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Abstract: We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dis-

persion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous

fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via

Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate

functions and the main evolution features of these waves are shown by some interesting figures with computer simulation.

As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and

interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous

soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonau-

tonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication

networks.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is a founda-

tional model to describe numerous nonlinear physical

phenomena in the field of nonlinear science such as optical

solitons in optical fibers [1]. Optical fiber solitons are

considered to be the most important milestone on the road

of communication technology. This is because optical

solitons are formed as a result of perfect balance between

the group velocity dispersion (GVD) and the nonlinear

effect, which are considered to be the major problems in

optical fibers. The GVD causes the temporal broadening of

the optical pulse, due to the frequency dependence on the

index of refraction. When an intense optical pulse propa-

gates in silica fiber, the medium tends to behave nonlin-

early. Kerr nonlinearity is defined as the intensity

dependent index of refraction also called as self-phase

modulation (SPM) [2]. As is well known, generalized in-

homogeneous nonlinear Schrödinger equation (GINLSE)

model is one of the most important and universal models of

modern nonlinear science.

However, in a real fiber, the core medium is not ho-

mogeneous [3]. There are always some nonuniformities

due to many factors and important factors among them are:

(i) that which arises from a variation in the lattice pa-

rameters of the fiber medium, so that the distance between

two neighboring atoms is not constant throughout the fiber

and (ii) that due to the variation of the fiber geometry

(diameter fluctuations, etc.). These nonuniformities influ-

ence various effects such as loss (or gain), dispersion,

phase modulation. In recent years, the problem of nonlinear

wave propagation in inhomogeneous media is of great in-

terest and has a wide range of applications. When the in-

homogeneities in the medium is considered, the dynamics

of the optical pulse propagation is governed by the variable
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coefficient (vc) NLSE [4]. Moreover, the problem of soli-

ton control and the applications of dispersion and nonlin-

earity management soliton in the nonlinear systems have

been also designated by NLSE with variable coefficients

and have been extensively studied because of their poten-

tial applications and interesting features [5]. Nonau-

tonomous soliton for generalized Hirota equation has been

reported [6]. Currently, many effects have been attempted

toward the propagation dynamics of optical solitons in

inhomogeneous optical fiber media. For instance, with the

periodic amplification and dispersion compensation, the

propagation of optical pulses in a transmission system is

governed by the vc NLSE model [7].

In a general situation, a system receives some form of

external time-dependent or space-dependent force, namely

a nonautonomous system. These systems support temporal

or spatial solitons, soliton lasers and ultrafast soliton

switches for experiments. One of the important exact so-

lutions is the so-called nonautonomous soliton solutions,

which are potentially useful for various applications in

optical soliton telecommunications due to their special

properties. These nonautonomous soliton solutions can

maintain their overall shapes but allow their widths, am-

plitudes and the pulse center to change according to the

management of the system’s parameters, such as the dis-

persion, nonlinearity and gain [8]. Up to now, the gener-

alized nonautonomous NLSE with variable coefficients

(including dispersion, nonlinearity and gain (loss) terms)

and an external potential have been investigated by several

authors and also their very interesting properties are re-

ported [9, 10]. He and Li [11] have studied the generalized

nonautonomous cubic–quintic NLSE with time- and space-

dependent distributed coefficients and external potentials

and given the analytical solitary wave solutions to it. You

et al. [12] have dealt with snakelike solitons of cubic–

quintic NLSE with combined spatiotemporal modulation of

nonlinearities and time-dependent linear-lattice potential.

More generally, nonautonomous systems with time- and

space-dependent distributed coefficients also have very

interesting properties but have been the subject of

relatively fewer studies. Very recently, Akhmediev

breather (AB) of the (3 ? 1)-dimensional generalized

NLSE with external potentials has been investigated [13]

and effect of parity time (PT) symmetric potential has been

discussed [14]. Mani Rajan et al. [15] have investigated the

generalized NLS–MB equation with external potentials.

However, there are a number of factors, which affect the

dynamics of optical solitons and the conditions for the

generation of optical solitons in real fibers. In this paper,

we aim to provide exact bright multi-soliton solutions of a

nonautonomous NLS equation with different form of ex-

ternal potentials, which are important in the realization of

real fiber system.

