

ns 1 þ Xð Þ4

ns

X
þ ksþ nd� ns

2

� �
þ AX

X þ 1ð Þ4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4X

p

ð31Þ

Finally in the view of Eqs. (26) and (6) we arrive to the

expression of mass

M ¼ rbc
2

2G
1 � B 1 þ Xð Þ3þ kX2

2 1 þ Xð Þ2n

" #

ð32Þ

Also the equation for central value of red-shift is given

as

z0 ¼ B�1=2 � 1 ð33Þ

Our presented solutions satisfy all the energy conditions,

such as Null Energy Condition (NEC), Weak Energy

Condition (WEC), Strong Energy Condition (SEC) and

Dominant Energy Condition throughout the interior region

(Fig. 8):

qþ pr � 0; qþ p? � 0; q� 0; qþ pr þ 2p? � 0;

q� prj j; p?j j; qþ E2 � 0;

qþ p? þ E2 � 0 and qþ pr þ 2p? þ E2 � 0:

7. Results and discussions

It has been observed that the physical parameters

pr; p?; q;
pr
c2q ;

p?
c2q ;

dpr
c2dq ;

dp?
c2dq ; z


 �
are positive at the centre

and within the limit of realistic equation of state and

monotonically decreasing (Figs. 1, 2, 3, 4, 7). However, the

anisotropic parameter, electric field and adiabatic index are

minima at the center and increasing outward (Figs. 2, 5, 6).

Thus, the solutions are well behaved for all values of n; s;X

and d for specific values mentioned above. If we change
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any of the specified parameter for each case, then all other

parameter should also change until the solution is well

behaved. Because of these wide values of all the parame-

ters, we can model many different types of ultra-cold

compact stars like quark stars and neutron stars. From

Fig. 7, it is also observed that the ratio with trace of stress

tensor to energy density is also decreasing outward. For a

perfect fluid it is sufficient enough to check the trend of

pressure to density ratio whether the obtained solution is

well behaved or not. However, for an anisotropic fluid it is

also desired to check the trend of ðpr þ 2p?Þ=c2q, which

should be decreasing outward. As seen from Fig. 8, we can

conclude that �1\v2
? � v2

r . 0 is satisfied for all the

models, which means that our models of anisotropic

compact stars are stable. Form Fig. 9, we can verify our

solutions satisfying all the energy conditions.

Now we present some models of super dense quark stars

and neutron stars based on the particular solutions dis-

cussed above by assuming surface density qb ¼ 4:6888 �
1014 g cm�3 for quark star and qb ¼ 2:7 � 1014 g cm�3 for

neutron star. Corresponding to n ¼ 2; s ¼ 1; k ¼ 4 and

d ¼ 1, the mass and radius for Xmax ¼ 0:16 is

2:45 M�; 14:6 km (Neutron star) and 1:86 M�; 11:1 km

(quark star). For n ¼ 2; s ¼ 3; k ¼ 2 and d ¼ 5, the mass

and radius correspond to Xmax ¼ 0:128 is

1:99M�; 14:02 km (Neutron star) and 1:51 M�; 10:64 km

(quark star). Similarly, for n ¼ �2; s ¼ 3; k ¼ 2 and

d ¼ 8, the mass and radius correspond to Xmax ¼ 0:1 is

1:83 M�; 14:39 km (Neutron star) and 1:39 M�; 10:92 km

(quark star). The well behaved class of relativistic stellar

models obtained in this work may have astrophysical sig-

nificance in the study of more realistic internal structure of
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compact star. Therefore, we have used our solution to

model certain compact objects whose radii and masses are

well known, Table 1. Here EXO 0748 - 676, PSR

J1614 - 2230 and PSR J0348 ? 0432 are NS [57–59]

candidates as well as XTE J1739 - 217 and PSR B0943

are quark star [60, 61] candidates.

Now a special case of our solution n ¼ 0:5; s ¼ 3; k ¼
2:6; d ¼ 5 andX ¼ 0:00373 needs to be given attention for

the quark star PSR B0943 ? 10 because as seen from

Fig. 10, v2
r and v2

? is almost constant at about 0.162 and

0.123 respectively similar to MIT Bag model of quark

stars. MIT Bag model gives v2
r ¼ 0:333 and constant

thorough the star. But our obtained v2
r is about one-half the

value as given by MIT Bag Model. This decrease in radial

speed of sound may be because of the anisotropic nature of

the fluid. Also we know that MIT Bag Model of quark is

not a physical model because it assumes that the quarks are

freely moving inside the bag of hadrons without any

interaction. Because of such over simplified assumption,

sound speed in quark star matter using EOS from MIT Bag

Model may be over estimated. From the above Table 1, we

observe that our solution is useful in modeling of compact

stars.

8. Conclusions

From the above discussions we can conclude that the

presented neutron star model of mass 2.45 M� may contain

an EOS for half-skyrmion matter [23] or p� condensation

[13] leading to its mass. For neutron stars of mass 1.99 M�,

1.97 M� (PSR J1614 - 2230), 2.01 M� (PSR

J0348 ? 0432) and 2.1 M� (EXO 0748 - 676), we expect

the EOS to contain ground state of npel matter with NN

and NNN strong interaction giving rise to their mass within

the range 1.9–2.1 M�. Lastly, the NS with mass 1.83 M� is

expected to contain hyperons condensation inside its core.
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