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Abstract:

In this paper, we present solutions of the Klein—-Gordon equation for the multiparameter potential for arbitrary

I-state in D-dimensions using the super-symmetric quantum mechanics method. We have obtained the energy levels for the
multiparameter potential and the corresponding wave functions expressed in terms of hypergeometric function in a closed
form for arbitrary /-state. We have discussed in detail the special cases of this potential.
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1. Introduction

The Klein—Gordon equation (KGE) is the well-known rela-
tivistic wave equation that describes spin-zero particles. It is
also known that the analytic solutions of the Klein—Gordon
equations are only possible in a few cases such as harmonic
and Coulomb potentials [1, 2]. However, for arbitrary /-states
(I # 0), the KGE does not admit an exact solution. Thus,
KGE can be solved approximately using different approxi-
mation schemes [3, 4]. The solutions of KGE plays important
role in quantum mechanics since its solutions contain all the
necessary informations regarding the quantum system such
as probability density and entropy. Different potential
models have been studied using various approaches such as
Nikiforov—Uvarov [5], exact quantization rule [6], super-
symmetric quantum mechanics (SUSYQM) [7] and
asymptotic iteration method (AIM) [8] to obtained the bound
state solutions of Schridinger, Klein—-Gordon and Dirac
equations [9—12]. Interestingly, the study of the relativistic
wave equation in recent years particularly the Klein—-Gordon
and Dirac equation have attracted the attention of many
authors, because the solutions of these equations play in
getting the relativistic effect in nuclear physics and other
areas [13]. With the introduction of the SUSYQM and the
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concept of shape invariance in physics [14], the study of the
solvable potential models in both relativistic and non-rela-
tivistic quantum mechanics have received a great interest
[15]. The concept of SUSYQM allows one to determine the
eigenfunctions and eigenvalues analytically for solvable
potentials model using algebraic operator formulation
without solving the Schrédinger-like differential equation by
standard series method [16]. Recently, the KGE in general-
ized D-dimensions for different potentials is getting the
attention of researchers [17-20]. This multidimensional
space analysis of KGE has also been investigated for dif-
ferent potentials [21].

The purpose of the present paper is to attempt to study
the bound state solutions of the KGE with the multipa-
rameter exponential-type potential using the SUSYQM in
D-dimension [22, 23]. We have determined approximate
eigenvalues and the eigenfunction by employing the
improved Greene—Aldrich approximation scheme [24].

2. Theoretical consideration

The KGE in higher dimension for spherically symmetric
potential reads [25],

- ADlybn,l,m(r7 QD)
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where E,,;, m, V(r) and S(r) are the relativistic energy, rest
mass, the repulsive vector potential and the attractive scalar
potential respectively and Ap, is defined as

1 0 0 Az (QD)
2 D—1 D
Ap=Vp =573 (’ 5) T (2)

The total wave function in D-dimension is written as,

Vo im(r; Q) = Roa(r)Y)" (Q) (3)

The term @ is the generalization of the centrifugal
term for the higher dimensional space. The eigenvalues of

A3H(Qp) are defined by the relation,
A Q)Y (Qp) = I(1 + D = 2)Y"(Qp) (4)

where Y/'(Qp), R,; and [ represent the hyperspherical
harmonics, the hyperradial wave function and the orbital

3. Solutions of Klein—-Gordon equation in D-dimension
using SUSYQM

It is well-known that Eq. (7) is exactly solvable only when
I = 0. However, in the presence of the centrifugal term
(I # 0), one can only obtain an approximate solution of
Eq. (7). When nr < 1, we invoke an improved Greene—
Aldrich approximation scheme [24] to deal with the cen-

trifugal term as,
67211r
(3)

1
2 ~ 4’72 co+

(1 — e=2m)?

where ¢y = ﬁ is a dimensionless constant obtained from
the Taylor expansion of Eq. (8). Substitution of Eq. (8)
into Eq. (7) yields,

dr?

_d’Fuy N <2(E,1‘1 +m)(C—A)e ™" + (2(E,; +m)(A+B) +n*(D+ 21— 1)(D+ 21— 3))e "
(1 —e2r)?

