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Ion acoustic solitary waves in electron-positron-ion plasmas
with q-nonextensive electrons and high relativistic ions
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Abstract: Propagation of small amplitude ion acoustic solitary waves in plasmas containing q-nonextensive electrons,

thermal positrons and high relativistic ions is addressed in this paper. Our results show that the Korteweg-de Vries equation

describes the nonlinear waves in such plasmas. The amplitude and the width of the solitons are derived and the effects of

relativistic ions and q-nonextensive distribution of electrons on these quantities are discussed.
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1. Introduction

In the last few years, there has been increasing attention on

the different types of localized wave structures in the mul-

tispecies plasmas [1–4]. The ion acoustic soliton (IAS) is one

of the most aspects of nonlinear phenomena in modern

plasma physics research. Such nonlinear wave structures

arise from the competition between nonlinearity, dispersion

and dissipation behaviours. Investigation of such nonlinear

structures is usually carried out by employing of perturbation

techniques. In small amplitude approximation of the equa-

tions, one can derive some forms of nonlinear differential

equations for one spatial dimension situations like Kor-

teweg-de Vries (KdV), modified Korteweg-de Vries

(m-KdV) or nonlinear Schrodinger equation, etc. Such

equations have well known extended solutions, like solitary

waves or solitons. A great number of authors have studied

ion-acoustic solitary solutions using the reductive perturba-

tion technique in different plasmas [5, 6]. In contrast to the

usual plasmas consisting of electrons and positive ions, it has

been observed that the nonlinear waves in plasmas which

contain additional components such as positrons have dif-

ferent characters [7]. The behaviour of the electron-positron-

ion plasmas helps us to find better knowledge about the early

universe which assumes to be a kind of plasma [8, 9],

describing the active galactic nuclei [10], pulsar magneto-

spheres [11] and also the solar atmosphere [12]. Positrons

can be used to probe particle transport in tokomaks, since

they have sufficient lifetime. In this case, two-component

electron-ion (e-i) plasmas become a three-component elec-

tron-ion-positron (e-i-p) medium [13]. During the last dec-

ade, e-p-i plasmas have attracted the attention of several

authors [14–19]. It is known that the propagation of ion

acoustic solitary wave is modified when the ion velocity

approaches the speed of light. Relativistic plasmas occur in a

variety of situations, such as, space–plasmas [20], laser–

plasma interaction [21], plasma sheet boundary layer of the

earth’s magnetosphere [22]. This situation is also used for

describing the Van Allen radiation belts [23]. Das and Paul

[24] have investigated the weakly relativistic effects on ion-

acoustic wave propagation in one dimension using the KdV

equation for cold plasmas but without electron inertia

effects. Nejoh [25] has investigated the same situation in the

warm plasmas. El-Labany and Shaaban [26] have investi-

gated nonlinear ion-acoustic waves in weakly relativistic

plasmas consisting of warm ion-fluid with non-isothermal

electrons through the modified equations. Nejoh and Sanuki

[27] have studied the large amplitude Langmuir and ion-

acoustic waves in relativistic two fluid plasmas with deriving

the pseudo potential. The relativistic effects may be induced

by the fluid velocity of the relativistic particles having speed
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near the light velocity. Also it is possible that the relativistic

