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by multiplicative signal and non-Gaussian noise
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Abstract: The stochastic resonance phenomenon in FizHugh-Nagumo neural system induced by a multiplicative peri-

odic signal and non-Gaussian noise is studied. Based on path integral approach and two-state theory, the Fokker–Planck

equation and signal-to-noise ratio are derived. By analyzing the influence of different parameters in the optimization of

signal-to-noise ratio, we observe that the conventional stochastic resonance and double stochastic resonance occur in

FizHugh-Nagumo neural model under different values of system parameters. Furthermore, there is a critical value of non-

Gaussian noise intensity D, above which the increase of D weakens the resonant effect and below which it enhances the

resonant effect.
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1. Introduction

Since stochastic resonance (SR) phenomenon is first found in

a study of periodic changes of the ancient climate [1, 2], it has

been extensively studied both theoretically and experimen-

tally in many scientific fields, including biophysics, due to its

potential application [3–9]. SR is the name coined for the

rather counterintuitive fact that response of a nonlinear

system to a periodic signal may be enhanced through the

addition of an optimal amount of noise. And the typical

signature of SR is the existence of a maximum of the signal-

to-noise ratio (SNR) as a function of noise intensity.

FizHugh-Nagumo (FHN) neural model is one of the

simplified modifications of the widely known Hodgkin-

Huxley model [10], which describes neuron dynamics and

in general the dynamics of excitable systems in different

fields, such as the kinetics of chemical reactions and solid

state physics [11–13]. A vast majority of studies on SR

have been investigated in FHN neural system. For exam-

ple, Lindner et al. [14] have studied FHN system under the

influence of white Gaussian noise in the excitable regime,

where coherence resonance phenomenon is observed. Tora

et al. [15] have shown the existence of a system size

coherence resonance effect in the coupled FHN models.

The SR effect has been investigated in a FHN neural model

driven by colored noise by Nozaki and Yamamoto [16]. SR

in a FHN system with time-delayed feedback has also been

analyzed by Wu and Zhu [17]. They have revealed that SR

of the system is a non-monotonic function of the noise

intensity and the signal period and variation of the time-

delayed feedback can induce periodic SR in the system.

Previous research is in the case of Gaussian noise, but an

experimental research shows that some noise in the ner-

vous, biological and physical systems tend to non-Gaussian

distribution. Because non-Gaussian noise leads to a non-

markov process and the mathematical expression is com-

plex, studies of non-Gaussian noise are less. Zhang and Jin

[18] have investigated resonant effect in FHN neural sys-

tem driven by non-Gaussian noise and an additive periodic

signal. They have revealed that addition of non-Gaussian

noise is conductive to the enhancement of the response to

the output signal of FHN neural system. However, SR

induced by the multiplicative signal and non-Gaussian

noise has not been studied in FHN model. Therefore, SR

phenomenon induced by a multiplicative signal and non-

Gaussian noise in FHN model needs to be investigated.

In this paper, we introduce a multiplicative periodic

signal to the reduced one-dimensional FHN model with
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non-Gaussian noise. Our goal is to reveal some new fea-

tures of SR due to presence of multiplicative signal.

2. FHN neural model

2.1. Stationary properties of the model

FHN neural model can be written as follows [19].

dv

dt
¼ vða� vÞðv� 1Þ � w; ð1Þ

dw

dt
¼ bv� rw: ð2Þ

Where, in neural context, v is a fast variable denoting

neuron membrane voltage and w is a slow or recovery

variable, which is related to the time dependent

conductance of the potassium channels in the membrane;

0 \ a \ 1 is essentially the threshold value; b and r are

positive constants. For the sake of simplicity, we take

r = 1. By means of the adiabatic elimination method, the

one-dimensional Langevin equation for FHN model can be

obtained as [19].

dv

dt
¼ vða� vÞðv� 1Þ � bvþ nðtÞ: ð3Þ

The potential function,

UðvÞ ¼ 1

4
v4 � aþ 1

3
v3 þ aþ b

2
v2: ð4Þ

Equation (3) has two stable states: v1 = 0, which

represents the neurons of cells in the resting state.

v2 ¼ aþ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�1Þ2�4b
p

2
, which represents the neurons of

cells in the excited state and an unstable state:

v3 ¼ aþ1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða�1Þ2�4b
p

2
. In its bistable regime, i.e., b\ ða�1Þ2

4
.

