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Abstract:

We have solved approximately Klein—Gordon equation with equal scalar and vector Mobius square plus

Yukawa potentials in D-dimensions using the parametric form of Nikiforov—Uvarov method. Energy eigenvalues and
corresponding wave functions in terms of Jacobi polynomials are obtained. We have also discussed some special cases of

our potential.
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1. Introduction

In relativistic quantum mechanics the particle motions are
commonly described using either Klein—-Gordon equation
or Dirac equation [1, 2] depending on spin character of the
particle. Klein Gordon equation is one of the most fre-
quently used wave equation that describes spin-zero par-
ticles such as mesons. On the other hand, however,
electrons are described satisfactorily by Dirac equation.

The solution of Klein—Gordon equation under different
potentials plays an important role because one can under-
stand physics that can be brought by such solutions.
Among the most successful methods that have been used to
solve Schrodinger, Dirac and Klein—Gordon equation,
Nikiforov—Uvarov (NU) and supersymmetric quantum
mechanics (SUSYQM) methods have great importance
[3-13].

Recently Klein—Gordon equation with different poten-
tials have been solved and investigated by different
researchers [14-24]. For instance, Egrifes and Sever [25]
have obtained bound state solutions of Klein—Gordon
equation for generalized PT-symmetric Hulthen potential,
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Soylu et al. [26] considered Klein—Gordon equation under
Rosen—Morse type potentials.

Aim of this paper is to obtain approximate solutions of
Klein—Gordon equation with equal scalar and vector
Mobius square plus Yukawa potentials in D-dimensional
space.

2. Nikiforov—Uvarov (NU) method

Nikiforov—Uvarov method [8-11] is based on the solution
of a generalized second order linear differential equation
with special orthogonal function. Schrodinger equation

W' (x) + (B~ V(x)¥(x) =0 (1)

can be solved by this method. This can be done by
transforming this equation into equation of hypergeometric
type with appropriate transformation, S = S(x)
() 1 1) ) wiey — o 5
() + oy /) + s 0 @
where o(s) and @(s) must be polynomials of at most
second-degree and 7(s) is a polynomial with at most first-
degree. In order to find exact solution to Eq. (2) we set
wave function as

P(s) = ©(s)x(s) (3)
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On substituting Eq. (3) in Eq. (2), then Eq. (2) reduces to
hypergeometric type,
a(s)r"(s) + ()7 (s) + Az(s) = 0 (4)

where wave function ®(s) is defined as logarithmic
derivative [8]
®'(s) _n(s)

=—= (5)
O(s)  als)

where 7n(s) is at most first order polynomial. Likewise,
hypergeometric type function y(s) in Eq. (4) for a fixed n is
given by Rodriques relation as

B, d"
ls) = 5 G W)l (©)

where B,, is normalization constant and weight functions
p(s) must satisfy the condition

< o(s)p(s)] = (s)p(s) )
with
w(s) = %(s) + 2(s) )

In order to accomplish the condition imposed on weight
function p(s), it is necessary that classical orthogonal
polynomials 7(s) be equal to zero at some point of an
interval (a, b) and its derivatives within this interval at
a(s) > 0 is negative, i.e.,

d

— <0 9
7:°6) ©)
Therefore, function n(s) required for NU method are
defined as follows:

n@%:dzfiVKdzf){ﬁ+ka (10)

h=k+7(s) (11)

k-value in Eq. (10) is possible to evaluate if the expression
under square root is square of polynomials. This is possible
if and only if its discriminant is zero. With this, new
eigenvalues equation becomes

dv n(n-1)d%

A=Iyp=—n—— — =0,1,2,... 12

"asT 2 ae " (12)
On comparing Eq. (11) with Eq. (12), we obtain energy
eigenvalues.

Parametric generalization of NU method is given by
generalized hypergeometric type equation as [27]

+ 1 [*5152 + &5 — 53}‘1’@) =0 (13)

$2(1 — c35)?