effects are induced by thermal effects of the particles under

concern. In this case, the ratio T
mc2 (where T is the particle

temperature, m is its mass and c is the light velocity) cannot

be neglected. Moreover, one can consider production of pair

of electrons and positrons by relativistic ions [28]. In most of

the studies, the authors worked in the weak relativistic limit,

which assumes that the relativistic effect of flow speed of

plasma is so small that the Lorentz relativistic factor c can be

approximated as c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2=c2
p

ffi 1þ u2=2c2 in

which u is the particle celcity and c is the light speed. The

weak relativistic approximation itself is a convenient tool

and can be refined more accurately by including higher order

terms such as c ffi 1þ u2=2c2 þ 3u4=8c4 . In this situation,

relativistic effects are usually taken into account by using the

equation of motion which can be conjectured by the simple

replacement of the momentum u with the relativistic

momentum c u. In fact, the approximations in these studies are

applied partially and inconsistently, considering relativistic

effects only for the equation of motion. Recently, a fully rel-

ativistic set of two-fluid plasma equations derived from the

covariant formulation of relativistic fluid equations has been

outlined [29]. This new approach is consistent with the rela-

tivistic principle and consequently leads to a more general set

of equations which is valid for fully relativistic plasmas with

arbitrary Lorentz relativistic factor. The understanding of the

behaviour of multi species plasmas containing cold or warm

ions with Boltzmann’s distribution has been studied for the last

few years. More recently, it has been found that the distribution

function of electrons and ions play a crucial role in charac-

terizing the physics of the nonlinear waves [30–34]. In the last

few years, a great deal of attention has been paid to the non-

extensive statistical mechanics based on the deviations of

Boltzmann–Gibbs–Shannon (B-G-S) entropic measure. Gou-

gam et al. [35] have shown that the presence of a nonextensive

distribution of electrons changes the nature of ion acoustic

solitary structures. Astrophysical electron-nuclear plasmas are

properly described by nonextensive distributions of metastable

states. Leubner [36] has shown that distributions very close to

kappa-distributions are a consequence of the generalized

entropy favoured by nonextensive statistics, which provides

the missing link for power-law models of nonthermal features

from fundamental physics. Nonextensive statistics has been

successfully applied to a number of astrophysical and cos-

mological scenarios. Those include stellar polytropes [37], the

solar neutrino problem [38], peculiar velocity distributions of

galaxies [39] and generally systems with long range interac-

tions and fractal like space-times. Cosmological implications

have been discussed [40] and recently an analysis of plasma

oscillations in collisionless thermal plasmas has been provided

from q-statistics in [41]. On the other hand, kappa-distributions

are highly favoured in any kind of space plasma modelling [42]

where a reasonable physical background was not apparent. A

comprehensive discussion of kappa distributions in view of

experimentally favoured non-thermal tail formations has been

provided by Leubner et al. [43] (where typical values of the

index j are quoted and referenced for different space plasma

environments). In the present analysis the missing link to

fundamental physics is provided within the framework of an

entropy modification consistent with nonextensive statistics.

The family of kappa distribution is obtained from the positive

definite part 12 B j B ?, corresponding to -1 B q B 1 of

the general statistical formalism where in analogy the spectral

index kappa is a measure of the degree of nonextensivity. Since

the main theorems of the standard Maxwell–Boltzmann sta-

tistics admit profound generalizations within nonextensive

statistics [44–48], a justification for the use of kappa distribu-

tions in astrophysical plasma modeling is provided from fun-

damental physics. In recent years, several authors [49–51] have

theoretically investigated the properties of ion and dust

acoustic solitary waves in plasmas. The aim of the present

paper is therefore to study the effects of nonextensive

q-parameter on the electron acoustic solitary waves in plasmas

consisting of high relativistic ions. Our investigation may be of

wide relevance to astronomers and space scientists working on

interstellar and space plasmas.

2. Basic equations

Let us consider one-dimensional, collisionless, unmagne-

tized high relativistic plasmas with thermal positrons and

q-nonextensive electrons. Charge neutrality at equilibrium

gives n0e ¼ n0p þ n0, where n0, n0e and n0 p are unper-

turbed ion, electron and positron number densities

respectively. The nonlinear dynamics of the low frequency

ion-acoustic solitons in the three component plasmas are

governed by the following set of equations [30].

on

ot
þ oðnuÞ

ox
¼ 0

oðcuÞ
ot
þ u

oðcuÞ
ox
þ o/

ox
¼ 0

o2/
ox2
¼ ne � n� np

ð1Þ

where n and u are ion number density and ion fluid velocity

respectively. Also / and c are electrostatic potential and

Lorentz relativistic factor. For high relativistic plasmas

parameter c is approximated by its expansion up to term u4

c4 as

c ¼ 1� u2

c2

� ��1
2

ffi 1þ u2

2c2
þ 3u4

8c4
ð2Þ

Effects of electron nonextensivity can be modelled using

the following q-distribution function given by Lima et al. [41].
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feðveÞ ¼ Cq 1þ ð1� qÞ mev2
e

2Te
� ew

Te

� �� �

1
q�1

ð3Þ

where w stands for the electrostatic potential and the

remaining variables/parameters have their usual meaning.

