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Abstract:

Relativistic symmetries of Dirac equation, i.e. spin and pseudospin symmetries are investigated for a modified

Yukawa potential including a Yukawa tensor interaction. Using supersymmetry quantum mechanics and a proper
approximation to the inverse square centrifugal term, arbitrary-state solutions are reported in an analytical approach. We
have included some useful numerical data and illustrative figures to represent a better understanding of the solutions.
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1. Introduction

For decades, Dirac equation has been a promising basis to
study relativistic spin-1/2 fermions in nuclear and particle
physics. The problem in this case, just as that of linear
Schrédinger equation, appears as an ordinary second-order
differential equation, which has been extensively discussed
in the literature by various analytical and numerical tech-
niques. Numerical approaches, despite their reliability, are
less clear in comparison with their analytical counterpart in
which the explicit forms of the wavefunction and the
energy relation are reported. Some of analytical tools are
Nikiforov—Uvarov (NU) technique [1], asymptotic iteration
method (AIM) [2], shape invariant approach [3] and
supersymmetric quantum mechanics (SUSYQM) [4-6],
factorization method [7] and others [8] and references
therein.

The concept of SUSYQM has been introduced many
years ago [9, 10] and it provides theoretical physicists with
a powerful tool to deal with non-relativistic Schrodinger
equation. However, some years later, it has been applied to
other wave equations of quantum mechanics such as Dirac,
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Klein—Gordon, Duffin-Kemmer Petiau (DKP) and spinless
Salpeter equations [11-22].

Within present work, we have considered the so-called spin
and pseudospin symmetries of Dirac equation. These sym-
metries, due to their applications in hadronic and nuclear
spectroscopy, have renewed interests in the study of the
equation [23]. In more precise words, these symmetries could
explain the experimental observation of the quasi-degeneracy
in single-nucleon doublets between normal parity orbitals
(n,l,j = l+%) and (nf 1L,1+2,j= l+%),wheren,landj
represent the radial, orbital and total angular momentum
quantum numbers, respectively. These symmetries have been
successfully used in the study of nuclear shell model [24] as
well as many other concepts such as nuclear deformation,
super-deformation, magnetic moment and identical bands
[25]. It is now understood that pseudo-orbital angular
momentum / = [+ 1 in pseudospin limit is in fact the usual
orbital angular momentum / of lower component of Dirac
spinor [26]. It should be mentioned that spin symmetry refers
to the case where difference of repulsive Lorentz vector
potential V(r) and attractive Lorentz scalar potential S(r) is a
constant; A(r) = V(r) — S(r) = const. other jargon, i.e.
pseudospin symmetry, corresponds to X(r) = V(r) + S(r) =
const. Until now, these symmetries have been investigated for
different interactions by various techniques [27, 28]. In our
work, we consider a modified Yukawa potential of the form [29]
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1 A B
V(r) = —V()(l ——e”) = ——2672(” +—e " —C,
r r r
A=C=V, B=2V, (1)

where o is screening parameter and Vj is coupling strength
of the potential. Mie-type, inversely quadratic Yukawa,
Yukawa and Coulomb potentials are all special cases of
this interaction. For o — 0, this potential reduces to Mie-
type potential. When B = C = 0 the potential changes into
inversely quadratic Yukawa potential, which is widely used
in nuclear, particle, atomic, condensed matter and chemical
physics [30]. For A=C =0,B— —£ we recover the
quite famous Yukawa potential. In addition, when
A=C=0, « — 0, Coulomb potential is obtained. Dif-
ferent forms of Yukawa potentials have also been investi-
gated [31].