1.1. Nonautonomous nonlinear Schrödinger equation

with external potentials

The solution of the NLSE in an inhomogeneous medium is

of great importance for investigating wave propagation in

various types of physical situations such as plasma physics,

nonlinear optics and condensed matter. Serkin et al. [16]

have introduced the GINLS equation with external poten-

tials and obtained the one-soliton solution through Lax pair

technique. Nonautonomous system with generalized ex-

ternal potentials has some very interesting properties, but

relatively there are few studies. They generally move with

varying amplitudes, speeds and spectra adapted both to the

external potentials and to the dispersion and nonlinearity

variations. Due to this novel characteristic, colored

nonautonomous solitons in nonlinear and dispersive

nonautonomous physical systems have attracted much at-

tention in many different fields. A natural and important

issue is how to control the nonautonomous soliton under

the influence of external potentials. Therefore it is desired

to obtain the stable soliton transmission in fibers, but it is

difficult to properly manage the dispersion and nonlinearity

in fibers with external potentials even in the presence of

dissipation and/or gain? The answer for this question

highly depends on our investigation on dynamical behavior

of the optical solitons, which is to be taken in this paper.

Based on the above motivations, in this paper, we consider

GINLS equation with external potentials and gain or loss of

the following form:

iQz þ
DðzÞ
2

Qtt þ rRðzÞ Qj j2Q� 2aðzÞtQ� X2ðzÞ
2

t2Q

þ iGðzÞQ ¼ 0

ð1Þ

with

�X2ðzÞ
2

DðzÞ ¼ o2

oz2
lnDðzÞ þ RðzÞ o

2

oz2
1

RðzÞ
� o

oz
lnDðzÞ o

oz
lnRðzÞ

where Q(z, t) is the complex envelope of the field,

D(z) represents the group velocity dispersion (GVD)

function and R(z) is the nonlinearity management function.

We modify phase modulation term in the Lax pair given in

[16] to include gain or loss term, which is to be investi-

gated in this paper. This means that phase modulation and

gain parameters are interrelated. Thus one can control the

gain through manipulating the phase modulation. The study

of Eq. (1) is of great interest and has wide range of ap-

plications, which could be used to manage soliton in

nonlinear optics. However, the nonlinear equation cannot

be solved analytically without any integrable condition.

Wu et al. [17] have obtained the rogue wave solution for
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Eq. (1). Some authors [18] have explained effect of ex-

ternal potential on nonautonomous single soliton via Dar-

boux transformation. However, they did not generate two-

soliton solutions, where soliton interaction is possible. In

the present work, a generalized nonautonomous NLSE with

an external potential describing soliton management in

nonlinear optics has been studied.

2. Lax pair

As we know, Lax pair plays an important role in studying

the integrable properties of NLS equations. Here we con-

struct the Lax pair of a given system represented by Eq. (1)

through AKNS scheme [19] and provide a means for ob-

taining soliton solutions. The Lax pair of a given system

confirms its integrability and provides a means for ob-

taining soliton solutions. By applying the AKNS formal-

ism, we can construct the linear eigenvalue problem for

Eq. (1) as follows:

wt ¼ Uw; wz ¼ Vw ð2Þ

where U and V are U ¼ �ik
ffiffiffi

r
p

q

�
ffiffiffi

r
p

q� ik

� �

ð3Þ

V ¼ i
r
2
Dqq� � at

ffiffiffi

r
p

D 1
2
qt � ihtq

� �

ffiffiffi

r
p

D 1
2
q�t þ ihtq�

� �

� r
2
Dqq� þ at

 !

� ikD
ht i

ffiffiffi

r
p

q

�i
ffiffiffi

r
p

q� �ht

� �

� ik2D
1 0

0 1

� �

where

hðzÞ ¼
DðzÞ oRðzÞ

oz
� RðzÞ oDðzÞ

oz

DðzÞ2RðzÞ
� GðzÞ
DðzÞ

with the transformation

qðz; tÞ ¼
ffiffiffiffi

R

D

r

Qðz; tÞ exp 1
2
ðit2hÞ ð4Þ

Equation (1) can be obtained from the compatibility

condition Uz - Vt ? [U, V] = 0 and this condition is

satisfied by considering the flow to be nonisospectral:

k ¼ e

R

DðzÞ hðzÞdzðkð0Þ þ
Z

z

0

e
�
R

DðzÞhðzÞdzaðzÞdzÞ ð5Þ

The Lax pair confirms the complete integrability of

Eq. (1). From this Lax pair, soliton solutions can be

obtained by using Darboux transformation as shown below.