>Fn,l(r) = EnA,ZFn,l

©)

angular momentum quantum nl(lmE)er respectively. Now
. . D—1
substituting ansatz R, ;(r) =r— 2 F,(r) for the wave

function into Eq. (3) yields,

(ot (B VO =+ 5007

pE
(5)
(D+2l-1)(D+21-3) Fus(r) =0
- nI\r) =

472 !
Here, we consider the solvable multiparameter

exponential-type potential [26, 27],

A67217r 36721” Cef4ryr

V(r) = 6
(r) (1 _ 672’”) + (1 _ 672’")2 (1 - 872”)2 ( )

where A, B and C are the potential parameter and # is the
screening parameter. Now substituting Eq. (6) into Eq. (5)
and considering the particular case V(r) = S(r), we obtain
the second order Schrodinger-like equation

d2
{ﬁ +E, —m’ —2(Ey +m)

Ae—217r Be—2;7r Ce—4;7r
(1— 6*2'1") + (1— e—211r)2 + (1— e—211r)2
D+2[-1)D+2l-3
N R | P

where,

E,=E,, —m = (D+2l—1)(D+2-3)co (10)

In the SUSYQM formulation, the ground-state wave
function Fy,(r) is given by [7, 14, 15] (see “Appendix”).

Fou(r) :exp<—/W(r)dr>, (11)

in which the integrand is called the superpotential and the
Hamiltonian is composed of the raising and lowering
operators

A d2
Ho=APA = =54 Vo(0), (12)
R
Hy =AA" =——5+ Vi (r), (13)
with
4
A=2_ 14
4w, (14)
it= =L w, (15)
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and We construct the pair of supersymmetric partner
Vi(r) = w2 (") T W) (16) potentials V,(r) and V_(r) as follows,
The superpotential obeys the associated Riccati vV (r) = W2 d_W ~01(01 - 2n)e= 2
equation: -\ = dr— (1—e2r)?
W2(r) F W'(r) = Vo (r) — Eoy, an Ofe™" —20,01e7 2" + 20,01 " — Qe 2" s
_ ,—2nr 2 2°
Based on the SUSYQM,we choose the superpotential in (1 —e72m)
the form, (23)
_Q1e7211r
W(r)=———= 18
(V) (1 _ 8_2'7") + Q2 ( )
where,
Q1 =~ \ /12 + 2By +m)(B+C) + (D +21— 1)(D+21 - 3), (19)
2
o 2(Eng +m)(C—A) = (= £ /> +2(Ep; +m)(B+C) + n*(D+ 21— 1)(D + 21 - 3)) (20)
h =
2(—n£/n*+2(Ey + m)(B+C) +n*(D+20—1)(D +2(-3))
212
g 2(Ep;+m)(C—A) — (—n = /0> + 2(Ens +m)(B+ C) + n>(D+ 21— 1)(D + 21 - 3)) 1)
0l = —
' 2(—n+ /0> +2(Epy +m)(B+C) +n*(D+ 21— 1)(D + 21 - 3))
Using Eq. (58), we obtained the partner potentials as It is not difficult to see that the partner potentials are
follows: shape invariant via mapping of the form Q; — Q; + 2#.
. Also, it is easy to check the shape-invariance condition.
dw + 2p)e 2 : y P
V+(r):W2+—:Q1(Q1 n) ] v _y R 9
dr (1 —e2m) +(rpo) = V_(r,p:i) + R(p;) (24)
Q%e"“” —20101e7 2" +20,Q1e M — Q%e’z’” > which holds via the mapping Q; — Q; + 2#. In our study
+ 5 + 05, . - . .
(1 —e2) po=0; and p; is a function of pg, i.e.
(22) p1 = flpo) = po + 2n. Thus, p, = po+ 2ny and from
Eq. (24), we write
2
i n R(py) = 2(Ep;+m)(C—A) — (=n £ /n* +2(Epy +m)(B+ C) + n*(D + 21— 1)(D + 21 — 3))
ml L T 2(—n+ /1P + 2B +m)(B+C) + 2(D+ 20— 1)(D + 21 - 3))

