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Abstract: In this paper, a higher-order nonlinear Schrédinger equation for the inhomogeneous Heisenberg ferromagnetic
spin system is studied. By virtue of the generalized Darboux transformation, higher-order rogue-wave solutions are
derived. Rogue-wave propagation and interaction are analyzed. We have observed that perturbation parameter and
inhomogeneities in the medium affect the propagation speed and direction of first-order rogue waves and interaction of

second-order rogue waves.
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1. Introduction

In recent years, Heisenberg magnetic spin chains are subject of
several investigations [1-5]. One of the main reasons, is that,
one-dimensional array of spins can store quantum information
[2]. During the study of those characters, it is found that Hei-
senberg ferromagnets models with different magnetic interac-
tions in semiclassical and continuum limits are equivalent to a
class of the nonlinear evolution equations (NLEEs) [6, 7].

Moreover, an inhomogeneous Heisenberg ferromagnetic
spin system with the prolongation structure has been attained
[8-101]:
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where € is a perturbation Rarameter, h represents inhomo-
geneities of the medium, I is spin vector in respect of the
scaled temporal ¢ and spatial coordinate x. It can be found
that Eq. (1) can degenerate into the Heisenberg ferromag-
netic spin system, when & = € = 0.

On the other hand, some NLEEs have Rogue-wave
solutions, such as the nonlinear Schrodinger (NLS) equa-
tion [11-15]:

0+ 00" 30, =0, 2

where * represents the complex conjugation and Q is a
function of 7 and 1. Solli et al. [12] have attained rogue
waves governed by Eq. (2) in an optical system. Chabc-
houb et al. [13] have observed rogue waves governed by
Eq. (2) in a water tank. Akhmediev et al. [14] and Guo
et al. [15] have obtained exact rogue-wave solutions of
Eq. (2) via the modified Darboux transformation (DT) and
generalized DT respectively. A rogue-wave is assumed as
an isolated “huge” wave with an amplitude “much larger”
than the average wave crests around it in the ocean [11]
and also relevant in other physical contexts such as the
Bose-Einstein condensates, optics and superfluids [11-16].

In this paper, we work on a higher-order NLS equation,
which is equivalent to Eq. (1) via mapping of the spin
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—
vector function I' onto a unit tangent vector of a moving
helical space curve [6], as follows [10]:

iq, + ¢*q* — 30ieqeq*(q*)* — 10ieq.cqq; — 10ieq.qq,
1

— 10iequnqq” — 10ieq*q" — 20ieqrquq” + 5 G

— ihg, —ieq =0, (3)
where ¢ is a complex function of ¢ and x. We note that
Eq. (3) can degenerate into Eq. (2), when ¢ = h = 0. Lax
pairs for Eq. (3) have been obtained [10, 17].

However, to our knowledge, rogue-wave solutions and
generalized DT of Eq. (3) have not been obtained. With the aid

of symbolic computation [18, 19], generalized DT, higher-order
rogue-wave solutions and interaction for Eq. (3) is obtained.

2. Generalized Darboux transformation for Eq. (3)

In order to be self-contained, we recall the DT of Eq. (3)
briefly. Lax pairs of Eq. (3) are [10, 17]

ql)t = Uq}v (4)
Y, =VV, (5)

N
where W = (y,, ¥,)" is a vector function of x and 7, T
denotes the transpose of a matrix and the matrices U and V
have the forms

—il
S |
—q° il
Ve [ Vit Vi } ’
Var = Vi
1
Vii =3 (= 2ihi — 2ii* — 32i€)’ + iqq” + 16ieX’qq"
— 12iehg*(q")* — 8e2%q qx + 12eq(q") g, + 8¢2%qq"
— 12eq°q" q; + 4i€lquq; — 4i€lq g — 26qqu
— 4ielqqy, + 2€4uqy, + 264" G — 2€445,),
1
Via =5 (th +20q + 32X g — 16eX2¢>q" + 126q3(q")2
+ igy + 16ie)3q, — 24ierqq g, + 12661*%2C + 8¢9q.q;
- 86;“2%0; + 165qq*qxx + 466]2%2 - 4i€;quxx + 2€qxxxx)7
1 .
Vi =3 (—2hg" —20q" — 323 q" +16e2%q(q")* — 12¢* (")’

+ig; + 16ieX3q; —24ielqq"q; — 8eq" qxq; — l2eq(q;)2
— 4€(q") qur + 8e17q}, — 16€4q" G, — HeAql, — 26q ).

where A is a parameter independent of x and ¢. The com-
patibility condition U; —V,+ UV — VU =0 leads to
Eq. 3) [10, 17].