3. Darboux transformation

In the present work, with the aid of symbolic computation

[20, 21], multi-soliton solutions are generated via Darboux

transformation (DT) [22]. The large numbers of effective

methods are available to construct soliton solutions for

nonlinear Schrödinger equation. Among various methods,

the Darboux transformation has been proved to be an ef-

ficient technique to find the soliton solution for integrable

equations. Moreover, in practice, due to the multi-soliton

propagation, the interaction between solitons is inevitable.

So we have employed this method to arrive the multi-

soliton solution based on the obtained Lax pair as described

below

wt ¼ Uw; wz ¼ Vw ð6Þ

where U and V are given by

U ¼ �ikJ þ PZ ð7Þ

V ¼ k2DðzÞJ þ kðzÞDðzÞPþ iR ð8Þ

where

J ¼ �i
1 0

0 �1

� �

; P ¼ 0 q

q� 0

� �

R ¼ i
1
2
Dqq� � aðzÞt D 1

2
qt � ihtq

� �

D 1
2
q�t þ ihtq�

� �

� 1
2
Dqq� þ aðzÞt

� �

hðzÞ ¼
DðzÞ oRðzÞ

oz
� RðzÞ oDðzÞ

oz

DðzÞ2RðzÞ
� GðzÞ
DðzÞ

with the transformation

qðz; tÞ ¼
ffiffiffiffi

R

D

r

Qðz; tÞ exp 1
2
ðit2hÞ

Equation (1) can be obtained from the compatibility

condition Uz ? Vt - [U, V] = 0 and this condition is

satisfied only if

ok
oz

¼ aðzÞ þ DðzÞhðzÞkðzÞ

We obtain the two-soliton solutions in clear form by

using DT [11]. In the Lax pair, h(z) is the phase modulation

parameter. We stress that phase modulation is related with

gain G(z), dispersion D(z) and nonlinearity R(z). This

method has been widely used in soliton theory to get exact

solution for integrable nonlinear systems. To obtain the

multi-soliton solution in explicit form for Eq. (1), based on

the Lax pair Eq. (5) and (6), we present N-soliton solution

by deriving simple DT as described below.

w½1� ¼ ðkI � SÞw ð9Þ
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S ¼ HKH�1 ð10Þ
K ¼ diagðK1;K2Þ ð11Þ

here H is the nonsingular matrix, requiring

H ¼ /1 �/�
2

/2 /�
1

� �

; K ¼ k1 0

0 �k�1

� �

Wt½1� ¼ U1W½1�

where U1 = kJ ? P1 with

P1 ¼
0 q1
q�1 0

� �

ð12Þ

We can get DT for Eq. (1) in the following form,

P1 ¼ Pþ JS� SJ ð13Þ

It is easy to verify that if (u1, u2)
T is a solution of Eq. (4)

which corresponds to the eigenvalue k1, then (-u2*,

u1*)
T(u1, u2)

T is also a solution of Eq. (4), which

corresponds to the eigenvalue -k1*. Now we take

J ¼ 1 0

0 �1

� �

Hence the basic format of Sij is represented through Eq. (9)