Eq. (13) is solved by comparing it with Eq. (20) and
following polynomials are obtained

T(s) = (c1 — cas), a(s) =s(1 —c39),

7(s) = &1 + s - &y ()
where

1 1 2
C4:§(1—Cl)7 0525(62_203)7 Cﬁ:c5+fl’

¢ =2cucs — &, g =i+ & (15)

The resulting value of k in Eq. (15) is obtained from
condition that function under square root must be square of
a polynomials and it yields,

ki = —(6‘7 + 2C3C8) + 2./cgco, (16)
where
co = 307 + C§Cg + cs. (17)

The new 7(s) for each k becomes

n(s) = ca + css — (/&5 + ¢3y/@x)s — /as), (18)
For k_ value as
ko = —(c7 + 2c3c8) — 24/cs69 (19)

Using Eq. (8), we obtain
1(s) = ¢1 + 2¢c4 — (c2 — 2¢5)s

—2[(V/e9 + c3v/cs)s — (/e (20)

The physical condition for bound state solution is 7/ < 0
and thus

v = —2¢5 — 2(\/c9 + +c34/c8) <0 (21)

With aid of Egs. (11) and (12), we derive energy equation
as

(c2 —c3)n+can® — (2n+ 1)es + (2n 4 1)(y/Co + ¢31/C3)
+ ¢7 4+ 2c3¢8 + 2+/cgcg = 0 (22)

The weight function p(s) is obtained from e.g. Eq. (7)
as

‘1

pls) =571 (1 —cas)s 7! (23)

together with e.g. Eq. (6), we have

1o —cio-1
2(5) =P (1 ey (24)
where
crlo=c1 +2c4+24/cg (25)
ciy = ¢ — 2¢5 + 2(\/54— C3\/C_g) (26)
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I'o+n+1)
nl(e+pf+n+1)

XZ( ) a+/3+n+m+1) (x—l)’”

Ia+m+1) 2
and Pﬁf‘ﬁ) is Jacobi polynomial.
Second part of wave function is obtained from Eq. (5) as

(6)
P, (x) =

D(s) = 52(1 — c35) 27 (27)
where
Cl2 = ¢4+ +/cs,¢13 =5 —

Thus, the wave function is

(Veo + c3y/cx) (28)

13 (Cl(] 1

—c35) TGP,

—cio—1)

7f2

Y(s) =s1(1 (1 —2c38) (29)

3. Radial part of Klein—Gordon equation
in D-dimensions

The radial part of Klein—-Gordon equation in presence of
vector and scalar potentials in D-dimensional space is
written as [28-30]

dar? + Ey + V3(r) = 2E,V(r) —m* — S*(r)
—2mS(r) — (D+20— 25? +21-3) i) =0
(30)

For equal scalar and vector potentials Eq. (30) reduces to

d2
d2

_(D+21—Z)r(2D+21—3)}Unl(r):0 )

+ EX —m? —2(Ey +m)V(r)

Here, we consider Mobius square plus Yukawa potentials
defined as [31, 32]

Vlefo:r

r

A+ Be™" )2

Vo) =vo( 51 pes , )

where Vy, Vi, A, B, C, D' and « are constant coefficients.

A good approximation for centrifugal barrier is taken as
[33] (see Fig. 1)

1, C ?
r2 C+ Der

1 5, 1 1 4
_ Doyt 1 33
10( A RET LR Ll 20" (33)

1 5.3 1 6.4
P 0
70%" “goas® " o)

which is valid for o < 1 when C =1 and D' = —1 [33-
36], similar to other related works [37, 38]. In addition,
when performing a power series expansion and setting
a — 0, Eq. (33) gives the desired 2 suggested by Greene
and Aldrich [39]. By substituting Eqgs. (32) and (33) into
Eq. (31) we obtain

P, A+ Be ™ \?
{w*E “M+mwﬂwnfﬁ
20C(Ey +m)Vie™  o2C*(D+21—1)(D+2l-3)
(C+De) HC+De )
X Up(r) = 0. (34)

By a change of variable of the form

d*Uy | (1+%s) dUy
ds* 1+25) ds
s(l C S‘) (36)
+ 2 [—Q]S2+Q2S—Q3]Unl(r) =0.
sz(l +%S)
where
&2 _E;%z —m’
w2
-D”? 2(Ey+m) 5, 2D (B, +m)
0= o 202 VB - — — W
2D’ E, E,
0> :—82—4MV0AB+ZMV1,
C o2 C? o
2(Ey+m D+2—-1)(D+2—-3
0n ey MBatm) o )( )
o‘c 4
(37)
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By comparing Eq. (36) with Eq. (13), we obtain energy
spectrum for Mobius square plus Yukawa potentials as

