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Abstract:

Higher-order nonlinear Schrodinger equation for describing the propagation of femtosecond pulses in optical

fibers is studied. Kudryashov method is used for obtaining exact soliton solutions of this equation.
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1. Introduction

Over the last few decades, search for exact solutions of
nonlinear partial differential equations has become a more
attractive topic in physical and nonlinear sciences. Inves-
tigation of the traveling wave solutions for nonlinear partial
differential equations plays an important role in study of
nonlinear physical phenomena [1-7]. Nonlinear phenom-
ena appear in a wide variety of scientific applications such
as plasma physics, solid state physics, fluid dynamics, etc.
In order to understand these nonlinear phenomena, many
mathematicians and physical scientists have made efforts
to seek more exact solutions of them. Several powerful
methods have been proposed to obtain exact solutions of
nonlinear evolution equations, such as Ansatz method and
topological solitons [8—12], tanh method [13, 14], multiple
exp-function method [15], Hirotas direct method [16, 17],
transformed rational function method [18] and so on.

The higher-order nonlinear Schrodinger equation [19,
20] is as follows:

*Corresponding author, E-mail: mirzazadehs2 @guilan.ac.ir

Kudryashov method; Solitons; Partial differential equations; Higher-order nonlinear Schrodinger equation

q. = iarqy + iarglql” + asqu + as(qlql’), + asq(lg),,
(1)

which describes propagation of ultrashort pulses in
nonlinear optical fibers, where the complex function
q = q(z, t) is slowly varying envelop of the electric
field, the subscripts z and ¢ are spatial and temporal
partial derivative in retard time coordinates. a,, a,, as,
as and as are the real parameters related to group
velocity, self-phase modulation, third order dispersion,
self-steepening and self-frequency shift arising from
stimulated Raman scattering respectively. More details
are presented in [21-30].

The powerful and effective method for finding exact
solutions of nonlinear ordinary differential equations
(ODEs) has been proposed by Kudryashov and hence
called the Kudryashov method [31]. The most complete
description of this method is given in [32]. The successful
application of this method to nonlinear differential equa-
tions has been performed in several works [33-35].

The aim of this paper is to find exact solutions of the
higher-order nonlinear Schrodinger equation by using the
Kudryashov method [31-36].

2. Modification of truncated expansion method

We consider a general nonlinear partial differential equa-
tion (PDE) in the form
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Ey(uy tyy Uy Uy, - . .) = 0. (2)

Using traveling wave u(x, 1) = y(§), & = kx — o t carries
Eq. (2) into the following ODE:

) =0. (3)

Modification of the truncated expansion method contains
the following steps.

Step I: Determination of the dominant term with highest
order of singularity. To find dominant terms, we substitute

y=:¢7, (4)

to all terms of Eq. (3). Then we compare degrees of all
terms of Eq. (3) and choose two or more with the lowest
degree. The maximum value of p is the pole of Eq. (3) and
we denote it as N. This method can be applied when N is
integer. If the value N is noninteger, one can transform the
equation studied.

Step 1I: We look for exact solution of Eq. (3) in the form

E2()’7 _wyiakyfukzy&f? ..

Y=Y _biQ'(9), (%)
i=0

where b;(i =0,1,...,N) are constants to be determined
later, such that by # 0, while Q(§) has the form

1

Q@):l—i—Txp(é)’

(6)
which is a solution to the Riccati equation

0'(¢) = 0*(&) - 0(9),

where c is arbitrary constant.

Remark 1: This Riccati equation also admits the follow-
ing exact solutions [37]:

Ql(é)l(ltanh{§81n§0:|)a §0>07

2 2 2
1 1
QZ(&) :E (] — coth I:g_ ‘ 250:|)5 60<07

more general solutions are presented in [37].

Step III: We calculate necessary number of derivatives
of function y. It has been done using Maple or Mathematica
package. Using case N = 1, we have some derivatives of
function y(&) in the form

y =bo+ b0,

ve=—b1Q+ b1 Q%

yee = b1Q — 3010 + 25,0’

yeee = —b1Q + 710 — 12,07 + 6b, 0.

(7)

Step IV: We substitute expressions given by Eqs. (5)-
(7) in Eq. (3). Then we collect all terms with the same
powers of function Q(&) and equate expressions to zero.
As a result we obtain algebraic system of equations.
Solving this system we get the values of unknown
parameters.