2. Supersymmetry quantum mechanics (SUSYQM)

In SUSUQM, we deal with the partner Hamiltonians
[6, 32]

2

m=%+mw, 2)
where
Vi(x) = @*(x) + @' (x). (3)

In case of unbroken supersymmetry, i.e. Ey = 0 ground
state of the system is obtained via
b (x) = Ce™ "0, (4)
where C is a normalization constant and

X

U@z/ﬁ@d (5)

X0

Next, we check whether the shape invariant condition
holds. The shape-invariancy implies

V. (ao,x) = V_(ay,x) + R(ay), (6)

where a; is a new set of parameters uniquely determined
from old set ag via mapping F : ag+— a; = F(ap) and R(a;)
does not include x. If condition in Eq. (6) is satisfied,
higher state solutions are obtained via

En = Xn:R(aS)7 (7)
s=1

_ B nI:Il AT(as) B 3

¢, (ag,x) = o m 450 (an,x), (8)

X

iy o) = Cexpd — [ de0an,2) . )
0

where

A:r = —a—i—l—d)(as,x). (10)

Therefore, this condition determines the spectrum of bound
states of Hamiltonian
62

HS:7@+V_((1MX)+E3. (11)

The energy eigenfunctions of

Hyp, (as,x) = E,p, (as;,x), n>s (12)
are related via [6, 32]

Al
¢,_s(as,x) = m‘ﬁrf_(m)(am,x)- (13)

3. Dirac equation with a tensor coupling

Dirac equation with a tensor potential U(r) in relativistic

unit (i = ¢ = 1) is written as [27-29]

&P+ BM +S(r) —ipa- FU(r) WY (r) = [E = V()Y (r),
(14)

where E is relativistic energy of the system, p = —iV is
three-dimensional momentum operator and M is mass of the
fermionic particle. @, f§ are 4 x 4 Dirac matrices given as

(0 7) = (3 %)

where /is a 2 x 2 unit matrix and d; are Pauli three-vector
matrices defined as

S O R T}
(16)

Eigenvalues of spin—orbit coupling operator are x = (j +
1)>0,k=—(j+1)<0 for unaligned j=I/—4% and
aligned spin j=1 —&—% cases respectively. The set
(H,K,J?,J,) forms a complete set of conserved
quantities. Thus, we can write the spinors as [27-29]

1 ch(r)Yfm(H,(p)>
%“)<mMmﬁww

r
where F,,(r) and G,.(r) represent upper and lower
components of Dirac spinors. Y}, (0, ¢), Y}, (6, ¢) are spin
and pseudospin spherical harmonics and m is projection on
the z-axis. With other known identities given by [27, 28]

(17)
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Y (18)
6-p=o-r|r-p+ L
as well as
(- L)Y, (0,9) = (x — Y], (0,0)
(5" Z:)Y]lm(@,(p) - 7(K~ - l)Yj[m(e’ QD) (]9)
(G- 7)Y, (0,0) ==Y}, (0,0)
(3 7)Y} (0, 0) = =Y}, (0, 9)
we obtain the following coupled equations [27-31],
(545~ U0 ) Fus) = (1 + B~ MG
(20)
(% - ; + U(r)) Guic(r) = (M — Epc + Z(r))F (1),
(21)
where
A(r) = V(r) — S(r), (22)
2(r) = V(r) + S(r). (23)

After a simple decoupling, we obtain second-order

Schrodinger-like equations

& k(k+1) +2KU(V) _dU(r)
dr? r2 r dr

—U(r) = (M +Ep — A(r))(M — E,c + X(r)) Foe(r)
- Uu0)
(M +E,—A(r)
-0,
(24)
;% B K(Kr; 1) +ZKI}{(r) +dl(]1£r) e
—(M—i—E,,K—A(r))(M—E,,K—i—Z(r)) GnK(r)
LB u0)
(M — Epc +2(r))
(25)

with (e — 1) = [([+ 1), k(k + 1) = 1(I+ 1).