If we consider the external environmental fluctuation (i.e.,

temperature, ionic strength, etc.) and the intrinsic thermal

fluctuation, the dimensionless form of the one-dimensional

Langevin equation [Eq. (3)] reads

dv

dt
¼ vða� vÞðv� 1Þ � bvþ vA cosðxtÞ þ vgðtÞ þ nðtÞ:

ð5Þ

Where A and x are amplitude and frequency of the

multiplicative periodic signal, respectively. And all

variables are normalized. g(t) is non-Gaussian white

noise and its statistical properties are described by:

dgðtÞ
dt
¼ � 1

s
dVqðgÞ

dg
þ 1

s
eðtÞ: ð6Þ

Here

VqðgÞ ¼
D

sðq� 1Þ lnð1þ
s
D
ðq� 1Þ g

2

2
Þ; hgðtÞi ¼ 0; ð7Þ

hg2ðtÞi ¼
2D

sð5�3qÞ ; q\ 5
3

1; 5
3
� q \3

(

where e(t) and n(t) are Gaussian white noise and their

statistical properties are given by:

heðtÞi ¼ hnðtÞi ¼ 0;

heðtÞeðt0Þi ¼ 2Ddðt � t0Þ;

hnðtÞnðt0Þi ¼ 2Qdðt � t0Þ: ð8Þ

Here Q is the intensity of the additive noise n(t); D is the

intensity of e(t); and s is the correlation time of non-

Gaussian noise g(t). Using the path integral approach [20],

the non-Gaussian white noise can be written as

dgðtÞ
dt
¼ � 1

s1

gðtÞ þ 1

s1

e1ðtÞ; ð9Þ

Here, e1(t) is Gaussian white noise.

he1ðtÞi ¼ 0; he1ðtÞe1ðt0Þi ¼ 2D1dðt � t0Þ;

where, s1 is an effective correlation time of noise and D1 is

an effective intensity of noise:

s1 ¼
2ð2� qÞ
5� 3q

s;D1 ¼
2ð2� qÞ2

5� 3q
D: ð10Þ

Parameter q is the deviation of non-Gaussian noise from

Gaussian behavior. When q ? 1, g(t) approximates as

colored Gaussian noise that its associated time is s1 and

noise intensity is D1. Using the unified colored noise

approximation [21], Eq. (8) takes the form:

oqðv; tÞ
ot

¼ � o

ov
½AðvÞqðv; tÞ� þ o2

ov2
½BðvÞqðv; tÞ�: ð11Þ

In which

Cðv; sÞ ¼ 1� s1½�2v2 þ ðaþ 1Þv�;

f ðvÞ ¼ vða� vÞðv� 1Þ � bvþ vA cosðxtÞ
Cðv; sÞ ;

BðvÞ ¼ D1V2 þ Q

C2ðv; sÞ ;

AðvÞ ¼ f ðvÞ þ 1

2
B0ðvÞ:

Thus, quasi-stationary probability distribution function

(SPDF) qst(v) can be derived and Eq. (11) in the

adiabatic limit as

qstðvÞ ¼
N
ffiffiffiffiffiffiffiffiffi

BðvÞ
p e

�VðvÞ
D1 : ð12Þ

190 X L Li and L J Ning



where N is normalization constant and generalized

potential reads:

In which

k1 ¼ s1; k2 ¼ 3ðaþ 1Þs1;

k3 ¼
1

2
½1þ ðaþ 1Þ2s1 þ 2s1ðaþ bÞ�;

k4 ¼ aþ 1ð Þ aþ bð Þs1 þ 1½ �; k5 ¼
1

2
ðaþ bÞ; h ¼ Q

D1

:

ð14Þ

2.2. SNR of the model

In order to calculate rate of transition out of the state v1, 2,

we consider the mean first-passage time (MFPT) T1 of the

system from v1 to reach v2 and T2 from v2 to v1. By means

of the steepest-descent approximation [21, 22], the modi-

fied MFPT can be obtained as

T1 ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00ðv1ÞU00ðvuÞj j
p e

VðvuÞ�Vðv1Þ
D1 ;

T2 ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00ðv2ÞU00ðvuÞj j
p e

VðvuÞ�Vðv2Þ
D1 :

ð15Þ

Then, the transition rates are given by

Within the framework of the theory of SR [23, 24],

the expression for SNR of the system can be given

by:

SNR ¼ A2pðl1b2 þ l2b1Þ
2

4l1l2ðl1 þ l2Þ
: ð17Þ

In which l1 = W1|Acos(xt)=0, l2 = W2|Acos(xt)=0, b1 ¼
� dW1

dA cosðxtÞ A cosðxtÞ¼0

�

� and b2 ¼ � dW2

dA cosðxtÞ A cosðxtÞ¼0

�

� . By

virtue of the expression of Eq. (15) for the SNR, the effects

of parameters on the SNR can be analyzed by numerical

calculations. Here, we take a = 0.5, b = 0.01.

3. Results and discussion

In Fig. 1, we present the effect of parameter q on SPDF. As

we can see, curves show an asymmetric double-peak

structure and height of left peak is higher than right peak,

which illustrates that probability of distribution of mem-

brane variable voltage is bigger in v1 = 0. Meanwhile, left

peak emerges in v1 = 0 and right peak appears near

v2 = 1.0, which are the positions of two states in potential

function U(v). More interestingly, as parameter q increas-

ing, height of the two peaks are reduced and left peak

reduces more faster than right peak, implying that there is a

transfer of probability from v1 to v2. However, the double-

peak structure of the curves always remains the same. It

can be said that parameter q can not induce phase

transition.

The influence of parameter q on SNR as a function of

multiplicative noise intensity D is plotted in Fig. 2. The

existence of the maximum in these curves is the identifying

characteristic of the SR phenomenon induced by the mul-

tiplicative noise. One can clearly see form Fig. 2 that

position of the maximum shifts to a smaller value of D as

q increases. But maximum of the SNR almost remains the

same. The influence of parameter q on the SNR as a

function of additive noise intensity Q is also plotted in

Fig. 3 when the other parameters are fixed. The results are

opposite from Fig. 2. From Fig. 3, one can see that, as

q increases, position of the maximum practically remain

the same and the maximum of the SNR is decreased,

namely the increase of q can weakens the resonant effect.

W1 ¼
1

T1

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½3v2
1 � 2ðaþ 1Þv1 þ aþ b�½3v2

u � 2ðaþ 1Þvu þ aþ b�
�

�

�

�

q

e
Vðv1Þ�VðvuÞ

D1 ;

W2 ¼
1

T2

¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½3v2
2 � 2ðaþ 1Þv2 þ aþ b�½3v2

u � 2ðaþ 1Þvu þ aþ b�
�

�

�

�

q

e
Vðv2Þ�VðvuÞ

D1 :

ð16Þ

VðvÞ ¼ �
Z

vða� vÞðv� 1Þ � bvþ vA cosðxtÞ�½1� s1ð�2v2 þ ðaþ 1ÞvÞ½ �
v2 þ Q

D1

dv

¼ k1

2
v4 � k2

3
v3 þ ðk3 � k1hÞv2 þ ðk1h2 � k3hþ k5Þ lnðv2 þ Q

D1

Þ

þ
ffiffiffi

h
p

k4 � k2hð Þ arctan
D1

Q
vþ �k1v2 þ k2

3
vþ k1h� 1

2

� �

ln v2 þ Q

D1

� �

� k3

3

ffiffiffi

h
p

arctan

ffiffiffiffiffiffiffiffiffi

D1

Q
v

r

� �

A cosðxtÞ;

ð13Þ
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Compared with the case of an additive signal in which the

increase of q strengthens the resonant effect [18], one can

find that increasing q plays an opposite role on resonant

effect for the cases of multiplicative and additive signals.