D2 4D (Ey+m)VoAB 2D2 (Ey+m)VoA2  2(Ey+m)VoB2 D2 (D+2l—1)(D+2(—3)

D D i@ C «2C? c? 22C? 2C? te 4
__n -G ) +<2n+ ) D E,—m?\ 2(E A2 (D+20-1)(D+2I
,7%(”,“—2’"% (Eart mVoh® | (0+21=1)D+2=3
4(E, +m)VoAB _ 2(Eu+m)Vy B 22’ {Z(E,ﬂ +m)VpA? N (D+21-1)(D+21— 3)]
o2 C? o C o2C? 4
B, —m?\  2AEq+m)VoA? (D+20—1)(D+20—-3)|[D? 4D (Ey+m)VoAB 2D (Ey+m)VoA?  2(Eq+m)VoB> D?(D+20—1)(D+2/-3)] _
+2\/[ ( o2 )+ «*C? * 4 H@f c «2C? c? 2C? 2C? te 4 ] =0
(38)
or more explicitly, we have, wave function of the system is obtained as
_062 " +2,(7’l+l_ ﬁ)Z 2 Z(E +m) D ) —Crte3
B - = |1 C LA ] 2y o () =y (1450 )
4 | F+3-p) ¢ ( ' | .
D+21—1)(D+21 -3 oty Do
where
2 (E,,Z+m)V(,A2+2(E,,,+m)V1 2C (Eq +m)VoB> D' (D421 —1)(D +21 -3)
e 22C2 o D 22 C? C 4
c D" 4D/ (Enl+m) 2D? Ey+m ( nl+m) D" (D+21 — 1)(D+21 73)
= — —_— V()AB V A2 2 VUB2 40
b \/4c2 e T e )T e o 4 (40)

4. Results and discussion

i
I In order to test accuracy of our work, we compute numerical
| values for energy spectrum and graphical solutions. In
¢ Table 1, we have reported numerical values of energy for
L various states. Also, we have reported behaviour of energy
in Fig. 2, We see that energy increases with increasing D. In
) ¢ _ % Fig. 3, we show behaviour of energy versus alpha. It reveals
1 that energy decreases as alpha decreases and tends to a
% —— A constant value. Finally, energy has also been plotted versus
4 Y o the potential coefficients in Figs. 4 and 5. It shows well how
C-Def energy increases for increasing V,, and decreases for
increasing V. Now a few special cases are discussed below.
] By adjusting some potential parameters, some well kwon
0- potentials can be obtained. Setting Vo =0,C=1,D =
0 1 2 3 4 5 6 7 8 —1 into Eq. (32), Yukawa potential [32]
—ur
Vi) =, (42)

Fig. 1 }7 and its approximation for oo = 0.01 r
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is obtained. Corresponding energy eigenvalues become
242

. (D+2171L(D+2173) _2(15,,1:;71)vl i (n n % _ \/%1 4 (D+211)4(D+213)>

@rﬂf:—jr
(n i % _ \/% 4 (D+21—1)4(D+21—3)>
o2

+Z(D+2l—1)(D+2l—3). (43)
Similarly we set V, =0, C=1,D' = —1 and « —» Ointo  Comparing Eq. (46) with Deng—Fan potential [38]
Eq. (32), the potential reduces to Coulomb potential [37]

1—2(14b)e ™ + (1 +b)Pe 2
_Vl =

V() =—+, (44) V() =De (o) (47)

Corresponding energy eigenvalues become

E 2y2
Eiz_mz _ _ (Ent + m) Vi (45)

2
<n+%—\/i+w>

where V| = 0, potential reduces to Mobius square potential. The
generalized form of Mobius square potential can be written as

V(r) = o

(40)

A2 4 2ABe ™ 4 Bzem}
a2
(1+%e)