3.1. Pseudospin symmetry limit

. ..o dX(r
In pseudospin symmetry limit, d(r> =0or X(r) = Cp =
const [23-26]. As previously mentioned, we intent to study
the potential

AP —2ar B —or s
A(r) = ——g e F—e =, (26)
besides Yukawa tensor interaction [33]
e*O(r
ue) =i (). @)
r

where V| and o are strength and range of nucleon force,
respectively [33]. The corresponding equation is not
exactly solvable. Consequently, to provide an analytical
solution, we have to proceed on an approximate basis.
Therefore, we introduce the approximations [34]

1 40(2 67200

2 (1 —e2r)?] (28)

1 4ol

SR 29
r2 (1 _ e—2fxr)2 ’ ( )
Substituting Egs. (26)—(29) into Eq. (25), we obtain

d>  40%k(k —1)e > 8u’kVie

dr? (1— 67200)2 (1— 672”)2

20(2V1e’22°" 4oc2Vle’2”2 B 4oc2V12e’4°"2 o ()
(1 — e W) (1 _ e—Zar) (1 _ e—29<r)
—402 AP (M —E, + C,,S)e*‘“"
(1 _ 672‘”)2
+| | 20B"(M — Eyc + Cpy)e ™ | Gy
(1 _ 67200’)
— C"(M — Epc + Cpy)

= (M + Ene)(M — Enc + Gy )Gl (30)
or, more neatly,

de!nn‘ s ps s
— V()G = B, (1)
where

1,,7567400 + ’75567290 + 7[’3”

Ve (r) = , 32

6#( ) (1 _ 872‘”)2 ( )
E’Ji = _(M + Enk)(M — Epe + CpS)v (33)

‘ 1
i = [4a2Aw (M — Epyc + Cps) +42°V) <v1 + E)

+20(M = Epe + Cps)B” + C7*(M — Epc + C”S)} -
‘ 3
1/]’2” = |:4062K(K — 1) + 80CZVI (K - Z)
—2CP(M — Ep + Cps) — 20B" (M — Epe + Cps)} ’

(35)
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Table 1 Energies in pseudospin symmetry limit for M = 1 fm~!, « = 0.01 fm

C n o« (6.)) En(fm™") Ep(fm™") = [16] En(fm™") En(fm™") = [16]
AP =—-02,B" = — AP =0,B" =1 AP =—-02,B” = — AP =0,B" =1
< =-02,V,=0 =0,V =0 " =-02,V; =05 c” =0,V =05
Cps = —5 fm™' Cps =0 fm™! Cps = —5 fm™! Cps =0 fm™'

1 1 -1 1S, —0.942576757 —0.955227812 —0.942502609 —0.931659752

2 1 -2 1P~% —0.942710712 —0.978280583 —0.942603069 —0.968839010

3 1 =3 ld% —0.942911663 —0.988854451 —0.942770516 —0.984284996

4 1 —4 1f; —0.943179636 —0.994345276 —0.943004969 —0.991903836

1 2 -1 285 —0.946996080 —0.978280583 —0.946921128 —0.968839010

2 2 -2 2P, —0.947132339 —0.988854451 —0.947023317 —0.984284996

3 2 -3 2ds —0.947336747 —0.994345276 —0.947193644 —0.991903836

4 2 —4 Zf;h —0.947609326 —0.997356164 —0.947432128 —0.996004056

1 1 2 Ozi% —0.942576757 —0.955227812 —0.942603069 —0.968839010

2 1 3 Of;n —0.942710712 —0.978280583 —0.942770516 —0.984284996

3 1 4 Oé; —0.942911663 —0.988854451 —0.943004969 —0.991903836

4 1 5 Ohé —0.943179636 —0.994345276 —0.943306456 —0.996004056

1 2 2 lds —0.946996080 —0.978280583 —0.947023317 —0.984284996

2 2 3 1fs —0.947132339 —0.988854451 —0.947193644 —0.991903836

3 2 4 lg —0.947336747 —0.994345276 —0.947432128 —0.996004056

4 2 5 Lhy —0.947609326 —0.997356164 —0.947738796 —0.998264813

1 = (M = Eun + ) (36) WV

According to Eq. (4), the lower component is

ar. _exp( [ o0 ) (37)

where in integrand is determined from Riccati equation

¢2 - (,bl = Veff ( ) Eﬁsw (38)