It may be useful to note that fe(ve) is the particular distribution

that maximizes the Tsallis entropy and therefore conforms to

the laws of thermodynamics. The constant of normalization

Cq is given by

Cq ¼ ne0

Cð 1
q�1
Þ

Cð 1
q�1
� 1

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

með1� qÞ
2pTe

s

for � 1\q\1 ð4Þ

Cq ¼ ne0

1þ q

2

� �Cð 1
q�1
þ 1

2
Þ

Cð 1
q�1
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meðq� 1Þ
2pTe

s

for q [ 1 ð5Þ

The parameter q stands for the strength of nonextensivity.

It may be useful to note that for q \ -1, the q-distribution is

unnormalizable. In the extensive limiting case (q = 1), the

q-distribution reduces to the well-known Maxwell–

Boltzmann distribution. Also for q [ 1, the q-distribution

function exhibits a thermal cutoff on the maximum value

allowed for the velocity of the particles, which is given by

vmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Te

me

ew
Te
þ 1

q� 1

� �

s

ð6Þ

Integrating the q-distribution over all values of the

velocity space, one obtains the following nonextensive hot

electron number density [35].

ne ¼
1

1� p
½1þ ðq� 1Þ/�

qþ1

2ðq�1Þ ð7Þ

where p ¼ np0

ne0
and q is a parameter quantifying the degree

of nonextensivity and it is larger than -1 (q [ -1).

Positrons are assumed to be in thermal equilibrium such that

np ¼
p

1� p
e�r/; ð8Þ

where r ¼ Te

Tp
is the ratio of electron temperature to positron

temperature. In Eq. (1), densities of the plasma species are

normalized by unperturbed electron density ne0. Ion

velocity is normalized by the ion acoustic speed

ci ¼
ffiffiffiffiffiffiffiffiffiffiffi

Te=m
p

, space variables are normalized by electron

Debye length kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Te=4pn0e2
p

, time variable is nor-

malized by electron plasma period T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

me=4pne0e2
p

and

electrostatic potential is normalized by Te

e .

3. Derivation of the KdV equation

As mentioned before, reductive perturbation method has

been used to investigate the behaviour of nonlinear ion

acoustic waves in this plasma medium. The stretched

coordinates are defined as follows [30]

n ¼ e1=2 ðx� ktÞ; s ¼ e3=2t ð9Þ

where e is a small parameter which characterizes the

strength of the nonlinearity and k is the phase velocity of

propagated wave. Dependent variables are expanded as

follows.

n ¼ 1þ en1 þ e2n2 þ e3n3 þ . . .;

u ¼ u0 þ eu1 þ e2u2 þ e3u3 þ . . .;

/ ¼ e/1 þ e2/2 þ e3/3 þ . . .

ð10Þ

By substituting Eq. (10) into Eq. (1), using Eq. (9) and

collecting the terms with different powers of e, one can

derive the following equations in the lowest order of e

n1 ¼
ð1� pÞu1

k� u0

; u1 ¼
ðk� u0Þð1þ prÞ/1

ð1� pÞ ;

n1 ¼ ð1þ prÞ/1

ðk� u0Þ2c1 ¼
ð1� pÞ

qþ1
2
þ pr

ð11Þ

For the higher orders of e, we have

� ðk� u0Þ
on2

on
þ on1

os
þ oðn1u1Þ

on
þ ð1� pÞ ou2

on
¼ 0

on2

os
þ u2

on1

on
þ u1

on2

on
þ n1

ou2

on
þ n2

ou1

on
¼ 0

c0 þ
u2

0

c2
þ 3u4

0

2c4
� ðk� u0Þ

3u0

c2
þ 15u3

0

2c4

� �� �

u1

ou1

on

� ðk� u0Þ c0 þ
u2

0

c2
þ 3u4

0

2c4

� �

ou2

on

þ c0 þ
u2

0

c2
þ 3u4

0

2c4

� �

ou1

os
þ o/2

on
¼ 0

o2/2

on2
þ pr2 � 1
	 


/1/2 �
1

2

1

3
þ 1

3
pr3

� �

/3
1 ¼ 0

ð12Þ

where c0 ¼ 1þ u2
0

2c2 þ 3u4
0

8c4 .