3. Higher-order nonlinear Schrodinger equation

Since ¢ = ¢q(z, t) in Eq. (1) is a complex function, we
suppose that

q(z, t) = y(é)ei(aer/)’t)’ ¢= i(kZ - (Ut), (8)

where a, B, k and ® are constants, all of them are to be
determined.
Substituting these into Eq. (1) yields

q. = i(kye +oy)e! Y, 9)
Gn = —(*yee = 2Poye + [Py)e ), (10)
G = i(0yzez = 30%yee + 3wy — Fy)e I, (11)
(qlgl"), = i(=3wy’ye + fy)e! ), (12)
q(lq*), = —2iy*yee . (13)
Substituting Egs. (8)—(13) into Eq. (1), we have

a30’yez: — (3azw’ + ama?)yg

+ (—k + 32 was + 2Pway)y: — (a3 + a1 f* + o)y

+ (ay + asB)y® — (Bway + 2was)y*y: = 0. (14)

The pole order of Eq. (14) is N = 1. So we look for
solution of Eq. (14) in the following form

¥(&) = bo +b10(&). (15)

Substituting Eq. (15) into Eq. (14), we obtain the system of
algebraic equations in the following form

0% : 6a;0°b; — w(3a4 + 2as)b; =0, (16)
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Q% : —2w*(a1 + 3Paz)by + (az + asp)b; — 12a3°by
—2w(3as + 2as)bob? + w(3as + 2as)b} = 0,

Q? : Taz*by + 3w*(a; + 3Paz)b; — w(3as + 2a5)b(2)b1
+2w(3ay + 2as)bob? + (2a1mf + 3azof* — k)b; +3
(az + a4ﬁ)b0b% = 07

Q' : —a;0°b; + w(3as + 2as)biby — w*(a) + 3Pas)b,
—(a+ a1+ a3p’)b1 — (2a10 + 3azwp> — k)b
1+ 3(ax + asf)b3by = 0,

Q" —(o+a1f* + a3f)by + (a2 + as )by = 0.

With the aid of Maple, we find the special solutions
of the above system
Case i

6a3 66l3
Ny
3a4 + 2as 3as + 2as
—3ajas4 — 2a1as + 3araz + Ywazas + 6wazas

ﬁ - 6a; (Cl4 + 615) ’
1

t=——"—= 162a3a2as + 324a3asa?
2162 (as ) [(162a3a;as 3040

+ 8laia; + 216a3ad) 0’

b()::FCO

3 2 22
— 27611614613 + 108a;asazas
2

+ (108a;d3ajas

— 324a3a2a4a5 + 81a2a3a4 324a3a2a5)w

(—108a1a4a§a2a5 — 270a3a4a%a5 - 252a3a§a%a4

— l62a1aﬁa§a2 — 72a3aga% + 243a§a§a4

— 81a3a4a1 + 162a3a2a5)w — 72a3a2a2a4a5

+ 724 a4a5 + 604’ a4a5 + 16a3 3 5+ 27a + 27a3a2

— 27a1a3a§a4 — 364> a2a3a5

w
k=—— [(3a a’
12a3(a4+a5) e

+ (6ayazasas — 18a§a2a5)a)

22
— 3ajay

27a a2a3aﬂ

+ 6a3asas + 12a3a3)w*

— Sa%a4a5 — 6azarajas — 4a® a5 + 9a3a2]

where o is arbitrary constant.
Using Ansatz given by Eq. (15), we obtain the following
traveling-wave solution of Eq. (14)

6613 1
1— - . 17
3ay + 2as < 1+ ce¢> (17)

Then the exact solution to Eq. (1) is written as

() =Fo

\/6(3(1)613614 +ajas — 3612613)

( l‘) ——w 6[13 1 1
DL =F 3a4 + 2as 1 + ceiw(Hz=1)

. 1
xexpli| | ————
|: (< 21661%((14—&—%)3

[(162a3a3as + 324ajasas + 8laja; + 216ajal) o’
27&1(1403 + 108a1a4a3a5

324d3ara?)w?