After a change of variable of the form y = e~>*, super-

potential is found as

B0) = s+ (39)

which rewrites Eq. (36) as

ps\2. 2 2 1PS jPS 2 DS
(,l,t )y2 W y+(/~hps)2+ ayp >
1=y (1Y) (1-)
Y iy s
= e (40)
(1—=y)

Equating the corresponding powers on both sides of Eq.
(40), we find

EN‘I(;SK = ngs - (ips)za (41)

W= o\ JR o () (42)

o (43)

By virtue of Eq. (3), we can construct the partner
Hamiltonian as

Vg (1) = o+ 22
_ P2y o — o = 23y
(1-y)* (1-y)
ps\2 s DS 2
+ (—(” ) ;f i ) (44)
() =920
_ u’”(u”‘v + 20y (W) 4o — "+ 20y
(1—y)? (I-y)
() 7 =)
+ <T13> (45)

Thus, it is not difficult to show that V. (r) and V_(r) are
shape invariant via

W =20, (46)

with  ag = ", a1 = f(ap) = ap — 20, a, =f(ap) = ap
—2na. Thus, from Eq. (6), we have
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Table 2 Energies in spin symmetry limit for M = 1 fm~!, « = 0.01 fm

nooo ® (L) B E; (fn”") = [16] Ep (™) E, (fin”) = [16]
A'=02,B =04 A =0,B =-1 A =02,B =04 A =0,B =—1
C"=02,V,=0 =0,V =0 C"=02,V, =05 C"=0,V, =05
Ci=5 fm™! C;=0 fm™! Cy=5 fm™! Cy=0 fm™'
0 0 —1 OS% 0.857444434 0.607950247 0.857436394 0.004987562
1 0 —1 1S, 0.860271262 0.891565680 0.860263027 0.808888053
2 0 —1 ZS; 0.863164719 0.955227812 0.863156287 0.932381312
3 0 -1 3S% 0.866125068 0.978280583 0.86611644 0.969190359
0 1 -2 OP% 0.857508755 0.891565680 0.857468554 0.808888053
1 1 -2 IP% 0.860337143 0.955227812 0.860295967 0.932381312
2 1 -2 ZP% 0.863232169 0.978280583 0.863190012 0.969190359
3 1 -2 SP% 0.866194095 0.988854451 0.866150953 0.984479831
0 2 -3 0d; 0.857637405 0.955227812 0.857565038 0.932381312
1 2 -3 ld% 0.860468912 0.978280583 0.860394791 0.969190359
2 2 -3 Zd% 0.863367072 0.988854451 0.863291189 0.984479831
3 2 -3 3d% 0.866332151 0.994345276 0.866254495 0.992018477
0 3 —4 Of% 0.857830397 0.978280583 0.857725857 0.969190359
1 3 —4 lf% 0.860666578 0.988854451 0.860559507 0.984479831
2 3 —4 Zf% 0.863569437 0.994345276 0.863459821 0.992018477
3 3 —4 3f% 0.866539239 0.997356164 0.866427066 0.996072265
0 1 1 0P, 0.857508755 0.891565680 0.857565038 0.932381312
1 1 1 IP; 0.860337143 0.955227812 0.860394791 0.969190359
2 1 1 ZP; 0.863232169 0.978280583 0.863291189 0.984479831
3 1 1 3P% 0.866194095 0.988854451 0.866254495 0.992018477
0 2 2 Od% 0.857637405 0.955227812 0.857725857 0.969190359
1 2 2 ld% 0.860468912 0.978280583 0.860559507 0.984479831
2 2 2 Zd% 0.863367072 0.988854451 0.863459821 0.992018477
3 2 2 Sd% 0.866332151 0.994345276 0.866427066 0.996072265
0 3 3 Of% 0.857830397 0.978280583 0.857951028 0.984479831
1 3 3 lf% 0.860666578 0.988854451 0.860790128 0.992018477
2 3 3 Zf% 0.863569437 0.994345276 0.86369592 0.996072265
3 3 3 3f% 0.866539239 0.997356164 0.866668671 0.998303763
2 2 n
Rar) = (<a0>2 i 1> ) ((mf i n’f) Cwn B =Y R@)
261() 2a| k=1
2 2
N s a2 _ (@) ik =\ (@)
R(Cl ) _ <(a1) + n,3) - nllj ) B <(a2) + '71; — 1 ) , 2610 Zan ?
2(1] 202
(51)
(48)
, ) 2 , ) 2 and
R(an)_<<a,,1> +i1§'11’f>_<(an) +n‘§n’1’> S
2= 2an Ep = By +Ep, = 2
40 <<a0 —2n2)° 4} n’f“‘) o 52)
Ey =0 (50) 2(a — 2n2) 3
Consequently, energy eigenvalues can be obtained from which, from Egs. (33)-(36), (41)-(43) and (52),
Eqgs. (47)-(49) as yields
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Fig. 1 (a) Energy versus o for pseudospin symmetry limit for AP
—5 fm~! and (b) energy versus o for spin symmetry limit for A* = 0.2, B =04, C*=02,V, =0.5 fm '\, M =1fm™!, ¢, =5 fm

