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Abstract: Positronium formation in Rydberg states from the ground state of the hydrogen atom by positron impact has

been studied within the framework of a distorted wave theory which includes static dipole polarization potential. The

distorted wave scattering amplitude has been obtained in a closed form. A detailed investigation has been made on the

differential and total cross sections in the energy range 25–300 eV of incident positron. It has been found that asymptotic

cross sections for the positronium formation into different angular momentum states obey a simple law.
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1. Introduction

Formation of positronium (Ps) in highly excited states

during collisions is of fundamental interest because of its

important applications in diverse fields of physics, such as

plasma physics [1–3], astrophysics [4–9], material science

[10–14], chemical physics [14, 15], high energy physics

[16, 17]. Positronium atoms are of particularly suitable to

verify the prediction of quantum electrodynamics (QED).

The annihilation of positronium has been a bench mark of

bound state QED (BSQED) for many years. Positron

annihilation are utilized most exclusively in the material

science and chemical physics. Positronium has been known

for a long time to exist in excited states and many exper-

imental attempts have been made to study the properties of

excited states of Ps with principle quantum number n[ 1

[18–21]. Collision cross section data for various excited

states are frequently required for plasma diagnostics and

astrophysics. Moderately high excited states, such as

8� n� 25 are of practical importance from the point of

view of laboratory production of hot plasmas [3]. Since

atoms in ground state and low-lying excited states, such as

1� n� 7; are not significantly ionized, moderately excited

atoms (8� n� 25) being easily ionized are suitable for this

purpose. Annihilation radiation observed in the solar flare,

in the stellar atmospheres and in the interstellar space

shows the formation of positronium atoms in different

excited states in astrophysical environments [8, 9]. Fur-

thermore, Rydberg states of positronium atom are used to

produce antihydrogen in antimatter experiments [16, 17].

Positronium formation in positron–hydrogen collisions

has been studied extensively with various degree of

sophistication during the last five decades, both experi-

mentally and theoretically [18–46] (and further references

therein). But those studies are mostly concerned with the

positronium formation in the ground state. The number of

studies on positronium formation in excited states is very

few; in particular positronium formation in nlm state is rare

[42] and that study used a first-order calculation. It seems

that carrying out sophisticated quantum mechanical calcu-

lations involving highly excited states becomes very com-

plicated because of the presence of a large number of

oscillations in the final bound state wavefunction. Recently,

Ghoshal and Mandal [45] have investigated Ps formation in

n0s state in eþ þ HðnsÞ collisions. But, calculation involving

arbitrary nlm states is rather difficult than arbitrary ns states,

because of the appearance of angular part in the former.

In this paper we focus our attention to investigate the

reaction process:
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eþ þ Hð1sÞ 7! PsðnlmÞ þ p; ð1Þ

for arbitrary n, l and m. Our endeavour is to make a

comprehensive study on the differential cross section and

the total cross section.

We have extended the second order distorted wave

theory put forward by Ghoshal and Mandal [46] in the

momentum space to study the dynamics of the rearrange-

ment process (Eq. (1)). In this theory the distortion

potential in a particular channel has been approximated by

the average (over internal motions) of perturbation of that

particular channel over the bound states [28, 47]. This

approximation works well for intermediate and high ener-

gies of incident positron. In the present work, we have

modified the distorted wave formalism to take into account

the effect of dipole polarization of the target atom into the

distorted wave theory.

2. Theory and calculations

To describe the process given in Eq. (1), we use the

center-of-mass coordinate system (as shown in Fig.1) in

which the electron 3, initially bound to the target proton

2 of mass mp; is finally captured by the incident positron

1. In this coordinate system the non-relativistic Hamil-

tonian (in a.u.) of the positron–hydrogen system, is given

by

H ¼ � 1

2mi

r2
R1

� 1

2mH

r2
r2
þ 1

R12

� 1

r1

� 1

r2

; ð2Þ

where mi ¼ ðmp þ 1Þ=ðmp þ 2Þ and mH ¼ mp=ðmp þ 1Þ:
The Hamiltonian H can be written in terms of the channel