Here we take q = 1.5. We analyze the effect of corre-

lation time s of the non-Gaussian noise g(t) on the SNR as

a function of the multiplicative noise intensity D, when all

other parameters are fixed in Fig. 4. One can see that

maximum of SNR decreases as the correlation time s
increases. That is, the increase of s weakens the resonant

effect. Figure 5 shows the effect of s on the SNR as a

function of additive noise intensity Q. From Fig. 5, one can

see that the SNR shows double-peak structure. We call this

effect doubly stochastic resonance (DSR), which has been

studied by Zaikin et al. [25]. They have reported the effect

of DSR with Gaussian noise in nonlinear extended systems

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
x 10

9

v

ρ st
(v

)

 

 
q=0.5
q=0.52
q=0.54

Fig. 1 Stationary probability distribution qst(v) versus normalized v

for D = 0.01, Q = 0.001, A = 0, and s = 0.1

0 2 4 6 8
0

1

2

3

4

5

6
x 10

−10

D

S
N

R

 

 
q=0.5
q=1.2
q=1.5

Fig. 2 Curves of SNR versus normalized multiplicative noise

intensity D for Q = 0.001, A = 1, s = 0.01

0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Q

S
N

R

 

 
q=0.4
q=0.5
q=0.6
q=0.7

Fig. 3 Curves of SNR versus normalized additive noise intensity

Q for D = 0.1, A = 1, s = 0.01

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6
x 10

−10

D

S
N

R

 

 

τ=0.4

τ=0.3

τ=0.1

Fig. 4 Curves of SNR versus normalized multiplicative noise

intensity D for Q = 0.001, A = 1, q = 1.5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−9

Q

S
N

R

 

 

τ=0.01

τ=0.02

τ=0.03

Fig. 5 Curves of SNR versus normalized addictive noise intensity

Q for D = 0.1, A = 1, q = 1.5

192 X L Li and L J Ning



and rerealed that an independent additive noise governs the

dynamic behavior in response to small periodic driving.

Figure 6 is an amplification of the dotted box in Fig. 5.

From Fig. 6, we can see that with the increase of s, the

height of the left peak nearly remains the same and the

right peak increases.

To see the further effects of multiplicative noise inten-

sity D and the additive noise intensity Q, we plot the SNR

as a function of correlation time s of non-Gaussian noise in

Figs. 7 and 8, respectively. In Fig. 7, we present the effects

of multiplicative noise intensity D on the SNR as a function

of correlation time s. One can clearly see from Fig. 7 that

there is multiplicative noise intensity causing critical effect

on the SR phenomenon induced by the correlation times.

That is, there is a marginal value of D, below which the

maximum of the SNR decreases as D increases, implying

that the increase of D weakens the resonant effect and

above which the increase of D enhances the resonant

effect. Figure 8 shows the effect of Q on the SNR as a

function of s. We can see that the increase of Q enhances

the resonant effect.

4. Conclusions

In this paper, in terms of SNR, we have theoretically

analyzed SR phenomenon induced by a multiplicative

periodic signal in FHN model under non-Gaussian noise. It

is revealed that resonant effect in this system shows some

new features due to the presence of multiplicative signal

and non-Gaussian noise. Our study shows that the SNR as a

function of s exhibits a resonant effect, and there is a

critical value of the multiplicative noise intension D, above

which the increase of D enhances the resonant effect and

below which it weaken the resonant effect. Moreover, the

decreasing parameter q weakens the resonant effect

induced by the addition noise. More interestingly, we

observe that SNR as a function of Q shows double-peak

structure. The results of the present study manifestly show

that the combination of SR effect with multiplicative signal

and non-Gaussian noise has more interesting and complex

influences on the stochastic response of FHN. We believe

that these new findings further deepen the understanding

for the dynamics of various systems described by the FHN

model in presence of multiplicative signal and non-

Gaussian noise.
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