Fig. 2 (a) Energy versus V
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— (M + End) (M = En+ Cyy) g 2MF En) M = Bt Cp)
: =
402
2
s S s 2 s S 3 2C(M — E,. C 5
(—oci\/ocZJr(;ﬁ s i) = 2n0)" 0y — oy K(K—1)+4V1<K—Z)— ( 4a2h+ )
2(—0(:t\/052+ (’1;]93+’1§5+ngs> —271(1) B _B(M—EnK—FCps) ’
_ pS — 0’ (53) 20{
3 (56)
For completeness description of potential model under C(M—E c
investigation, let us find the corresponding wave functions (¥ — (M~ ”; + Crs) + (M + Ene) (M 2_ Enc + Cps) ,
for pseudospin symmetry limit. By using transformation 4o 4o
y = e~ 2*" we obtain lower component of the wave function as (57)

& TR
Ge(r) = Ny (e*ZW)\/I(l _ e—2ocr)2+ (NN

A 1 A A A}
X 1F2<n;n+2\/cg +\/4+C’1’ +& -8

3.2. Spin symmetry limit

dA(r)

- o In spin symmetry limit =3~ = 0 or A(r) = C, = const [23—
+152 C? + Le” w)v (54) 26]. As in previous section, we consider
A‘Y BS
where 1 I(r) = — r—zefz“’ + 7e’“’ —C, (58)
A@l—&m+6ﬁy+w<m+5> Y
e
ue) = () (59)
s 1 C(M — E,. + Cps ’
4= +44M—EM+CQB+( +P>+, r
24 P 4o oy . .
(M + Ep)(M — Epc + Cpy) Substitution of Eqgs. (58) and (59) into Eq. (24) gives

402
(55)

A B’ ,
_ze—Zocr + Te_w _ C“)Fm{(l’)

> k(k+1) 2kVie™ aVie ™ Vie ™ Vlzefz“"
{ﬁ B r? B r? a r 2 2 Fuc(r) = (M + Ene — Cy) | —

= (M + E, — Cs)(M - Emc)ch(r)a (60)

7
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Fig. 6 Lower and upper radial wave functions in view of the pseudospin symmetry under condition (a) x<O and (b) x>0 for

AP = —02, B* = —04, C" =

By using approximations given by Egs. (28) and (29) in Eq.
(60), we arrive at

- d;f;K + Vegr (1) Fuc = EpcFax, (61)
where
Xie—4o{r + X%e—Zar + X‘§
Ve (r) = (1= e2r)? ) (62)
E, = —(M+ Ey — C)(M — Ey), (63)
x5 = 42V (vl - %) — 40°A(M + E,c — Cy)
—20B(M + Eyc — C;) = C(M + Enc — Cy),  (64)

—02,V; =05 fm™!, =00, M=1 fm™', Cpy = -5 fm™!