By virtue of Lax Pairs given by Egs. (4) and (5), DT
matrix M!" has the form as [10, 17]

Ml — Fv 0] _ s s = AT ) (6)
0 4

HlU — [¢11 _ﬂétz]’ Alll {/11 0*} (7)
b b1 0 A4

where (¢, ¢,)" is a solution of Lax Pairs given in Egs. (4)
and (5) at A = Z; and g, 4; is a parameter independent of x
and ¢, (H") ™" is inverse matrix of H!'l. Sign (!l on the upper
right corner of a function/matrix, means that function/matrix
is engendered from the first DT. Sign ¥ (k = 2,3, ...) means
that those functions/matrices are engendered from the k-th
DTs. Therefore, the first-order solutions of Eq. (3) can be
given as

10—y 2i(41 — A1) 91191
11011 + P1201,

If we continue such process, N-th (N =2,3,...) DTs and
N-th order solutions for Eq. (3) can be obtained.

By virtue of DT given by Eq. (6), the generalized DT for
Eq. (3) can be obtained as shown below. We assume that g
is a solution of Eq. (3) [15]

Bl +2) 9)

(3)

is a solution for Lax Pairs given by Eqs. (4) and (5) at
g =q and A = {; + ¢, where {; and l & are both parameters
independent of x and z. Expanding ® at {;, we have

— — — —
®(€1+8):Eo+518+5282+-~-, (10)

— k=
where Z; = %Z?? O, (k=0,1, 2,.. .) are all the
functions of x and ¢. It can be shown that = is a solution of
Lax Pairs given by Eqs. (4)and (5)atqg = gand A = {; [15].

By virtue of DT given by Eq. (6), generalized DT matrix
MU of the first-step generalized DT for Eq. (3) is

0
Mm{g )]Sl; Sy = HUL(HY (11)
e R A (12
P (o) 0 G

-
=
=
=

where (¢, ¢12)" = Eo. Thus, the first-order solutions

gl for Eq. (3) are

2i(l — (e (en)"
011(@11)" + @)

'q“[l]

(13)

=q—

As the second-step generalized DT, using Eq. (11) in
Eq. (10) and taking the limit process [15], we have

MY, )8 e+ MU )6
PB(I) & - slil(l) & (]4)
= =
= 20 +M[1]|;.:g, E1 = (a1, o)
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We find a solution (¢,, ¢)" for Lax Pairs given by
Eqgs. (4) and (5) at ¢ = g!Y and /. = {;. Thus, we can obtain
the second-step generalized DT matrix M2 as follows,

.0
ME — [g ;] _ Sy, Sy =HALHP) (15)
H[g] _ [(/’21 —((Pzz)*} (16)
(%) (9021)*

This allows us to find the second-order solutions g2 of
Eq. (3) as

5[2] _ 5[1} _ 2i(( — CT)Q’zl(‘Pzz)* '
021(021)" + @22(92)"

(17)

For the third-step generalized DT, using the same method
as above, we have

—
lim (M[Z] |A=Cl+s) (M[l] |).:Cl+£) o6
e—0 &
s
i MO ) (e MY, )@
e—0 &

-
=
=
=

=
=Eo+ M|, + M)
=
+M[2]|A:QM[1]‘A:§1 Ex = (@31, 03"

1
(18)

Thus, we find a solution (¢;,, ¢3,)" for Lax Pairs given by
Eqs. (4) and (5) at ¢ = g and 1 = {; [15]. This allows us
to find the third-order solutions g of Eq. (3) as

~qv[3] _ 21«[2] _ 2i(61 = ) esi(93) '
?31(031)" + 032(932)"

If we continue such process, the 4th- and Sth-step gen-
eralized DTs for Eq. (3) might be obtained.

(19)

3. Results and discussion

In this section, the rogue-wave solutions, interaction and
propagation for Eq. (3) have been discussed.

3.1. Rogue-wave solutions for Eq. (3)

We take the plane waves as the seed solutions for Eq. (3)

(20)

q = ie".

q

€' ( =3 = 8it + 4¢° + 4’1 + 8htx + 4x” + 240ht’e + 2401xe + 3600£°¢?)