as

Sij ¼ �ik�1dij �
i k1 þ k�1
� �

uiu
�
j

D
ð14Þ

D ¼ u1j j2þ u2j j2

Comparing Eqs. (12) and (13), we can get the relation

between q1 and q1
* as

q1 ¼ q� 2

ffiffiffiffi

D

R

r

S12 ð15Þ

q�1 ¼ q� � 2

ffiffiffiffi

D

R

r

S21

Hence the basic form of Darboux transformation for N-

soliton solution is,

qn ¼ qþ 2

ffiffiffiffi

D

R

r

X km þ k�m
� �

/1;mðkmÞ/�
2;mðkmÞ

Am

ð16Þ

where

/k;mþ1ðkmþ1Þ ¼ kmþ1 þ k�m
� �

/k;mðkmþ1Þ
� Bm

Am

km þ k�m
� �

/k;mðkmÞ ð17Þ

Am ¼ /1;mðkmÞ
�

�

�

�

2þ /2;mðkmÞ
�

�

�

�

2

Bm ¼ /1;mðkmþ1Þ/�
1;mðkmÞ þ /2;mðkmþ1Þ/�

2;mðkmÞ

where k = 1, 2…n, m = 1, 2…n and ((/1,1(k1), /2,1(k1))
T

is the eigenfunction of Eq. (4) corresponding to k1.

Substituting q = 0 in Eq. (17), one can get one-soliton

solution for Eq. (1). Using the one-soliton solution as the

seed solution in Eq. (17), we can derive the two-soliton

solution. Thus in recursion, one can generate up to N-

soliton solution. Here we present the one- and two-soliton

solutions in explicit forms.

3.1. One-soliton solution

In this way, we present a simple DT for the nonautonomous

system and derive some neat analytical expressions for

single soliton and two-soliton for the GNLSE, which cor-

responds to nonisospectral problem. Using DT, the one-

soliton solution of the GINLSE is obtained by putting

q = 0, k = 1, m = 1 in Eq. (16), with spectral parameter

kð0Þ ¼ a1 þ ib1 ð18Þ

Finally we can get the one-soliton solution of Eq. (1) in the

form,

Q1 ¼ 2a1

ffiffiffiffi

D

R

r

sec hð2A1Þ expðiB1Þ ð19Þ

where

A1 ¼
Z

b1DðzÞhðzÞt dz�
Z

2a1b1 DðzÞ dz� b1t

B1 ¼
�

Z

a21DðzÞdz�
Z

b21DðzÞdz�
Z

a1DðzÞhðzÞt dz

�aðzÞt
�

þ 1

2
hðzÞ t2

Here d1 and d2 are independent of both z and t. The

velocity and the amplitude parameter of the soliton pulses

are represented by a1 and b1, respectively. D(z) and R(z)

correspond to the dispersion and nonlinear parameters,

which depend on the propagation distance. If one-soliton

solution is calculated, then it is possible to generate the

multi-soliton solution in the systematic way.

Qn ¼ Qþ 2

ffiffiffiffi

D

R

r

X km þ k�m
� �

/1;mðkmÞ/�
2;mðkmÞ

Am

/k;mþ1ðkmþ1Þ ¼ kmþ1 þ k�m
� �

/k;mðkmþ1Þ
� Bm

Am

km þ k�m
� �

/k;mðkmÞ ð20Þ

Am ¼ /1;mðkmÞ
�

�

�

�

2þ /2;mðkmÞ
�

�

�

�

2

Bm ¼ /1;mðkmþ1Þ/�
1;mðkmÞ þ /2;mðkmþ1Þ/�

2;mðkmÞ

3.2. Two-soliton solution

The existence of exact soliton pair solutions helps us to

understand the collisions between solitons of opposite ve-

locities better. If we take k = 1, 2 and m = 1, 2 in
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Eq. (20), then we can get the two-soliton solution in the

explicit form as follows,

Qðz; tÞ ¼ Q1 þ 2

ffiffiffiffi

D

R

r

a1 expðib1Þ sec hð2A1Þ þ 2a2
G

F

� �

ð21Þ

where

G ¼ �e�2ði B2 þA1 þA2Þððeð2i B2 þ2A1 Þ

� ðe2i B2 þ e2ði B1 þA1þA2 ÞÞ sec hð2A1ÞÞa1
þ e2i B2þ 2A1 ða2 þ iðb1 � b2ÞÞÞðe2i B1 sec hð2A1Þa1
þ e2i B2þ 2A