(108a1a;a4a5
7324a3a2a4a5 + 81a2a3a4 —
+(— 108a1a4a§a2a5 - 270a3aiafa5

7252&2020%&4 — 162a1aia§a2 — 72a3aga% + 243a§a§a4

781a3a4a1 + 162a3a2a5)w - 72a3a2a%a4a5
+7243 a4a5 + 603 a4a5 + 16a; ag + 27a + 27013512

—27a1a3a§a4 364> a2a3a5 27a a2a3a4])
n (—3a1a4 —2ayas + 3aza3 +Ywazas + 6a)a3a5) t)]

603 (ll4 + a5)

5 [(3d3d3 + 6a3asas + 12a3a2) o+
— 3a1a4 bazarajay

where H=——"—
12a a4+ i

(6a1a3a4a5 — 18a3azas)w
—4a3a2 + 9d3a3).
Case i
\/6(360(13(14 + ajaq — 3apa3)

bo =% ,
0 613(3614 + 2615)

by _i\/gw\/a3(3a4+2a5) B:_a_z

- )

3a4 + 2as ag

Sala4a5

)

a%(a1a4 — araz)
6= -,
ay

o(diai + 3w? a3a4 + 6aaaza4 — 9a3a2)
6a3a4

where o is arbitrary constant.
Using Ansatz given by Eq. (15), we obtain the following
exact solution of Eq. (14)

V6(3wazas + ajay — 3axaz)

) = F e TeiGa t 2
, VBo/a(as +2a5) (18)

(3ay + 2as)(1 + ce®)

Then the complex solution to Eq. (1) is written as

Z,t) =
(1) $( 6asr/a3(3a4 + 2as)

a3 (ayay-aya3)

—i 2w e %,
i (( “3 Z+a4t
X e

3

\/gw\/a3(3a4 + 2as) )

_ (3a4 T 2615)(1 + Ceiw(HZ*t))
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2.2 222 2.2
aja;+3w aza;+6aayazas—9aza;

where H = —

651341‘21

Case iii

6
bO — :F&a bl =+
2\/az (3614 + 205)

ﬁ . —3azas + 3aja4 + 2a;as
o 6a3(a4 + a5)
1

21643 (as + as)’
+ 54a1a4a3a5 + 108a1a4a3a5

—162a3aya%)” — 21ara3addl + 2Taia; + 724 a5as

\/661360
as (3614 + 2615) ’

)

S
Il

[(—162a3a2a; + 54a,aja;

3
324aasasa;

+ 6043 a5a4 + 1643 a*5 — 27a1a4a%a§

+ 27a2a3 72a;a2a2a4a5 — 36ayaza

[0)

k:,7 6a2a> +6aa + 1242 asa ?
(s - as) [(6a3a; 5 ja4as)

+ 3aia; + 6ajarazay + dajai + 8ajasas

22]

- 9a§a§],

where o is arbitrary constant.
Using Ansatz given by Eq. (15), we obtain the following
traveling-wave solution of Eq. (14)

Voazo (1 —L) (19)

8 =F—
y3() 2 a3(3a4+2a5) 1+C€£

Then the exact solution to Eq. (1) can be written as

( t) - \/_agcu ( 2 )
Z,l) = — -
q3 7 @ (3614 T 2&5) 1+ celo(Hz—1)

1
X exp | i —_—  [(-162&3aa>
p{ << 21643 (as +a5)3[( 3%

+54a1aia§ + 54a1a4a§a§ + 108a1aia§a5 —
—162d3aya?)* — 21apazaia’ +27a’al

+72ajazas + 60ajalas + 16ajal —

3
324arasasa;

2 2
2Tayasa5a;

+27a2a3 — 72a3a2a1a4a5 - 36a2a3a%a§])z

(—302(13 +3ajas + 26![(15) l):|
6asz(as +as) ’

W [(6a3a3 + 6a%a? + 12a3asas) o+
3a? a4 + 6aarazay + 4azai + 8a? Tasas — 9a2a3].

where H = —

4. Results and discussion

It is well known that propagation of picosecond pulses in
optical fibres is described by the nonlinear Schrodinger
equation (NLS). However, for ultrashort femtosecond
pulses, NLS is invalid and is described by higher order
nonlinear Schrodinger equation. In this paper, Eq. (1) is
studied for describing the propagation of femtosecond
pulses in optical fibers. Kudryashov method is used for

constructing exact soliton solutions of this equation.
Solutions obtained are potentially significant and important
for the explanation of some practical physical problems.
The results show that this method is efficient in finding the
exact solutions of nonlinear differential equations.

5. Conclusions

Kudryashov method is applied successfully for solving
higher order nonlinear Schrodinger equation. This pro-
posed method can be extended to solve the nonlinear
problems which arise in the theory of solitons and other
areas.
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