Then, the solution @>()c7 t;s) for Lax Pairs given by Egs. (4)
and (5) at A = —is and ¢ = ie” is

. no_ -n it
Burs) = | e e Ve, o)
(aze —aje Me2
where
Vs+vV—1+s? Vs—vV-1+3s2
ag=——, ;="
: vV—1+s? ? V=145
n=px+ot), p=-v-1+s,

w = h — is + 6¢ + 8s%c + 16s¢,

and s is a parameter independent of x and t._’I}‘aking s =
1 +1> and expanding the vector function @ (x,t;7) at
T =0, where 7 is a parameter independent of x and ¢, we
have

—

Ox, ;1) = §0+§112 +§2T4"‘, (22)

where

= | —ief(—1+2x+21(—i+ h +30¢)) (23)

O et (o1 —2x — 21(—i + h+30¢)) |

= 5 1| = 5 2

:1=[A1H1,zz:[j“ , (24)
01[1] 01[2]

with

= 1 it

0,]1] = —Eief(B 4+ 6x — 1207 + 8% + 1272(—1 4 2x)

X (—i +h+30¢)” + 8> (—i + h + 30¢)’
+61( — 5i+ h(1 — 2x)* + x(4i — 120¢)
+ 350€ + 4x*(—i + 30¢))),

- 1 it

0,[1] = Ee*f(3 — 6x — 126% — 8x* — 12/%(1 + 2x)

X (—i 4 h+ 30€)* — 8 (—i + h + 30¢)* — 61
x (=5i + h(1 + 2x)* + 350¢ + 4x(—i + 30¢)
+ 4x*(—i + 30¢)) ),

and 51[2], 0, [2] are presented in Appendix 1.

By virtue of Egs. (13) and (23), we can obtain the first-
order rogue-wave solutions of Eq. (3) as

1 + 412 + 4h2£2 + 8htx + 4x% + 240ht%e + 240txe + 3600722
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Fig. 1 (a) First-order rogue-wave solutions via Eq. (25) with parameters 7 = 5 and € = 0.9; (b) is the wave profile in (a) with r = —0.4,0 and
0.4, where ¢ and x are the scaled time and spatial coordinate respectively
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Fig. 2 (a) First-order rogue-wave solutions via Eq. (25) with parameters # = —5 and € = 0.9; (b) is the wave profile in (a) with t = —0.4,0 and
0.4, where ¢ and x are the scaled time and spatial coordinate respectively
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Fig. 3 (a) First-order rogue-wave solutions via Eq. (25) with parameters # = 5 and € = —0.9; (b) is the wave profile in (a) with t = —0.4,0 and
0.4, where ¢ and x are the scaled time and spatial coordinate respectively

We can confirm by direct validation that Eq. (25) is a  where 5[2] and g are exhibited in Appendix 2. The

solution of Eq. (3) via the Mathematica/Matlab. characteristic parameters of rogue waves presented in this
By virtue of Egs. (17) and (24), we can obtain the sec- manuscript is the same as NLS in [14].
ond-order rogue-wave solutions of Eq. (3) as By virtue of Egs. (18), (19) and (24), we can obtain the
third-order rogue-wave solutions. For simplicity, we omit
2[2] . . s
q[z] _ % o (26) the tedious expression of the third-order rogue waves and

exhibit the dynamical behavior of those in Fig. 7.



Rogue-wave solutions of a higher-order nonlinear Schrédinger equation

285

lql
(e R L VS B SN e )
‘

Fig. 4 (a) Second-order rogue-wave interaction via Eq. (26) with parameters &7 = 5 and € = 0.9; (b) is the wave profile in (a) with t = —0.3,0
and 0.3, where ¢ and x are the scaled time and spatial coordinate respectively
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Fig. 5 (a) Second-order rogue-wave interaction via Eq. (26) with parameters 7 = —5 and € = 0.9; (b) is the wave profile in (a) with t = —0.3,0
and 0.3, where ¢ and x are the scaled time and spatial coordinate respectively

lql
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Fig. 6 (a) Second-order rogue-wave interaction via Eq. (26) with parameters 2 = 5 and ¢ = —0.9; (b) is the wave profile in (a) with t = —0.3,0
and 0.3, where ¢ and x are the scaled time and spatial coordinate respectively

If we continue such process, the fourth- and fifth-order
rogue-wave solutions for Eq. (3) might be obtained.

3.2. Rogue-wave interaction and propagation
By virtue of the graphical illustrations of rogue waves,

rogue-wave propagation and interaction are analyzed as
follows:

Figures 1(a), 1(b) and 2(a), 2(b) show that inhomoge-
neity in the medium, which is represented by 4, has an
effect on the propagation speed of first-order rogue waves.
Propagation distance of first-order rogue waves, as dis-
played in Fig. 1(a) (with 7 = 5 and € = 0.9), is longer than
that exhibited in Fig. 2(a) (with h = —5 and ¢=0.9)
during the same time, this phenomenon also can be found
from Figs. 1(b) and 2(b). We note that the coefficient 4 of
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Fig. 7 Third-order rogue-wave interaction with parameters: (a) of # =5,e =0.9; (b) of h = —-5,e =0.9; (¢) of h =5,e = -0.9

Eq. (3) can be removed by using suitable transformation,
but it can affect the propagation speed of first-order rogue
waves.