2 ð�a2 þ iðb1 � b2Þ þ a1 tan hð2A1ÞÞÞ

F ¼ 2ðcos hð2A2Þa21 þ ð�2 cosð2ðb1 � b2ÞÞ
þ cos hð2ðA1 � A2ÞÞ
� cos hð2ðA1 þ A2ÞÞÞ sec hð2A1Þa1a2
þ cos hð2A2Þða22 þ ðb1 � b2Þ2ÞÞ

and

A2 ¼
Z

b2DðzÞhðzÞt dz�
Z

2a2b2DðzÞ dz� b2t

B2 ¼
�

Z

a22DðzÞdz�
Z

b22DðzÞdz

�
Z

a2DðzÞhðzÞt dz� aðzÞt
�

þ 1

2
hðzÞt2

Having obtained the soliton solution of Eq. (1), our next

aim is to analyze the impact of various forms of external

potentials by considering various profiles for GVD,

nonlinearity and gain parameters as functions of z. Thus

this nonautonomous soliton solution can be controlled

under dispersion and nonlinearity management. Such an

approach may find fruitful applications in Dispersion–

Nonlinearity Managed (DNM) soliton systems.

4. Results and discussion

With the entry of dispersion management, the GVD coeffi-

cient is no longer a constant, but a function of propagation

distance (z). It is a well-known fact that when the group

velocity dispersion is varied even slightly, the behavior of

the pulse changes drastically from its regular one. The un-

derlying principle of soliton dispersion management is the

robustness of optical solitons. In our system represented by

Eq. (1), gain parameter is directly related with phase

modulation term. Hence, we control phase modulation

through gain and vice versa. This is the main feature of our

system. This means that whenever we select a specific form

for gain, phase modulation gets a new form. As few exam-

ples, we have investigated periodic distributed amplification

system, dispersion decreasing fiber system and boomerang

soliton.

Here, we have considered some important systems that

are currently being discussed in the literature and also some

new systems for which, we get some exotic solitons like

boomerang solitons, phase-shifting solitons, reported for

the first time for bright solitons.

4.1. Periodic distributed amplification system

Periodic distributed systems are very important in optical

fiber communication system. Because of its potential ap-

plications in long distance DMS communication systems.

Equation (1) includes mainly two arbitrary distributed

functions D(z) and R(z). Thus by selecting the specific

form for them, we can analyze this system. To investigate

periodic distributed amplification system, varying group

velocity dispersion parameter D(z) and nonlinearity pa-

rameter R(z) are taken as below [23–26]:

DðzÞ ¼ 1

d0
expðkzÞRðzÞ ð22Þ

RðzÞ ¼ R0 þ R1 sinðgzÞ

where R0, R1 and g are the parameters describing Kerr

nonlinearity and d0 is the parameter related to the initial

peak power in the system, respectively. Here, for the sake

of simplicity, we take R0 = 0, d0 = 1 and g = 1. In this

article, we apply the profile (22) in Eqs. (19) and (21) with

k[ 0.

For the choice of k[ 0, amplitude of the soliton

gradually increases while width oscillates periodically as

depicted in Fig. 1(a) and 1(b). This behavior is different

from breathing soliton in which, amplitude also varying

periodically. It is well known that the classical soliton

arises due to the balance between dispersion and nonlinear

effects. Then, we can conclude that this oscillating feature

that comes from this balance is destroyed periodically.

Many different soliton shapes can be achieved through

manipulation of dispersion and gain terms. This result has

not been reported in the literature and is important for an

optimal control of the transmission of optical soliton. If we

ignore the gain term, the soliton behavior is different from

previous one as shown in Fig. 1(c). With the ignoring of

gain term, soliton width is gradually decreased while am-

plitude is gradually increased which can be clearly ob-

served in Fig. 1(d).

Figure 1(e) and 1(g) denotes the two-soliton behavior

under the periodic amplification system without and with

gain, respectively. From Fig. 1(e) and 1(g), we can conclude

that the interaction between the solitons can be manipulated

through gain term. Due to the choice of Eq. (22), solitons are

collided periodically as shown in Fig. 1(e). On the other
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Fig. 1 (a) The evolution of the

bright one-soliton solution in

periodic amplification system

with the parameters l1 = 1.5,

c1 = 0.1, and k = 0.07 with

G(z) = sin(z). (b) Contour plot
of (a). (c) G(z) = 0.

