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Abstract:

The solution of Klein—Gordon equation with equal scalar and vector generalized Tiez-Wei potentials is

presented for arbitrary [-wave. The energy bound states and unnormalized wave functions are obtained using the Nik-

iforov—Uvarov method.
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1. Introduction

The study of bound state solutions of the Schrodinger,
Klein—Gordon (KG) and Dirac equations for spherically
symmetric potentials plays a vital role in various fields of
physics. The bound state solutions of such potentials can
effectively be used to model some physics problems. KG
equation is the well-known relativistic wave equation
describing spin-zero particles due to its square terms [1].
However, the analytical solutions of KG equation are
possible only for a few simple cases such as the hydrogen
atom, the harmonic oscillator and others [2, 3]. In recent
years, many researchers are interested in searching for the
solutions of KG equation for spherically symmetric
potential in D-dimensional Hilbert space [4]. Different
potential models have been examined in D-dimensional
space. These potentials include Posch-Teller [5], Hulthen
[6], Tietz [7], Hylleraas [8], Hua Plus Modified Eckart
potential [9], Yukawa potential [10] and others [11].
Various methods have been used to solve these quantum
mechanical problems exactly or approximately. These
methods include the Nikiforov—Uvarov (NU) method [12],
asymptotic iteration method (AIM) [13], supersymmetric
quantum mechanics (SUSYQM) [14] and others [15, 16].
The Tiez-Wei (TW) potential mostly called TH potential is
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one of the best potential model for vibrational energy of
diatomic molecules defined in [17],

1 _ e*lr

V(r)—D(] >2, 0<g<l, (1)

1—ge™
where D, o and g are potential parameters. The TW
potential is much more realistic than Morse potential in
describing molecular dynamics at moderate and high
rotational and vibrational quantum number [17]. Also, the
TW fits the experimental Rydberg—Klein—Rees curves
closely than the Morse function, especially when the
potential domain extends to near to the dissociation limit.
The analytical expression of the TH rotating oscillator with
framework of Hamilton—Jacobi theory and Bohr-
Sommerfeld quantization rule has been derived by Kunc
and Gordillo-Vazquez [18]. In this work we consider a
more generalized Tietz-Wei (GTW) potential defined by
the Mobius square potential as [19],
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where A, B, C and D’ are the potential parameters. The Mobius
square potential is reduced to the TW potential for A =
I,B=—1,C=1and D' = —g. We plot the TW potential,
Morse and GTW as function of r for « = 0.01 in Fig. 1.
The main aim of the present paper is to investigate the KG
equation in D-dimensional Hilbert space for this potential.
Therefore, we attempt to study this potential with the
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Fig. 1 Shapes of TW and GTW potentials

centrifugal term in D-dimension using the NU method and
present the analytically approximate solutions to this system.

2. Parametric NU method

NU method [12] and its parametric form [20] were pro-
posed to solve second order differential equation of the
form
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with appropriate coordinate transformation s = s(r), where
a(r) and & (s) are polynomials at most a second degree and
T(s) is a first degree polynomial. The eigenfunction and
corresponding energy eigenvalues to the equation becomes
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where
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og = oci + &, o9 = o307 + OC%O!g + o
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3. Radial part of KG equation in D-dimensions

KG equation with vector V(r) and scalar S(r) potentials in
spherical coordinate can be written as (in relativistic units
h=c=1)[21-30],
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Substituting Eq. (1) into Eq. (7) for equal scalar and
vector potential, we have,
d2
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This equation cannot be solved analytically for [ # 0.
Then we must use an approximation to the centrifugal term
similar to the one suggested by other authors [22, 23]. The
approximation for a short range potential takes the form
[24],

2
lz ~ 4a? Ciz , (10)
r (C+ D'e—2ur)
which is valid for o <1 when C =1 and D' = —1 [24].
When performing a power series expansion and setting
a — 0, it gives the desired r—2 suggested by Greene and
Aldrich [23] and others [28-30]. In order to test the

Fig. 2 £ and its approximation (C =1, D' = —1)
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accuracy and validity of this approximation, we plot
variation of the approximation of Eq. (10) and centrifugal

term r% as a function of r for C =1,D' =

—1 with various
parameters of o in Fig. 2, which shows that for a short
range potential, Eq. (10) is a good approximation to .

Now substituting Eq. (10) into Eq. (9), we obtain

915
Comparing Eq. (12) with Eq. (3), we get,
o = 17 51 :A17
D/
n=-" ¢ = A, (14)
D/
o3 = _67 63 =A

& 2 2 A+ Be ¥ \? and using Eq. (6) we can obtain the following coefficients:
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If we defined the new variable s =e **, Eq. (11) b =2 [)’2 a8 - 222 (15)
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where, By using Eq. (5) and constants in Eq. (15), one can
D2 easily find the energy formula for the GTW potential as,
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&2 — Ey — = D, (E, +m) Furthermore, we calculate the radial wave function to
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Fig. 3 The energy of the system versus D, for A= -2, B =3,

C=1,D=-1,m=4%,D=30=01
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Fig. 4 The energy of the system versus A for D, =5, B=3, C =1,
D=-1,m=4 D=3 0=01
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where N,; is the normalization constant. The behavior
of E,; versus D,,A,B and o is plotted in Figs. 3, 4, 5
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Fig. 5 The energy of the system versus B for D, =5, A = -2,
C=1,D=-1,m=4%,D=3,0=01
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Fig. 6 The energy of the system versus o for D, =5, A = -2,
C:I,D’:fl7m:%,D:3,B:3

and 6. From Figs. 3, 4 and 6, we obtain that the energy
of the system has an increasing behavior as D,,a and
A increase. Figure 5 shows that as B increases the
energy of the system decreases and tends to a constant
value. The wave function of the system is plotted in
Fig. 7.
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Fig. 7 The wave function of the system for
D,=3A=-1,C=1,D=-1,m=1,D=3,B=2,0=0.01

4. Conclusions

We have obtained explicitly the analytical solutions of
Klein—Gordon equation with a generalized GTW potential.
GTW will be the better candidate for the study of molec-
ular dynamics than the Morse and the TW potentials.
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