Finally the KdV equation is derived from Eqs. (11) and

(12) as

o/1

os
þ A/1

o/1

on
þ B

o3/1

on3
¼ 0

ð13Þ

with

A¼ 1

2

3

ðk� u0Þc1

� c2

c2
1

�
c1ðk� u0Þ3 ðqþ1Þð3�qÞ

4
� pr2

� �

ð1� pÞ

2

4

3

5 ;

B¼ c1ðk� u0Þ3

2
ð14Þ
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in which c1 ¼ 1þ 3u2
0

2c2 þ 15u4
0

8c4 , c2 ¼ 3u0

c2 þ 15u3
0

2c4 .

The stationary solution of Eq. (13) is given by

/1 ¼ /0 sec h2 ðn� UsÞ
w

ð15Þ

where U is constant velocity of solitary wave. The ion

acoustic wave amplitude (/0) and its width (w) are given as

/0 ¼
3U

A
; w ¼ 2

ffiffiffiffi

B

U

r

ð16Þ

Parameters A and B can be compared with the results in

[44] for nonplanar ion-acoustic solitary waves in electron-

positron-ion plasmas with electrons following a

q-nonextensive distribution. Our results (with c1 = 1and

c2 = 0) reduce to the results of [44] (with m = 0)

correctly. It may be noted that plasma components in

[44] are not relativistic.

4. Discussion

We have two important parameters which affect the

behaviour of propagated solitons in the above described

plasma. These are relativistic parameter g which is char-

acterises by g ¼ u0

c and nonextensive parameter q. Equation

(14) shows that the effects of these parameters on the

behaviour of soliton are complicated. Therefore, some

plots can help us to find the general influence of these

parameters on the soliton characters. It may be noted that

our calculations are valid for g\ 0.65 with acceptable

precision.

Figure 1 presents the soliton amplitude as a function of

g with different values of q. The other parameters have

been chosen as r = 0.1, p = 0.6 and u = 0.2. This figure

also shows that soliton amplitude increases when g
increases and also the increasing rate is higher for larger

values of q. The increase of the parameter g means that the

ions velocity becomes larger and therefore the soliton

energy (read the soliton amplitude) increases. But one can

find from the Fig. 1 that the soliton amplitude decreases

when q increases. Therefore, the behaviour of these two

parameters is opposite.

Figure 2 demonstrates the soliton width as a function of

g for different values of q. This figure shows that the width

of the soliton decreases with an increasing g, and also with

increasing values of q too. However, the effects of the

nonextensive parameter q is more significant.

Figures 1 and 2 show that our results in the interval

0 \ g\0.2 (for weakly relativistic plasmas) confirm the

results reported by Pakzad [30]. It is observed that the

changing ratio of /0 in the high relativistic limit is more

than that of in weakly relativistic situation.

The soliton profile is presented in Fig. 3 for different

values of g. This figure also indicates that solitons have

higher energy with larger values of g. It can be seen that as

g increases, i.e., the relativistic character of the plasma

becomes important, the soliton amplitude increases, while

its width becomes narrower. This means that an increase in

g makes the solitary structure more spiky.

Figure 4 shows that soliton amplitude and its width

decrease when q increases. In other words, soliton energy

decreases when nonextensive character of the plasma

becomes dominant i.e. the electrons evolve far away from

their Maxwell–Boltzmann thermodynamic equilibrium. It

is noted that nonextensivity contributes to the change in Ne

in the region of soliton lump.

Fig. 1 Soliton amplitude shown as a function of g for different values

of q. The other parameters are r = 0.1, p = 0.6 and u = 0.2

Fig. 2 Soliton width as a function of g for different values of q. Other

parameters are r = 0.1, p = 0.6 and u = 0.2
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5. Conclusions

The propagation of Ion acoustic solitary waves in electron-

positron-ion plasmas with q-nonextensive electrons and

high relativistic ions has been investigated. Results are in

agreement with the results for weakly relativistic situation

which have been presented before. However, some new

results have been found relative to non-realistic or weakly

relativistic situations. It is shown that the soliton energy

and its amplitude increase when the ions take relativistic

velocities while the width of the soliton decreases. This

means that the soliton becomes spiky when ions contribute

in the plasma with high relativistic speed. On the other

hand, the effects of the nonextensive parameter are in

opposite direction of the effect of the relativistic parameter.

Therefore the solitary waves may propagate in such plas-

mas with better stability.
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