Hamiltonians as

H ¼ Hi þ Vi ¼ Hf þ Vf

such that

HiUi ¼ EiUi; HfUf ¼ EfUf ;

where Ui;Uf are unperturbed initial and final states

corresponding to the Hamiltonians

Hi ¼ � 1

2mi

r2
R1

� 1

2mH

r2
r2
� 1

r2

and

Hf ¼ � 1

2mf

r2
R2

� 1

2mPs

r2
r1
� 1

r1

in the incident and final channel, respectively, with mf ¼
2mp=ðmp þ 2Þ;mPs ¼ 1=2 and the residual interactions

Vi ¼ ð1=R12 � 1=r1Þ and Vf ¼ ð1=R12 � 1=r2Þ having

energies Ei and Ef ,

Ea ¼
k2
a

2ma
þ �a ða ¼ i; f Þ:

Here ð�i; �f Þ; ðki; kf Þ are respectively, the eigen energies of

bound states and positron momenta in the incident and final

channels, whereas ðmi;mf Þ are the reduced masses for the

center of mass motion in the scattering system.

In the present investigation we use the partial wave

distorted wave amplitude as obtained by Ghoshal and

Mandal [46]:

A
ðLÞ
fi ðkf ; kiÞ ¼ g

ðLÞ
B ðkf ; kiÞ þ D

ðLÞ
fi ðkf ; kiÞ ð3Þ

where g
ðLÞ
B ðkf ; kiÞ and D

ðLÞ
fi ðkf ; kiÞ are obtained as:

g
ðLÞ
B ðkf ; kiÞ ¼

ffiffiffiffiffiffiffiffi

kikf
p

=2

Z

þ1

�1

½gBðk~f ; k~iÞ�PLðcos hÞdðcos hÞ;

and

D
ðLÞ
fi ðkf ; kiÞ ¼

ffiffiffiffiffiffiffiffi

kikf
p

=2

Z

þ1

�1

½Dðk~f ; k~iÞ�PLðcos hÞdðcos hÞ;

in which the two-body amplitudes are given by

gBðk~f ; k~iÞ ¼ �mf

2p

� �

Uf jVf jUi

� �

;

ff cðk~f ; k~iÞ ¼ �mc

2p

� �

Uf jVf jU00
c

D E

;

�fciðk~f ; k~iÞ ¼ �mi

2p

� �

U00
c jUijUi

D E

;

with the double scattering matrix elements

Dfiðk~f ; k~iÞ ¼
1

ð2pÞ3

X

c

� 2p
mc

� �

Z

dk00~

E � E00
c þ i�

ff cðk~f ; k~
00Þ�fciðk~

00
; k~iÞ:

ð4Þ

Here c denotes the intermediate states of hydrogen atom.

The distorted-wave amplitude A
ðLÞ
fi ðkf ; kiÞ is a function of

the scattering energies for any partial wave L. In calcu-

lating g
ðLÞ
B and D

ðLÞ
fi we take /f to be zero, where /f is the

azimuthal angle of k~f about k~i as z� axis. In the present

Fig. 1 Coordinate system used to describe positron–hydrogen system
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context this is no restriction. It corresponds to taking /p ¼
0 in (Eq. (17)), where /p denotes the azimuthal angle of p~:

As proposed earlier, we choose the potentials Ui and Uf

as:

Ui ¼ h/ijVij/ii and Uf ¼ hgf jVf jgf i;

where /i, gf are the bound state wave functions in the

initial and final channel respectively and the integration is

performed over the bound state coordinates. For eþ þ
Hð1sÞ7!PsðnlmÞ þ p we have

Ui ¼ /ijVij/ih i ¼ /1sjVij/1sh i
Uf ¼ gf jVf jgf

� �

¼ gnlmjVf jgnlm
� �

¼ 0;

where Vi ¼ ð1=R12 � 1=r1Þ, Vf ¼ ð1=R12 � 1=r2Þ: The

unperturbed states in the incident and the final channel

are given by

Uiðr~1; r~2Þ ¼ eik
~
i:R~1/iðr~2Þ and Uf ðr~1; r~2Þ ¼ e�ik~f :R~2gf ðr~1Þ:

/iðr~2Þ; gf ðr~1Þ are the initial and final wave functions of H-

atom and Ps-atom respectively, where i corresponds to 1s,

and f corresponds to nlm, n ¼ 2; 3; . . .; l ¼ 0; 1; 2; . . .; n�
1; m ¼ �l; . . .;þl. It has been possible to obtain all two-

body amplitudes in closed form and thus the distorted wave

amplitude (Eq. (3)). Evaluation of the 1s ! nlm capture

amplitude gBðk~f ; k~iÞ is shown in the Appendix.