(d) Corresponding to contour

plot. (e) The evolution of the

bright two-soliton solution in

periodic amplification system

with parameters are l1 =
-0.18, l2 = -0.15, c1 = 2.5,

c2 = -2.5, k = 0.07 with

G(z) = sin(z). (f) Contour plot
of (e). (g) The evolution of the

bright two-soliton solution in

periodic amplification system

with parameters are l1 =
-0.18, l2 = -0.15, c1 = 2.5,

c2 = -2.5, k = 0.07 with

G(z) = 0. (h) Contour plot of
(g)
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hand, period of oscillation for one of the soliton is gradually

decreasedwhile no change in the period of another soliton. If

we include the gain term, period of oscillation for both

solitons gradually increases with propagation distance.

From the analysis, we would like to stress that soliton can be

controlled through gain, which is essential for soliton control

and soliton management. And this analysis tells that dy-

namical behaviors of nonautonomous solitons be controlled

through gain parameter. Moreover, the soliton under peri-

odic dispersion management can evolve as an oscillating

soliton, or breathing soliton, or oscillating breathing soliton.

This investigation is constructive to control the soliton.

4.2. Pulse compression

Let us consider the pulse compression of an optical pulse in

a dispersion decreasing optical fiber. For this purpose, we

assume that the GVD and the nonlinearity functions are

distributed in the form given as follows [27–30]:

DðzÞ ¼ d expð�g zÞ ð23Þ
RðzÞ ¼ r expð�k zÞ

where d and g are related to GVD parameter and r and

k describe the nonlinearity. For g\ 0, solitons are com-

pressed exponentially during the propagation. For g[ 0,

solitons get broadened. For k = -g, width of the pulse

remains unchanged.

In the absence of gain coefficient, the compression be-

havior of soliton abruptly disappears with phase shift as

shown in Fig. 2(a). From Fig. 2(b), we can infer that the

soliton gets compressed during its propagation due to k = 0

with the presence of gain term. This property implies that we

can control the soliton width by controlling the gain pa-

rameter, which is needful to increase the channel capacity of

optical communication system. Figure 2(a) and 2(b) exem-

plify the soliton pulse management regime under the ex-

ponentially distributed dispersion coefficient. In the

presence of gain parameter, which is related with phase

modulation, the pulse width gradually becomes narrower

and narrower. Furthermore, the compressed soliton is

completely free from the pedestals, which make the com-

pressed soliton extraordinarily stable during the propagation

along the fiber. We hope that obtained results might be

useful for soliton compression to achieve the ultrashort

pulse. Recently, in dispersion decreasing fiber (DDF), bright

and dark soliton solution of NLSE with variable coefficients

for various profiles of power law nonlinearity has been

studied [31]. In the aspect of soliton application, it is de-

sirable to know how to design related management pa-

rameters for certain properties of solitons. Here, as an

example, we have studied the nonautonomous soliton

propagation in exponentially (DDF).

4.3. Boomerang solitons

For soliton application, it is desirable to know how to design

related management parameters to understand certain prop-

erties of solitons.Whenwe need a certain property of solitons,

the explicit functions can give us some hints to design the

modulations. This has a significant potential in the application

of solitons. For example, to achieve stable peak with varying

phase shift along the propagation distance, GVD and non-

linear parameters are considered as follows [32]

DðzÞ ¼ RðzÞ ¼ a� bz ð24Þ

In the above expression (24), both the dispersion and

nonlinearity parameters are varying linearly with the

distance z. For this choice of GVD, nonlinearity and gain

parameter, we have obtained boomerang-like solitons as

illustrated in the figures of this section. Initially, the

parameter G(z), which represents the gain of the medium,

has not been kept as a constant. For the simplicity, the gain

parameter also considers same as D(z) and R(z). For this

choice of gain parameter, we observed two solitons with

constant amplitudes as shown in Fig. 3(a). When the gain

parameter is made to be zero, one can obtain same behavior

except phase shift as depicted in Fig. 3(b). An important

point that in the absence of gain parameter, point of

collision is not affected. This is one of the peculiar property

of soliton.