(2Bt m)(C—A) — (-n£ /P T 2B MBI O T RD T2 - DD A-3) +2m)\’
2(=n £ \/n*+2(Epy + m)(B+ C) +n>(D+20—1)(D + 21— 3) + 2ny)
(25)
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The complete energy spectrum is given as,

Emz = Eo,z + E,Z,

(2Bt m)(C—A) — (P T 2Bt (B C) P (D2~ 1)(D 12— 3) +2m) (26)
- 2(=n £/ +2(E,; +m)(B+ C) + n*(D+ 21— 1)(D + 21 — 3) + 2ny)

Using Eq. (10), we have obtained the required relativ-
istic energy spectrum for the multiparameter exponential-
type potential as,

E2, —m* =’ (D+2l—1)(D+2l—3)cq

(2(Ea +m)(C€ —A) — (~n£ /P F 2B T m)BTC) F 2D+ A DD+ 2~ 3) +2m)’
2(—=n+ /> +2(Eyy +m)(B+C) +n*(D+20—1)(D+ 2l —3) + 2nn)

To find the wave function, we have used change of
variable z = ¢ > in Eq. (9) and we get

d2Fn,I 1—z an,I
dz? (1 —2z) dz

n %Z)z {-W2 - fz+ g} Fui(2)

_2E,C  2mC 2E,A 2mA E, m’

w _ _ Tl
4n? 4n? 4n? a2 4n?  4n?
D+2[—-1)(D+2l-3
+ ( )( )co (29)
4
fe 2E, 1A N 2mA 2E, B 2mB 2E,, 2m?
A2 A Apr A2 A2 A2
_ (D+21=1)(D +21-3)co
2
D+2l—-1)(D+2l-3
N ) ) o)
4
B, m? (D42 1)(D+2—3)c a1
8= 4n?  4n? 4

The corresponding wave function is determined from
Eq. (28) as follows:

nl —

F(n+ 1 +2\/§) (6—211r)\/§(1 _e—211r)1/2+ HWrg—f
nI(1+2,/8)

1
2Fy (n,n+2x/§+2\/1+w+gf+ 1;2\/g+ he”’)

(32)

4. Results and discussion

In this section we have investigated the energy eigenvalues
and the corresponding eigenfunctions of Hulthen, Man-
ning—Rosen, Eckart and Deng—Fan potentials as special
cases of multiparameter exponential-type potential.

4.1. Hulthen potential

The Hulthén potential is very important in atomic and
molecular fields [28]. This potential has been used to
explain the electronic properties of F-colour centre in alkali
halides [29]. In this special case, we choose
B=C=0,A=—Ze, n = J, where 0 is the screening
parameter and the multiparameter exponential-type poten-
tial turns into the Hulthen potential as,

_Ze256725r

V(r) = ~5or (33)

1—e
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The energy spectra of the Hulthen potential is obtained p Eﬁl m?  (D+20—1)(D+21—3)c
from the energy equation of the multiparameter § = 4 5’2 T 4 (38)
exponential-type potential Eq. (27) by substituting the
above parameters as,
Ey —m’ =8(D+2—1)(D+2l-3)c
2
2(E,; +m)(Ze*5) — <—5 + \/52 + 52(D +20-1)(D+21-3)+ Zné) (34)

2(-51 &+ D2 1)

(D +21—3) +2n5>

The corresponding wave function of the Hulthen
potential is obtained from Eq. (32) as follows:

r( 1424/ H)

ntl+ § (672nr)\/g—H
n!F(l +2\/gH)
(1 _ 672;1r)1/2+\/m

Fn,l:

(35)
1
2F) (—n,n—i—Z\/gH —1—2\/4—1— WH 4 gH — fH
+1;24/g" + 1;6_2'7’)
where,
y  2E.Ze*  2mZe* E2, m?
46 46 6 48
D+2-1)(D+21-3
4
o 2E, Ze? B 2mZe? 2Eﬁ,z B 2_m2
49 46 5% 5?
(D+20—1)(D+2l-3)co
2
D+2[—-1)(D+2l-3
L (p+2A-DD+2-3) o)

4

1
E2, — n? ZE(D+217 1)(D + 21— 3)co

n

This result is in good agreement with that obtained by
Agboola [30].