Here we have included only c ¼ 1s intermediate state of

hydrogen to evaluate the double scattering matrix elements

(Eq. (4)). This makes a truncation of the contribution from

transition to an intermediate excited state followed by

super-elastic scattering from that state. Such a truncation

does not affect the results too much at intermediate and

high energies, because it has been observed from vast

amount of collision calculations that the contribution from

Table 1 Partial wave contributions to the positronium formation cross sections (in units of pa2
0) for the processes of eþ þ Hð1sÞ ! PsðnlmÞ þ p

l 50 eV 100 eV 150 eV 200 eV 300 eV

(A) (B) (A) (B) (A) (B) (A) (B) (A) (B)

0 0.3087[-2] 0.6591[-2] 0.2094[-3] 0.2322[-3] 0.4254[-4] 0.3110[-4] 0.1404[-4] 0.7402[-5] 0.2791[-5] 0.9395[-6]

1 0.1808[-2] 0.6817[-2] 0.8660[-4] 0.2445[-3] 0.1775[-4] 0.2539[-4] 0.5347[-5] 0.4680[-5] 0.8206[-6] 0.3917[-6]

2 0.1044[-1] 0.1813[-2] 0.6595[-3] 0.1170[-3] 0.1116[-3] 0.1580[-4] 0.2960[-4] 0.3358[-5] 0.4150[-5] 0.3238[-6]

3 0.1435[-1] 0.2010[-2] 0.1124[-2] 0.1331[-3] 0.1936[-3] 0.1834[-4] 0.5081[-4] 0.3951[-5] 0.6950[-5] 0.3928[-6]

4 0.1300[-1] 0.2713[-2] 0.1231[-2] 0.1775[-3] 0.2212[-3] 0.2398[-4] 0.5881[-4] 0.5087[-5] 0.8078[-5] 0.4959[-6]

5 0.9556[-2] 0.2829[-2] 0.1085[-2] 0.1982[-3] 0.2046[-3] 0.2698[-4] 0.5548[-4] 0.5716[-5] 0.7733[-5] 0.5537[-6]

6 0.6160[-2] 0.2402[-2] 0.8380[-3] 0.1871[-3] 0.1664[-3] 0.2609[-4] 0.4614[-4] 0.5575[-5] 0.6558[-5] 0.5428[-6]

7 0.3625[-2] 0.1770[-2] 0.5916[-3] 0.1566[-3] 0.1239[-3] 0.2257[-4] 0.3521[-4] 0.4890[-5] 0.5115[-5] 0.4815[-6]

8 0.1993[-2] 0.1185[-2] 0.3910[-3] 0.1201[-3] 0.8650[-4] 0.1797[-4] 0.2522[-4] 0.3961[-5] 0.3752[-5] 0.3958[-6]

9 0.1040[-2] 0.7358[-3] 0.2457[-3] 0.8604[-4] 0.5749[-4] 0.1342[-4] 0.1721[-4] 0.3015[-5] 0.2625[-5] 0.3066[-6]

10 0.5201[-3] 0.4340[-3] 0.1483[-3] 0.5857[-4] 0.3673[-4] 0.9542[-5] 0.1130[-4] 0.2187[-5] 0.1768[-5] 0.2266[-6]

11 0.2512[-3] 0.2447[-3] 0.8658[-4] 0.3821[-4] 0.2272[-4] 0.6510[-5] 0.7187[-5] 0.1524[-5] 0.1155[-5] 0.1612[-6]

12 0.1179[-3] 0.1343[-3] 0.4918[-4] 0.2412[-4] 0.1369[-4] 0.4299[-5] 0.4452[-5] 0.1029[-5] 0.7351[-6] 0.1110[-6]