Fig. 2 The evolution of the

bright two-soliton solution in

dispersion decreasing fiber

system with parameters are

l1 = 0.06, l2 = 0.09, c1 = 0.8,

c2 = -0.8 (a) when G(z) = exp

(-g z) and (b) when G(z) = 0

with d = r = 1, g = -0.03,

and k = -0.04
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Based on these graphical illustrations, which describe

properties of soliton, including its motion and shape, we

can conclude that when the parameters are selected as

specific form as given in Eq. (24), the soliton’s shape keeps

unchanged even after the collision, which is very desirable

for soliton-based communication system. This provides a

good way to get stable optical soliton by managing pa-

rameters. We believe that it is meaningful in the study of

nonautonomous soliton in external potentials. Li and Chen

[33] have obtained a particular type of dark solitons, which

they have called as boomerang solitons. In the anomalous

dispersion regime, one would get bright solitons and we

have found that such bright boomerang solitons can exist in

nonautonomous NLS systems as depicted in Fig. 3(a)–3(d).

Recently, this kind of solitons is observed without inter-

action in Hirota–Maxwell–Bloch system [34]. Interaction

of boomerang solitons of generalized inhomogeneous

NLS-MB system has been investigated earlier [35]. It is

worth pointing out that the nonautonomous soliton in the

present case keeps its shape but its trajectory changes

gradually. It provides a possible application in the de-

signing of specific gadgets in the field of optical commu-

nication system. We conclude that the law of a soliton

adaptation to the external potential offers many opportu-

nities for future scientific studies.

In the optical fiber communications and nonlinear op-

tics, nonlinear Schrödinger systems with variable coeffi-

cients such as Eq. (1) have been investigated with the

effect of external potential because, it has potential appli-

cations in the optical fiber transmission system, ultrafast

optical switches, pulse compression, logic gate devices etc.

Some previous studies reveal that nonautonomous soliton

control is also possible in Bose–Einstein condensate [18,

36, 37]. Furthermore, in this paper, Lax pair with non-

isospectral is considered for investigation [38, 39].

5. Conclusions

In this paper, we have analytically investigated the nonau-

tonomous NLS equation with variable coefficients. With

symbolic computation, we have applied Darboux transfor-

mation to generalized nonautonomous NLS equation with

external potentials. By means of obtained one- and two-

soliton solutions, propagation characteristics of nonau-

tonomous soliton have been analyzed. With different

choices of variable coefficients and through graphical il-

lustrations, the nonautonomous characteristics of the soli-

tons have been studied. A certain way to manage dispersion,

nonlinearity and the gain term is found to keep the

Fig. 3 The evolution of the

bright two boomerang soliton

with parameters are

l1 = -0.18, l2 = -0.15,

c1 = 2.5, c2 = -2.5, a = 1,

b = 0.14: (a) for G(z) = 1,

(b) contour plot of (a), (c) for
G(z) = 0. (d) contour plot of (c)
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amplitude of the nonautonomous soliton unchanged, which

can be used to improve the quality of soliton transmission.

With the consideration of varying dispersion, nonlin-

earity and gain, Eq. (1) describes the propagation of optical

pulse in an inhomogeneous fiber. In practical case, the

model is of primary interest not only for the compression

and amplification of optical solutions in an inhomogeneous

system, but also for the stable transmission of soliton

control. We have found that the gain coefficient function

G(z) is only included in the phase modulation function h(z),
therefore, gain can be controlled through phase modulation

and vice versa, which is very distinctive from that reported

earlier [36].

Up to now, no attempts had been made by relating phase

modulation and gain parameters in the literature. The

properties are meaningful for the investigation on the sta-

bility of soliton propagation in optical soliton communi-

cations. Moreover, the characteristic contributions of

different control parameters to the soliton dynamics have

been clearly identified, which is of significance to guide

experiment to control the soliton dynamics. In this paper,

main impacts of various types of external potentials on

multi-soliton solutions, which are having potential appli-

cations in optical communication systems are studied.

Obtained result reveals that soliton management can be

realized by adjusting the related control parameters. Our

results also indicate that a new soliton control technique

might be developed. This may make the soliton control

technique more realistic and provide prospects for appli-

cations in soliton communication system. We hope our

outcomes is useful for the further study in optical com-

munications and relative subjects and stimulate novel ex-

periments in the field.
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