3
7 = 407k(ic+ 1) + 40°V, (2K + 5)

Cs) + ZC(M + Emc - Cs)a
CS))

+2aB(M + E,,. —
—C(M+ E,, —

73
Following same steps of previous section, we find energy

equation in this case as

- (M + Emc - Cs)(M - Emc)

2

+
2(—a £ \/a2+ (15 + 75+ 75) — 2n)

-4=0

(67)
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Fig. 7 Upper and lower radial wave functions in view of the spin symmetry under condition (a) k<0 and (b) k¥ >0 for A® =0.2,
B =04, C*=02,V; =05 fm™", 0=001,M=1 fm™', C; =5 fm™!

3 1 o rar —ar

Fu(r) = Naele 22) V5 (1 g2y Visoeies
1

X1F2<_”;”+2\/w_§+\/z+w‘i+w§—w§

+152/f + 1;e2”>7 (68)
where
. 1
o] =V, <V1 —§> —AM+E,. — Cy)
1 C(M + E, — Cy)
~—BM+Ey—C) ——— 5 (69)
20 (M + ) 402
(M + Erm - Cs)(M - Em()
402 ’
;. 2(M+E, —C) (M —Ey)
wp = i —k(k+1)
vt —iB(M+E —Cy) (70)
1 B 2 nK s
_ 2C(M + Emc - CY)
402 ’
s C(M + Emc - Cs) (M + Emc - Cs)(M - Emc)
R 402 4o '

(71)

and the other component can be simply found via,

4. Numerical results

We have listed some numerical results given in Tables 1 and
2 for the set AP = —0.2, B” = —-04, C»" =-0.2, V| =
0, Cps =—5, M =1, oo.=0.01 in pseudospin symmetry

and A*=02, B =04, =02,V =0, C;=5, M =
1, « =0.01 for spin symmetry. For values of A" =
0,B” =1, C"* =0, V;=0,05, C,y =0 for pseudospin
symmetry case and for A*=0, B =-1, C°'=0,
V1 =0,0.5, C; =0 for spin symmetry case, numerical
results are compared with [16]. In Tables 1 and 2 numerical
results of energy eigenvalue equations are presented in
presence and absence of Yukawa potential as tensor inter-
action. In addition, it can be seen that all degeneracies
between two states in spin and pseudospin doublets are
removed by tensor interaction (V; # 0). In Fig. 1, we have
plotted the energy versus o for both pseudospin and spin
symmetry limits. In Fig. 2, we present the effects of tensor
interaction on bound-states. Figures. 3, 4 and 5 present
dependence of bound-state energy levels on potential
parameters. Also, Figs. 6 and 7 respectively show the
wavefunctions for pseudospin and symmetry limits without
and with tensor interaction.

5. Conclusions

In this paper, we have considered the spin and pseudospin
symmetries of Dirac equation with these interactions with
successful prediction of Yukawa potential and modified
Yukawa potential in particle and nuclear physics. We
have shown that using supersymmetry quantum mechan-
ics, shape-invariance condition and a physical approxi-
mation to centrifugal term, problem can be analytically
solved for any arbitrary states. Various parameters
obtained from analysis give a better insight to their effect
on spectrum and wavefunction of system. Our results, for
special cases of parameters reduce to well-known Cou-
lomb, Mie-type, Yukawa and inversely-quadratic Yukawa
potential and therefore provide more general results than
reported [29, 30].