13 0.5391[-4] 0.7168[-4] 0.2729[-4] 0.1479[-4] 0.8060[-5] 0.2759[-5] 0.2697[-5] 0.6750[-6] 0.4577[-6] 0.7443[-7]

r 0.6601[-1] 0.2975[-1] 0.6774[-2] 0.1788[-2] 0.1307[-2] 0.2448[-3] 0.3635[-3] 0.5305[-4] 0.5269[-4] 0.5397[-5]

a: 0.6880[-1] 0.2530[-1] 0.6080[-2] 0.1170[-2] 0.1070[-2] 0.1430[-3] 0.2790[-3] 0.2870[-4] 0.3750[-4] 0.2630[-5]

b: 0.6440[-1] 0.2925[-1] 0.6870[-2] 0.1860[-2] 0.3600[-3] 0.5000[-4]

c: 0.7076[-1] 0.1649[-1] 0.7610[-2] 0.1340[-2] 0.1510[-2] 0.2100[-3] 0.4300[-3] 0.5000[-4] 0.7000[-4] 0.1000[-4]

d: 0.5380[-1] 0.2610[-1] 0.5700[-2] 0.1900[-2]

e: 0.7130[-1] 0.2760[-1]

f: 0.8600[-2] 0.8800[-3] 0.5200[-3] 0.2800[-4]

g: 0.4140[-1] 0.1660[-1] 0.5100[-2] 0.3000[-2]

h: 0.6860[-1] 0.7270[-2] 0.3880[-3]

Column (A) and Column (B) respectively stand for Ps(2s) and Ps(2p) formations. r denotes the corresponding total excitation cross section

obtained by summing up all significant partial wave contributions. The notation x[�y] stands for x �10�y

a: The Glauber eikonal approximation of Tripathi et al. [26], b: analytical results of Sil et al. [29], c: distorted-wave Born approximation of Nahar

[30], d: 33-state approximation of Kernoghan et al. [31] (data taken from graph within 5% accuracy), e: 18-state approximation of Kernoghan

et al. [32] (data taken from graph within 5% accuracy), f: boundary-corrected continuum intermediate state (BCCIS) approximation Mandal

et al. [38], g: convergent close-coupling approach of Kadyrov and Bray [40] (data taken from graph within 5% accuracy), h: distorted wave

approximation results of Nayek and Ghoshal [44]
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the ground state (1s) is most essential for the calculation of

the scattering amplitude at intermediate and high energies.

Thus, inclusion of only one intermediate state reduces the

complexity of the problem without affecting the accuracy

of the results much. However, effects of higher interme-

diate states can be compensated by taking into account the

effect of the dipole polarization potential explicitly, which

we do in the present work. It is well known that the

hydrogen atom gets distorted by the slowly moving posi-

tron and the dominant long-range interaction is the polar-

ization interaction. In the present work, we have

incorporated the effect of the distortion of the target atom

by means of the following polarization potential [48]:

VpolðrÞ ¼ � ar2

2ðr2 þ d2Þ3
ðin a:u:Þ; ð5Þ

where a ¼ 4:5 (a.u.) is the static dipole polarizability of

the hydrogen atom and d is a variable parameter. The

polarization potential (Eq. (5)) shows a minima at r ¼
d=

ffiffiffi

2
p

; and is, therefore, most attractive there. The

parameter d is, then, approximately of the order of the

size of the atom [48]. Inclusion of the polarization

potential leads to a modification of two-body amplitudes,

f ðk~f ; k~iÞ; in the elastic channel by f ðk~f ; k~iÞ þ fpolðk~f ; k~iÞ;
where fpolðk~f ; k~iÞ is the amplitude due to the polarization

potential (Eq. (5)). In other words, the elastic two-body

amplitude is replaced by its polarized-Born counterpart.

So it is expected that the inclusion of the effect of the

dipole polarization potential explicitly will extend the

applicability of the distorted wave theory towards further

low energies, as well as to improve the accuracy of the

results over previously reported results.

3. Results and discussion

In Table 1 we present the partial wave contributions to

the Ps(2s) and Ps(2p) formation cross sections for dif-

ferent incident positron energies. This table also includes

the results obtained by using some other methods, such

as the Glauber eikonal approximation [26], analytical

results [29], distorted wave Born approximation [30],

33-state approximation [31], 18-state approximation [32],

boundary-corrected continuum intermediate state(BCCIS)

approximation [38], convergent close-coupling approach

[40] and distorted wave approximation results [44] .

From this table we see that our distorted wave results are

fairly accurate. Partial wave contributions to the

positronium formation in various states are shown in

Table 2 for 100 eV of incident positron energy. It is

worthy to be mentioned here that for particular values of

n and l we sum the contributions of all m degenerate

states.

We present the differential cross sections for the

positronium formation in some excited states in Fig. 2.