4.2. Manning—Rosen potential

Manning—Rosen potential is one of the short range poten-
tial and it has been used to describe the diatomic molecular
vibration [31]. The Manning—Rosen potential has been one
of the most useful and elegant potential model for studying
the energy eigenvalues of diatomic molecules [32]. As an
empirical potential, the Manning—Rosen potential gives an
excellent description of the interaction between two atoms
in a diatomic molecule, and it is very good for describing
such interactions close to the surface [33]. The special case
of Manning—Rosen potential is obtained from the multi-
parameter potential by considering, B =0,A = — % C =

-Y,
% and 7 :%. Thus, the Manning—Rosen potential

becomes,
a(—1)e s Voes
(1—e¥)” 1-et
The energy level of the Manning—Rosen potential is
obtained from the energy equation of the multiparameter

exponential-type potential by putting the values of A, B and
C given above as,

V(r) = %

(39)

2

vy _ (—%i Vi 2B+ m)(

o(a—1)
bz

)+blz(D+2l—1)(D+2l—3)+27n>

L+ 2(E, +m)(

o(a—1)

)+ 5 (D +21— 1)(D+2l—3)+%)
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The corresponding wave function for the Manning—
Rosen potential becomes,

(n+1+2\/m>(

n!F(l ¥ 2\/@)
(1— 6*2'1r)1/2+\/W2

(—nn+2 /MR+2\/ + WMR 4 gMR _ MR

211r) \/—

Fn,l:

(41)

+1;2+/gMR + 1;e2"’>

Schrodinger equation [37] and the scattering states [38] of

this potential has been investigated. The Eckart potential is

obtained from the multiparameter potential by the setting

A:—rx,B:ﬁ,C:Oandn:%aS,
pe

(1— i)’

_r
oe «a

V(r) = - (45)

1 —ea

The energy eigenvalues for the Eckart potential from
Eq. (27) becomes,

and wave function as,

4
E2, — mZZE(D+21—1)(D+2l—3)c0
2
2(En,,+m)a—(—§i 44 2By +m)p+ 4 (D+21—1)(D+21—3)+47”) (46)
2(= 2 /A4 2B+ m)B+E(D+2— 1)(D+20-3) +4)
where
o 1+206)
WMR_ZEnlloc(fx—l) 2ma(e— 1)  2E, Vo 2mV, Fp = (e72)
- 4 4 4 n'F(l + 24/ E‘)
2 12 212
_En,lb m=b +(D—|—2[—1)(D—|—2l—3)co (l_e*ZVIV)l/2+\/W
4 4 4 2 (47)
42
( ) ( nn+2,/ E(+2\/ +WEL+gEL fEc
fMR _ _2En7lV0 _2mV0 2E ]bz 2m2b2
4 4
_(D+21—1)(D+21 3)co +1;2\/gE"+1;e_2”’>
D+2l—1)(D+2l— .
+( ha )( ha 3) (43)  with
2
E b0 b (D +20— 1)(D + 2 - 3)c wke —2E,l;cxa + 2moa® —E la + ma
MR n,l 0
7 ) 4 (44) +(D—i—2l 1)(D—|—21 3)co (48)

It is consistent with the result reported by Chen et al.
[34].

4.3. Eckart potential

The Eckart potential is one of the solvable exponential—
type potential in quantum mechanics [35]. Eckart potential
is one of most important potential models in physics and
chemical physics [36] and the bound state solution of the

4
fE = —2E, ,0a* — 2maa® + 2E, pa* + 2mPa* + EZ ,a*
22 (D+21—1)(D+2l-3)co

2
D+2l—1)(D+2l—-3
+( + )(D + ) (49)
4
gk — EiAlazimzazi(D-ﬁ-Zl—l)(D+21—3)c0 (50)

4
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and it is in agreement with that of Akpan et al. [39] for
D=3andq=1.