Figures 1, 2 and 3 display that the perturbation param-
eter € has an effect on the propagation direction of first-
order rogue waves. Propagation direction of first-order
rogue waves in Figs. 1(a), 1(b) and 2(a), 2(b) are all con-
sistent with the negative x axis, when ¢ = 0.9 and h = £5
accordingly; Propagation direction of first-order rogue
waves in Fig. 3(a), 3(b) are both consistent with the posi-
tive x axis, when € = —0.9 and & = 5. In addition, Figs. 1,
2 and 3 show that ¢ is a bright-rogue wave.

Figures 4(a), 4(b) and 5(a), 5(b) show that i has an
effect on interaction of second-order rogue waves. Propa-
gation distance of second-order rogue waves, as exhibited
in Fig. 4(a), 4(b), is longer than those displayed in
Fig. 5(a), 5(b) during the same time, when 2 =5 and € =
0.9 in Fig. 4(a), 4(b) while h=—-5 and ¢€=0.9 in
Fig. 5(a), 5(b).

Figures 4, 5 and 6 display that ¢ has an effect on
interaction of second-order rogue waves. Propagation
direction of second-order rogue waves in Figs. 4(a), 4(b)
and 5(a), 5(b) are all consistent with the negative x axis,
when €=0.9 and h=+5. Accordingly propagation
direction of second-order rogue waves in Fig. 6(a), 6(b) are
both consistent with the positive x axis, when e = —0.9 and
h=>5.

Figure 7(a)-7(c) exhibit interaction of third-order rogue
waves, behaviors of which are similar to those of second-
order rogue waves in Figs. 4, 5 and 6, i.e., behavior of Fig.
7(a) is similar to Fig. 4(a), behavior of Fig. 7(b) is similar
to Fig. 5(a) and behavior of Fig. 7(c) is similar to Fig. 6(a).

4. Conclusions

In this paper, a higher order inhomogeneous NLS equation
[i.e. Eq. (3)] for inhomogeneous Heisenberg ferromagnetic
spin system has been investigated. Our results state that
Higher-Order Generalized DT given by Eq. (18) and

Higher-Order Rogue-Wave solutions given by Eq. (26)
have been attained. Rogue-wave propagation and interac-
tion have been analyzed. For first-order rogue waves,
relation between the inhomogeneities of medium is char-
acterized by h and propagation speed of first-order rogue
waves has been discussed. Relation of the perturbation
parameter € and propagation direction of first-order rogue
waves has been discussed. For second-order rogue waves,
coefficients /4 and e both have an effect on interaction of
second-order rogue waves. For third-order rogue waves,
the behaviors are similar to those of second-order rogue
waves.
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Appendix 1

0,2 = — fhsief(— 45 —30x — 12002 +240x° — 80x* +
325 + 801" (=14 2x)(—i+ h +30e)* +3265(—i+ h +
30€)’ + 8073 (—i + h +30€)* (h(3 — dx+  4x?) + x(4i —
120€) + 4x*(—i + 30e)  +15(—i + 70€)) + 10¢(h( — 3 —
24x +72x% — 322 + 16x*)+ x*(32i — 960¢) + 16x*(—i +
30¢) — 120x(—i+  70€) 4 24x*(—7i + 410¢) + 3(—7i +
3938¢))+ 40r%(27 + h*( — 3 + 18x — 12x% 4 8x?) —12x7
(i —30€)* +8  x3(i — 30¢)” + 2820ic — 60300¢> + 6x( —
11 — 1060i € +21900€?) + 2h(15i 4 x*(12i — 360¢)
—1050e+ 8x*(—i 4 30€) + 6x(—7i 4 410¢)))).