Table 2 Partial wave contributions to the positronium formation cross sections (in units of pa2
0) for the reaction eþ þ Hð1sÞ ! PsðnlmÞ þ p at

100 eV positron energy

l Capture process

Ps(3s) Ps(3p) Ps(3d) Ps(4p) Ps(4d) Ps(5p) Ps(5d)

0 0.6390[-4] 0.8400[-4] 0.2021[-5] 0.3778[-4] 0.1351[-5] 0.1991[-4] 0.8367[-6]

1 0.2609[-4] 0.8829[-4] 0.3855[-5] 0.3968[-4] 0.2313[-5] 0.2090[-4] 0.1358[-5]

2 0.2006[-3] 0.4114[-4] 0.3985[-5] 0.1832[-4] 0.2393[-5] 0.9610[-5] 0.1405[-5]

3 0.3432[-3] 0.4663[-4] 0.2609[-5] 0.2073[-4] 0.1562[-5] 0.1086[-4] 0.9158[-6]

4 0.3769[-3] 0.6262[-4] 0.2092[-5] 0.2791[-4] 0.1249[-5] 0.1464[-4] 0.7316[-6]

5 0.3329[-3] 0.7033[-4] 0.1955[-5] 0.3140[-4] 0.1167[-5] 0.1649[-4] 0.6834[-6]

6 0.2577[-3] 0.6663[-4] 0.1895[-5] 0.2979[-4] 0.1132[-5] 0.1565[-4] 0.6634[-6]

7 0.1823[-3] 0.5589[-4] 0.1737[-5] 0.2501[-4] 0.1039[-5] 0.1315[-4] 0.6092[-6]

8 0.1207[-3] 0.4292[-4] 0.1482[-5] 0.1922[-4] 0.8881[-6] 0.1011[-4] 0.5208[-6]

9 0.7601[-4] 0.3080[-4] 0.1184[-5] 0.1380[-4] 0.7098[-6] 0.7255[-5] 0.4164[-6]

10 0.4596[-4] 0.2099[-4] 0.8921[-6] 0.9404[-5] 0.5351[-6] 0.4946[-5] 0.3140[-6]

11 0.2688[-4] 0.1370[-4] 0.6415[-6] 0.6140[-5] 0.3849[-6] 0.3230[-5] 0.2259[-6]

12 0.1530[-4] 0.8652[-5] 0.4429[-6] 0.3879[-5] 0.2658[-6] 0.2041[-5] 0.1560[-6]

13 0.8505[-5] 0.5307[-5] 0.2964[-6] 0.2380[-5] 0.1779[-6] 0.1252[-5] 0.1044[-6]

r 0.2077[-2] 0.6379[-3] 0.2509[-4] 0.2854[-3] 0.1517[-4] 0.1500[-3] 0.8940[-5]

r denotes the corresponding total cross section obtained by summing up all significant partial wave contributions. The notation x[�y] stands for

x �10�y
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From this figure we note that that the differential cross

section for Ps(2s) formation exhibits a zero. With

increasing incident energy the angular position of the zero

slowly moves towards forward direction. The origin of this

zero is due to the mutual cancelation of the contributions of

the attractive and repulsive part of the interaction potential

(i.e. due to the destructive interference between the two).

This feature is common for the positronium formation in s

states as can be seen from the surface plots in Fig. 3. While

for the 2p state the curve falls almost monotonically as the

angle increases without showing any structure, because for

2p state, as shown in Fig. 2, the sum of the contributions of

all m degenerate states produces a swirl instead of a zero,

so the 2p state does not exhibit such a minimum. This

feature is also true for l[ 1 states. Total cross sections for

the positronium formation in various excited states at

various incident energies are shown in Table 3 and Fig. 4.

From Table 3 we note that cross section for the Ps for-

mation in 4s state is greater than that of the 3d state.

Similarly, cross section for the 5s state is greater than that

of the 4f state, and so on.