292

A N Ikot et al.

References

[1] A F Nikiforov and V B Uvarov Special Functions of Mathe-
matical Physics (Basel: Birkhaauser) (1988)
[2] H Cifti, R L Hall and N Saad J. Phys. A 36 11807 (2003)
[3] G F Wei and S H Dong Europhys. Lett. 87 4004 (2009)
[4] G F Wei and S H Dong Can. J. Phys. 89 1225 (2011)
[5]1 W C Qiang and S H Dong Phys. Scr. 72 127 (2005)
[6] H Hassanabadi, E Maghsoodi and S Zarrinkamar Euro.-
Phys.J.Plus 127 31 (2012)
[71 S H Dong Factorization Method in Quantum Mechanics (Dor-
dreht: Springer) (2007)
[8] A N Ikot, E Maghsoodi, S Zarrinkamar and H Hassanabadi Few-
Body Syst. 54 2027 (2013)
[9] F Cooper, A Khare and U Sukhatme Phys. Rep. 251 267 (1995)
[10] G Junker Supersymmetric Methods in Quantum and Statistical
Physics (Berlin: Springer-Verlag) (1996)
[11] A N Ikot, O A Awoga, A D Antia, H Hassanabadi and E
Maghsoodi Few-Body Syst. 54 2041 (2013)
[12] G F Wei and S H Dong Phys. Lett. A 373 49 (2008)
[13] G F Wei and S H Dong Phys. Lett. B 686 288 (2010)
[14] G F Wei and S H Dong Eur. Phys. J. A 46 207 (2010)
[15] H Hassanbadi and B H Yazarloo Indian J. Phys. 87 1017 (2013)
[16] H Hassanabadi, E Maghsoodi and S Zarrinkamar Commun.
Theor. Phys. 58 807 (2012)

[17] A D Antia, A N Ikot, H Hassanabadi and E Maghsoodi Indian J.
Phys. 87 1133 (2013)

[18] G F Wei and S H Dong Phys. Lett. A 373 2428 (2009)

[19] A D Antia, A N Ikot, I O Akpan and O A Awoga Indian J. Phys.
87 155 (2013)

[20] G F Wei and S H Dong Eur. Phys. J. A 43 185 (2010)

[21] G F Wei and S H Dong Phys. Scr. 81 035009 (2010)

[22] A N Ikot, B H Yazarloo, A D Antia and H Hassanabadi Indian J.
Phys. 87 913 (2013)

[23] J N Ginocchio Phys. Rev. C 69 034318 (2004)

[24] J N Ginocchio Phys. Rev. Lett. 78 436 (1997)

[25] P R Page, T Goldman and J N Ginocchio Phys. Rev. Lett. 66 204
(2001)

[26] J N Ginocchio Phys. Rep. 414 165 (2005)

[27] E Maghsoodi, H Hassanabadi and O Aydogdu Phys. Scr. 86
015005 (2012)

[28] O Aydogdu, E Maghsoodi and H Hassanabadi Chin. Phys. B 22

010302 (2013)

S M. Ikhdair and M Hamzavi Few-Body Syst. 53 487 (2012)

M Hamzavi, S M Ikhdair and B I Ita Phys. Scr. 85 045009 (2012)

H Taseli Int. J. Quant. Chem. 63 949 (1997)

H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov

Mod. Phys. Lett. A 26 2703 (2011)

[33] H Yukawa Math. Soc. Jpa. 17 48 (1935)

[34] C I Pekeris Phys. Rev. 45 98 (1934)

[29
130
131
(32

—_ e =



	Supersymmetry quantum mechanics to Dirac equation with a modified Yukawa potential and a Yukawa tensor term
	Abstract
	Introduction
	Supersymmetry quantum mechanics (SUSYQM)
	Dirac equation with a tensor coupling
	Pseudospin symmetry limit
	Spin symmetry limit

	Numerical results
	Conclusions
	References