01[2] = f5e72( — 45 +30x — 120x? — 240x° — 80 x* —
32x° —807* (1 + 2x)(—i + h +30€)* — 3265 (—i + h +
30€)’ — 807> (—i + h + 30€)” (1 (3 + 4x + 4x) + 4 x(—i +
30 €) +4 x*(—i+30€)+ 15(—i+ 70¢)) — 10¢(h( — 3+
24x + 72x% + 322 + 16x*)+ 32x3(—i + 30€) + 16x*(—i+
30€) + 120x(—i 4 70¢) + 24x%(—7i +410¢) +3  (~7i +
3938¢)) — 40¢% (h* (3 + 18x + 120 + 8x%)+  12x  2(i —
30€)” + 8x3(i — 30¢)* + 3( — 9 — 940ie+ 20100¢%) +6x
(— 11— 1060i€ + 21900€* )+ 2k (12x*(—i + 30€)+ 8x
(—i+ 30€) + 15(—i + 70€) + 6x(—7i + 410¢))) ).
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3% = 45i — 3601 — 468 — 180i28% + 19263 —  576h%F
— 528it—  1440ik%t* — 144ik*t + 3845+ 768K
1384RA S+ 64it + 192ih20 + 192ik* 0+ 64ih01 —

360ihtx — 1152ht%x — 2880iht’x— 576ih’ 3 x+ 1536ht*x +
153613 x+ 384iht’x + 768ih’x + 384ik°x —180ix%—
576tx2 — 1440ir2x* — 864ih22x% + 768832+ 2304h2%13x2
+192it*x% + 1152ih%t*x* + 960ik* *x2 — 576ihtx> +
1536h2x3+ 768iht3x3+ 1280ih33x3 — 144ix* + 384mx* +
192i2x* + 960ih22x* + 384ihtx® + 64i x° — 45360iht*c +
57600h3e — 40320iht*e — 32640  ihPte + 46080ht e +
460801°P e + 11520iht%e+  23040ih*1% + 11520ih°1%€ —
45360itxe + 576002 xe— 40320ir xe — 97920ih* xe +
46080¢*xe + 138240h%¢*x € + 11520i> xe + 69120ih* xe+
57600ih*xe — 97920iht>x> € + 138240ht3x%€ 4+ 69120
iht*x%e + 115200ih3t* X3¢ —32640itx3 e + 46080723 ¢ +
23040 x> e+ 115200ih28x3 € + 57600ih2x*e + 11520itx7€
—277200i2e*+ 224640073 €* + 86400ir*c* — 2160000
iR+ 6912001 ¢ 4+ 207360042 €2 + 172800it%€¢* +
1036800ih%1°c2+ 864000ih*1%¢% — 4320000ih3xe* +
4147200ht*xe? + 2073600iht> xe> + 3456000ik3 P xe? —
2160000i2x2 €2 4 207360083x>€? + 1036800it*x*€> +
5184000ih%r*  x%€® + 3456000iht3x3 €% + 864000ir2x* > —
57024000iht*e> + 41472000h°¢* + 20736000ih%¢ +
34560000ik31%¢> — 57024000ir3xe® + 41472000¢*xe> +
20736000ir xe + 103680000ih25xe>+ 103680000iht*x2e
+34560000i> x> — 531360000it*e*+ 311040000 €* +
155520000i¢*+ 777600000ik21%¢* + 1555200000ih8 xe*
+777600000it*x%¢*+  9331200000ik:°€¢> + 9331200000
i xe>+ 46656000000i°€°.

g% =94 396> + 108h%1> + 432r*— 288hr* + 48h*t*
46415 + 192h21° + 1921*1%+  64h°1° + 216htx — 5T6ht’x
+1921383x + 384he’x + 768K Px+ 384K Px + 108x% —
28812x2 + 288h212x% + 19212 + 1152h%t* x2 + 960h*t*x?

+192htx  +768h3x3 + 1280K353x% + 48x* + 1922x* +
960h% 2 x*+  384htx> + 64x° + 18000kt + 28800ht*e —
9600h3t*e  +11520ht% + 23040h31%  +11520h°1% +
180001xe +2880073xe — 28800h23xe + 115208 xe +

6912012 xe + 57600 h*#xe — 28800htx*€ + 69120ht*x*¢

287
+115200/3t*x%c— 96001 € + 230403 %3¢ + 115200
hx3e +57600h2x*e + 11520t e+ 136440012 €2

1123200421 €* + 1728001°¢2
+1036800h21°€¢% + 864000 h*1%e2 — 2246400ht xe*
+2073600hxe> + 345600043 x €2 — 11232002x22
+10368007*x2€2 4 51840001  t*x22+  3456000h13x% €2
+86400072x*€> — 362880004t €® + 20736000ht%¢>+ 3456
0000/31°63 — 362880003xe>+ 2073600087 xe + 103680
000h2x€® + 103680000h* x> € + 3456000013 x> — 37
5840000¢*¢* + 1555200001%*+  7776000004%1%¢* 4 1555
200000h5xe*+  777600000¢*x%¢* + 9331200000406 +
93312000008 x€> + 4665600000 0£°¢6.

+1123200¢4€>—
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