3.1. Scaling law

It is observed that the Ps formation cross sections for dif-

ferent angular momentum states are scaled according to the

law:

rPsðnlÞ ¼
1

n3

Y

l

i¼0

1 � i2

n2

� �

ðn3
0rPsðn0lÞÞn0!1: ð6Þ

The origin of such type of scaling law is due to the fact that

½ffiðk~f ; k~iÞ=ðn�3
Ql

i¼0ð1 � i2=n2ÞÞ1=2� remains more or less

unchanged at moderate or high energies, the asymptotic

cross section data can be used to obtain a reasonable esti-

mate of the Ps formation cross sections for excited states

with increase of the principal quantum number n. The

values of the cross section obtained by using distorted-

wave approximation and the scaling law (Eq. (6)) are

shown in Table 4 at various incident positron energies

ranging from 50 to 300 eV. From this table we notice that

the results obtained by using scaling law (Eq. (6)) are in

good accord with the results obtained by using distorted

wave approximation. For higher values of n and E the

(a) (b)

(c) (d)

Fig. 2 Differential cross section (in a.u.) as a function of scattering angle (in degree) for positronium formation in (a) 2s state, (b) 2p state, (c) 3p

state and (d) 3d state

Asymptotic cross section and scaling law 753



agreement is quite good. However, at moderate energies

the scaling law can still be applied to obtain cross section

within limited accuracy. Even when n is not too large (say

Eq. (4) or Eq. (5)) the scaling law can still be applied. Note

that the scaling law (Eq. (6)) holds good for ðl=nÞ � 1 so

that
Ql

i¼0ð1 � i2=n2Þ � 1: It is to be mentioned here that

the 1=n3 scaling law for the cross section of positronium

formation is also suggested earlier [31, 32, 42, 49].

Moreover, the asymptotic cross sections for the positron

impact excitation of the hydrogen atom also obey a similar

type of scaling law [50]. But in that case the scaling factor

is slightly different.
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Fig. 3 Differential cross section (in a.u.) as a function of incident energy (in eV) and scattering angle (in degree) for (a)

eþ þ Hð1sÞ ! Psð3sÞ þ p and (b) eþ þ Hð1sÞ ! Psð4sÞ þ p

Table 3 Ps(nlm) formation cross section r (in units of pa2
0)

Ps state E (in eV)

50 75 100 150 200 250 300

Ps(2s) 0.6601[-1] 0.1907[-1] 0.6774[-2] 0.1307[-2] 0.3635[-3] 0.1277[-3] 0.5269[-4]

(A): 0.6875[-1] 0.7291[-2] 0.3931[-3] 0.5638[-4]

Ps(2p) 0.2975[-1] 0.6350[-2] 0.1788[-2] 0.2448[-3] 0.5305[-4] 0.1534[-4] 0.5397[-5]

Ps(3s) 0.1990[-1] 0.5839[-2] 0.2077[-2] 0.3992[-3] 0.1106[-3] 0.3870[-4] 0.1593[-4]

(A): 0.2043[-1] 0.2177[-2] 0.1192[-3] 0.1811[-3]

Ps(3p) 0.1028[-1] 0.2252[-2] 0.6379[-3] 0.8742[-4] 0.1892[-4] 0.5462[-5] 0.1919[-5]

Ps(3d) 0.8226[-3] 0.1167[-3] 0.2509[-4] 0.2374[-5] 0.3950[-6] 0.9274[-7] 0.2752[-7]

Ps(4s) 0.8430[-2] 0.2490[-2] 0.8867[-3] 0.1702[-3] 0.4708[-4] 0.1646[-4] 0.6766[-5]

Ps(4p) 0.4525[-2] 0.1005[-2] 0.2854[-3] 0.3913[-4] 0.8466[-5] 0.2442[-5] 0.8578[-6]

Ps(5s) 0.4325[-2] 0.1281[-2] 0.4565[-3] 0.8758[-4] 0.2421[-4] 0.8458[-5] 0.3476[-5]

Ps(5p) 0.2357[-2] 0.5276[-3] 0.1500[-3] 0.2057[-4] 0.4450[-5] 0.1283[-5] 0.4506[-6]

Ps(5d) 0.2778[-3] 0.4189[-4] 0.8940[-5] 0.8389[-6] 0.1395[-6] 0.3276[-7] 0.9726[-8]

Ps(5f) 0.6955[-4] 0.3480[-5] 0.3399[-6] 0.1368[-7] 0.1524[-8] 0.2812[-9] 0.6969[-10]

Ps(6p) 0.1376[-2] 0.3094[-3] 0.8806[-4] 0.1207[-4] 0.2611[-5] 0.7530[-6] 0.2644[-6]

The notation x[�y] stands for x �10�y

(A) distorted-wave approximation results of Ghoshal and Mandal [46]
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4. Conclusions