4.4. Deng-Fan potential

The Deng—Fan potential [40, 41] is the simplest modified
form of Morse potential and is related to the Manning—
Rosen and Eckart potentials. This potential is used to
describe diatomic molecular energy spectra and electro-
magnetic transition and is usually regarded as the true
internuclear potential in diatomic molecules. In this case,
the choice A = —2bD,,B=0,C=D,b" and n=4%
where D, is the dissociation energy. With these parameters,
we have obtained the Deng—Fan potential from Eq. (6) as,

—ZbDe —ar Debz —2ar
_ e e (51)

vir) I —e (1— efzxr)2 ’

and from Eq. (27), the energy spectra for the Deng—Fan
potential becomes,

2
B2, —m’ :%(D+2l— 1)(D + 21 - 3)eo

n

o 2E.DDb®  2mDb?  2E,  2m?

7= o2 o2 * 2 o2
(D+2A-1(D+2-3)c
2
D+2l-1)(D+2]-3
L (D+2-1)(D+2-3) 55)
4
E:, m* (D+21—1)(D+21-3)c
gDF: Ocz«,/_?_( )(4 ) 0 (56)

It is the same as the one obtained by Dong et al. [3].

5. Conclusions

The success in the determination of the bound state solu-
tions of Klein—Gordon equation is a big task that must be
done since this solution brings information about quantum
state of the system under investigation. In this work, we
have considered the Klein—-Gordon equation with a multi-
parameter exponential interaction and reported the

2

2(E, + m)(D.b? +2bD,) — (— L\ J2 4 2(Eyy + m)(Deb?) + 2 (D + 21 — 1)(D + 21 — 3) + noc)

2(—§i V& +2(En + m)(Deb?) + % (D+21 - 1)(D+21 - 3) + noc)

(52)

and wave function is given by

F<n+ 1 +2«/gDF>
n!r(l +2s/gDF>
(1 _ 672;1r)1/2+\/W2

Fny = e )V i

(53)
1
Fl (—n,n—l—Zv /gDF+2\/Z+ WDF+gDF _fDF

+1;2/8PF +1; 62’7">

where,
2E,D,b* 2mD,* E,bD, mD,b E>
WDF: ,lze + 2e + A,Zz e_|_ ze _ 2,1
o o o o o
m*  (D+21—1)(D+2l—3)c
27 4

approximate analytical solutions of the problem via the
super-symmetric quantum mechanics (SUSYQM) formal-
ism. The special cases, Hulthen, Manning—Rosen, Eckart
and Deng—Fan potentials are consistent with those reported
in the literature [3, 30, 34, 39]. The approximate analytical
solution is obtained by invoking the improved Greene—
Aldrich approximation scheme to the centrifugal term.
Finally, the results of our work are both interesting for
theoretical and experimental physicists.

Appendix: Supersymmetry quantum mechanics

In the SUSYQM, we normally deal with the partner
Hamiltonians

2
Hi = L+ Vi(x),

o (57)

where
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Vi(x) = ®*(x) + &' (x). (58)
In the case of good SUSY, i.e. Ey = 0, the ground state

of the system is obtained via

¢y (x) = Ce™ Y, (59)

where C is a normalization constant and

Ux) = /dz<1>(z). (60)
Xo
Next, if the shape invariant condition
V. (ao,x) = V_(ay,x) + R(ay), (61)
where a; is a new set of parameters uniquely determined
from the old set a, via the mapping F:ay — a; = F(ap)

and R(a;) does not include x, the higher state solutions are
obtained via

E, = Rla), (62)
s=1
At
o () = T [ A1) ) a0, (63)

s=0 [En _ Es]l/2

X

By (anx) = Coxpd = [ ded(an) o, (64)
0

where

A;r = —a—ax—l—d)(as,x). (65)

Therefore, this condition determines the spectrum of the
bound states of the Hamiltonian

62
—@—t— V_(as,x) + E;. (66)

and the energy eigenfunctions of

Hy =

H,p, [(as,x) = E,¢, (a5,x), n>s (67)
are related via [27-30]
b st = — g ) (68)
n—s\ds, X) = ——————— > Qo) ds+1,X).
[EnfEs]l/z (+ )
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