Table 1 Energy for D=3,0=00l,A=1,B=-2m=1,C=
1L,D =—1,Vy =02

1.057065216
1.058112258

1.060574701
1.061615025

In, 1) E,; (1/fm)
Vi =0.1 V,=-0.1

10, 0) 1.006897567 1.010822408
0, 1) 1.007290610 1.011212746
10, 2) 1.008075656 1.011992392
0, 3) 1.009250634 1.013159302
11, 0) 1.024029797 1.027811039
11, 1) 1.024407462 1.028186166
11, 2) 1.025161830 1.028935469
11, 3) 1.026290984 1.030057055
12, 0) 1.040385455 1.044030733
12, 1) 1.040748852 1.044391743
12, 2) 1.041474753 1.045112881
12, 3) 1.042561382 1.046192388
13, 0) 1.056015689 1.059531917
13, 1) 1.056365808 1.059879786

)

)

for C=1 and D' = —1, we have VoA’ = D,, VoAB =
—D, (1 + b), VoB*> = D, (1 + b)*, where b = ¢« — 1 and
ry is equilibrium inter-nuclear distance. Substitution of
these parameters in Eq. (39) gives energy spectrum of
Deng—Fan potential as

2

2 1 2
—? |7+ (n+3+B)
Ey —m’ =— 2 2D (Ey +m
nl 4 (I’l + % + ﬁl) e( n )
2
o*(D+21—1)(D+21-3)
+ 5 : (48)
—=—n=1,1=0
1.030 © —e—n=1,=1 o
====n=1,1=2 ‘,..0"".
L
1029 —® n=1)=3 P
~— —&—n=1,l=4 ._.._,,.0‘"“
Byl e n=1=s e
o)
h? 1.027 +°
1.026
-
- = -x--?K":K
1025 . _ a=-r " **-x—*’*’*

Fig. 2 Energy versus D fora =001, A=1,B=-2m=1,C=1,
D =-1,V,=02,V; =0.1
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where

2D,(E,; +m E,+m D+2I—-1)(D+2[-3
= e( nzl )—ZDe(1+b)2( nl ; )+( )( ),
o
1 (Ew +m)  2D.(Ey +m) (Ew+m) (D+21—1)(D+20—3) (49)
nl +m e (Ent +m 2\Enl +m + - + -
= \/Z—4De(1+b) " + o +2D,(1+b) " + 2 ,
1.113 4 —€—n=0,I=0 y
—e— n=0,|=3 U’« A
1097 { =%==n=1=0 Rta
- —» n-1=2 2 :, A7 ) .
E 1081 4 —w—p=2 =1 Vil -‘.ﬁs £
= ' < & ¢ =
) e 02,123 Lo A e =
EE 1065 1 _ 4 —n=3=0 & A : ::}.
- & —-n=3,=3
1.049
1.033 ~
J
1.017 A
1.001 II‘ . ] '
0.001 0.004 0.007 0.01 0.013 0.016 0.019
a

Fig. 3 Energy versus o for D=3, A=1,B=-2m=1,C=1,
D =-1,Vy=02,V; =0.1

1.24 I—e—n=0,|=0
—e—n=0,=3

| =m=n=1,l=0

Ly P
—a—n=2,=1

116 | ke 02223
wepens (=320

| ——n=3,=3

Erl,l(lilfm)

1.08 -

100 | /K g

1.00 T T T T T T
0.01 0.61 1.21 1.81 2.41 3.0 3.61
Vo

Fig. 4 Energy versus Vy for D=3,0=001,A=1,B=-2m=
,C=1,D =-1,V; =0.1

Fig. 5 Energy versus V, forD =3, =001,A=1,B=-2m=1,
C=1,D=-1,Vp =02

This result is consistent with that of Dong [38] when
D = 3.

5. Conclusions

Approximate solutions of Klein—Gordon equation in case
of equal scalar and vector Mobius square plus Yukawa
potentials have been obtained using parametric form of NU
method. By adjusting some parameters of potential in
Eq. (3), three well known potentials are obtained. With a
good approximation to centrifugal term, we have obtained
energy eigenvalues and unnormalized wave function in
terms of Jacobi polynomials. Numerical data for the energy
spectrum are discussed indicating usefulness for other
physical systems [40].
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