The dynamics of the reaction: eþ þ Hð1sÞ7!PsðnlmÞ þ p

has been investigated by using a distorted wave theory

which includes the effect of static dipole polarizability

explicitly. It has been possible to obtain the scattering

amplitude by some straight-forward steps. We report

reasonably accurate results for differential and total cross

sections for the incident positron energy in the range

25–300 eV. Moreover, a simple law for obtaining

asymptotic cross sections has been presented. We present

sufficient analytical and numerical evidences for the sake

(a) (b)

Fig. 4 Cross section (in pa2
0) as a function of incident positron energy (in eV) for positronium formation in (a) n ¼ 2 state and (b) n ¼ 3 state

Table 4 Comparison of cross sections (in units of pa2
0) calculated by using distorted wave theory and scaling law

E (eV) n 6 8 10 12

l (A) (B) (A) (B) (A) (B) (A) (B)

50a 0 25.05723 25.28443 10.58731 10.66692 5.42542 5.46143 3.14136 3.16055

1 13.75784 14.44812 5.85241 6.17149 3.00771 3.17787 1.74411 1.84472

2 1.68067 1.60931 0.73310 0.72500 0.37974 0.38228 0.22093 0.22474

3 0.50235 0.44103 0.25153 0.22767 0.13696 0.12712 0.08153 0.07699

4 0.19668 0.18516 0.14181 0.12903 0.08946 0.08069 0.05748 0.05171

100b 0 26.49415 26.78631 11.20982 11.30048 5.74714 5.78584 3.32831 3.34829

1 8.80598 9.43262 3.76682 4.02913 1.94091 2.07470 1.12708 1.20434

2 0.55569 0.58502 0.25092 0.26355 0.13245 0.13897 0.07791 0.08170

3 0.02565 0.02755 0.01377 0.01422 0.00783 0.00794 0.00479 0.00481

200c 0 14.04056 14.17787 5.93706 5.98129 3.04303 3.06242 1.76203 1.77223

1 2.61139 2.80046 1.11697 1.19621 0.57552 0.61596 0.33420 0.35756

2 0.08654 0.09110 0.03899 0.04104 0.02056 0.02164 0.01209 0.01272

3 0.00111 0.00112 0.00057 0.00058 0.00032 0.00032 0.00019 0.00020

300d 0 20.14944 20.32322 8.51552 8.57386 4.36350 4.38981 2.52629 2.54040

1 2.64401 2.83120 1.13063 1.20934 0.58248 0.62272 0.33822 0.36148

2 0.06034 0.06349 0.02719 0.02860 0.01434 0.01508 0.00843 0.00887

3 0.00051 0.00050 0.00026 0.00026 0.00015 0.00014 0.00009 0.00009

Column (A) corresponds to the cross sections calculated using distorted wave approximation. Column (B) corresponds to the cross sections

calculated using the scaling law, r1s!nl ¼ ð1=n3Þ
Ql

i¼0ð1 � i2=n2Þðn3
0r1s!n0lÞn0!1; as discussed in the text

a Cross section values are multiplied by 10þ4

b Cross section values are multiplied by 10þ5

c Cross section values are multiplied by 10þ6

d Cross section values are multiplied by 10þ7
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of further theoretical and experimental works in this

field.
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Appendix

Evaluation of the 1s ! nlm capture amplitude gBðk~f ; k~iÞ:
The wave function of Ps atom in nlm state is given by

gnlmðr~1Þ ¼ Rnlðr1ÞYlmðh1;/1Þ

¼ � 2

na0

� �3 ðn� l� 1Þ!
2n½ðnþ lÞ!�3

" #1=2
8

<

:

� e
� r1

na0
2

na0

r1

� �l

L2lþ1
nþl

2

na0

r1

� �

)

Ylmðh1;/1Þ;

ð7Þ

where Ylm denote the spherical harmonics, and L2lþ1
nþl denote

the associated Laguerre polynomial of degree ðnþ lÞ and

order ð2lþ 1Þ:
1s ! nlm capture amplitude gBðk~f ; k~iÞ is given by

gBðk~f ; k~iÞ ¼ �mf

2p

� �

Uf jVf jUi

� �

¼ �mf

2p

� �

Z

ei½A
~:r~2�B~:r~1�g�nlmðr~1Þ

1

R12

� 1

r2

	 


/1sðr~2Þdr~1dr~2

¼ �mf

2p

� �

I1 � I2½ �;

ð8Þ

where

A~¼ mp

mp þ 1
k~i � k~f ; B~¼ k~i �

k~f

2

I1 ¼
Z

ei½A
~	r~2�B~	r~1�g�nlmðr~1Þ

1

R12

/1sðr~2Þdr~1dr~2; ð9Þ

I2 ¼
Z

ei½A
~	r~2�B~	r~1�g�nlmðr~1Þ

1

r2

/1sðr~2Þdr~1dr~2 ð10Þ

We first consider the integral I1 which contains positron–

proton interaction and hence rather difficult to evaluate.

Taking Fourier transforms of the function expð�krÞ=r and

then utilizing the d�function properties r~2 integration can

be carried our easily and we obtain

I1 ¼ �2
c1

p

� �3=2 o

oc1

Z

eiðs~�B~Þ:r~1

ðjA~� s~j2 þ c2
1Þs2

g�nlmðr~1Þdr~1ds~:

ð11Þ

where c1 ¼ 1=a0: Using integral representation of

Feynman

1

ab
¼

Z

1

0

dx

½axþ bð1 � xÞ�2

and setting k2 ¼ A2xð1 � xÞ þ c2
1x we obtain

I1 ¼ �2
c1

p

� �3=2 o

oc1

Z

1

0

dxeiðxA
~�B~Þ	r~1g�nlmðr~1Þdr~1

Z

eiðs~�xA~Þ	r~1

½js� xA~j2 þ k2�2
ds~

or,

I1 ¼ �2p2 c1

p

� �3=2 o

oc1

Z

1

0

eip~	r~1�kr1

k
g�nlmðr~1Þdr~1dx;

p~¼ xA~� B~

or,

I1 ¼ �2p2 c1

p

� �3=2 o

ok

Z

1

0

F

k
ok
oc1

� �

dx

or,

I1 ¼ A1

Z

1

0

x

k2

o

ok
ðFÞdx�

Z

1

0

xF

k3
dx

2

4

3

5; ð12Þ

where

A1 ¼ �2p2c1

c1

p

� �3=2

;

F ¼
Z

eip~	r~1�kr1g�nlmðr~1Þdr~1: ð13Þ

Using the expansion formula of plane wave in terms of

spherical Bessel’s function JL; such as expðip~:r~1Þ ¼
4p

P

L;M iLjLðpr1ÞY�
LMðp̂ÞYLMðr̂1Þ; and then utilizing the

orthogonal property of spherical harmonics YLM we obtain

F ¼ 4pilY�
lmðp̂ÞNlm

Z

1

0

jlðpr1Þe�ar1L2lþ1
nþl ð2cnr1Þrlþ2

1 dr1;

a ¼ kþ cn and cn ¼
1

na0

:

ð14Þ

Now using the expansion formula of the associated

Laguerre polynomial and a typical integral involving

spherical Bessel function, such as

L2lþ1
nþl ðxÞ ¼

X

n�l�1

i¼0

ð�1Þiþ1 ½ðnþ lÞ!�2

ðn� l� 1 � iÞ!ð2lþ 1 þ kÞ!
xi

i!

and
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Z

1

0

e�axjlðbxÞxlþ1dx ¼ ð2bÞll!
ða2 þ b2Þlþ1

; ðReðaÞ[ jImðbÞjÞ;

ð15Þ

we finally obtain

F ¼ CY�
lmðp̂Þ

X

n�l�1

k¼0

gðkÞDðp; a; lþ 1; k þ 1Þ; ð16Þ

where

Dðx; y; l;mÞ ¼ dm

dym
1

ðx2 þ y2Þl

" #

and

gðkÞ ¼ ð2cnÞ
k

ðn� l� 1 � kÞ!ð2lþ 1 þ kÞ!k! :

Substituting (Eq. (16)) into (Eq. (12)) we obtain

I1 ¼ A1C
X

n�l�1

k¼0

gðkÞ
Z

1

0

xY�
lmðp̂Þ
k2

Dðp; a; lþ 1; k þ 1Þ
k

	

� Dðp; a; lþ 1; k þ 2Þ�ð2pÞldx:
ð17Þ

In the similar fashion the integral I2 can be evaluated. The

one-dimensional integration over [0, 1] appearing in inte-

gral (Eq. (17)) has been evaluated numerically by

employing Gauss–Legendre quadrature formula. Note that

the integral (Eq. (17)) has a fictitious singularity , which

has been removed by taking a transformation of the form

x ¼ z2:
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